全国研究生数学建模论文模板
- 格式:docx
- 大小:17.53 KB
- 文档页数:4
Haozl觉得数学建模论文格式这么样设置版权归郝竹林所有,材料仅学习参考版权:郝竹林备注☆※§等等字符都可以作为问题重述左边的。
一级标题所有段落一级标题设置成段落前后间距13磅二级标题设置成段落间距前0.5行后0.25行图和表的标题采用插入题注方式题注样式在样式表中设置居中五号字体Excel中画出的折线表字体采用默认格式宋体正文10号图标题在图上方段落间距前0.25行后0行表标题在表下方段落间距前0行后0.25行行距均使用单倍行距所有段落均把4个勾去掉注意Excel表格插入到word的方式在Excel中复制后,粘贴,word2010粘贴选用使用目标主题嵌入当前Dsffaf所有软件名字第一个字母大写比如E xcel所有公式和字母均使用MathType编写公式编号采用MathType编号格式自己定义公式编号在右边显示农业化肥公司的生产与销售优化方案摘 要 要求总分总本文针对储油罐的变位识别与罐容表标定的计算方法问题,运用二重积分法和最小二乘法建立了储油罐的变位识别与罐容表标定的计算模型,分别对三种不同变位情况推导出的油位计所测油位高度与实际罐容量的数学模型,运用matlab 软件编程得出合理的结论,最终对模型的结果做出了误差分析。
针对问题一要求依据图4及附表1建立积分数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。
我们作图分析出实验储油罐出现纵向倾斜 14.时存在三种不同的可能情况,即储油罐中储油量较少、储油量一般、储油量较多的情况。
针对于每种情况我们都利用了高等数学求容积的知识,以倾斜变位后油位计所测实际油位高度为积分变量,进行两次积分运算,运用MATLAB 软件推导出了所测油位高度与实际罐容量的关系式。
并且给出了罐体倾斜变位后油位高度间隔为1cm 的罐容标定值(见表1),最后我们对倾斜变位前后的罐容标定值残差进行分析,得到样本方差为4103878.2-⨯,这充分说明残差波动不大。
全国研究生数学建模竞赛获奖论文一、概要《全国研究生数学建模竞赛获奖论文》是对全国范围内研究生数学建模竞赛的优胜者论文的集结和展示。
该竞赛旨在鼓励研究生群体深入探究数学建模理论与实践,挖掘科研潜力,锻炼解决实际问题的能力。
本书收录的论文,均为经过激烈竞争,展现出色创新思维、建模能力和问题解决能力的佳作。
这些论文涉及的领域广泛,包括物理、化学、生物、工程、经济、社会科学等多个学科。
本次竞赛的获奖论文展示了中国研究生在数学建模领域的最新研究成果和前沿思考。
通过对这些论文的研读,可以了解当前研究生数学建模的总体水平,以及未来的发展趋势和研究方向。
这些论文对于推动相关领域的研究进展,提供新的研究思路和方法,具有重要的参考价值和实践指导意义。
本书的一大部分内容是对获奖论文的高度概括和深入分析,包括问题的提出、建模过程、解决方法、结果讨论等各个方面。
通过详尽的阐述,让读者可以全面理解每一篇论文的研究思路和方法。
书中还会介绍各篇论文的创新点、难点及解决策略,以展现研究生们在面对复杂问题时所展现出的科研能力和创新思维。
还将介绍全国研究生数学建模竞赛的背景、发展历程以及未来的发展方向,为读者提供一个全面的视角来理解和参与这一重要的学术活动。
1. 介绍全国研究生数学建模竞赛的背景和意义全国研究生数学建模竞赛是一项针对全国范围内研究生的重要学术竞赛活动,旨在激发研究生在数学建模领域的创新精神和研究热情。
该竞赛不仅为研究生提供了一个展示自身才华的舞台,更是推动数学建模技术发展和应用的重要途径。
其背景源于数学建模在各个领域中的广泛应用,包括工程、经济、金融、生物、医学等多个领域。
随着科技的进步和学科交叉的加深,数学建模已经成为解决复杂问题不可或缺的工具。
全国研究生数学建模竞赛的举办,对于提高研究生的综合素质,培养创新思维和解决问题的能力,推动数学建模技术的研究和发展,具有十分重要的意义。
促进学术交流与合作。
全国研究生数学建模竞赛为来自全国各地的研究生提供了一个交流和学习的平台,促进了学术上的交流与合作,推动了数学建模技术的不断进步。
数学建模论文参考范文9700字数学建模论文范文篇一:数模论文范文Ⅰ、问题的重述石油是重要的战略资源,进入新世纪以来石油价格一路高涨且波动频繁,油价成为全球关注的焦点。
成品油的合理定价对国家经济发展及社会和谐稳定具有重要的意义,还关系到民生,石油储备等多方面的问题。
石油价格的变化深深影响着经济和社会的发展,由于石油的特殊战略地位,油价的波动已经成为各国政府、学者以及业界关注的焦点,每次油价上涨更是吸引了各方广泛的关注。
统计数据表明,自2009年以来,国内成品油价格共调整17次,其中12次上调,5次下调。
以北京为例,93号汽油的零售价也从5.33元/升上涨至目前的8.33元/升,涨幅约为56%。
油价的上涨引起了广大消费者的不满,每到成品油调价窗口期,油价话题总会引发热议;与此同时,现行的成品油定价机制也遭到了广泛质疑,定价机制改革的呼声也日益高涨。
成品油价格究竟多少合适,随之成为一个敏感而又复杂的问题。
当前我国成品油定价体制是否依然合理?现在的问题就是如何综合考虑各种影响成品油价格的因素如原油价格等提出一个合理的成品油定价机制。
试根据中国国情,收集相关数据,综合考虑各种因素,并通过数学建模的方法,就成品油定价机制进行定性分析与定量计算,得出明确、有说服力的结论。
最后,根据建模分析计算的结果,给国家发改委写一份报告,提出自己的新成品油价格机制,并说明新机制的优越性。
Ⅰ、问题的分析及思路2.1、问题分析石油价格过高会影响国民经济的积极性,影响社会稳定,过低又会影响企业的正常运转等,还需要考虑到与国际油价接轨以及我国特殊的国情,以及我国现行的石油价格机制所存在的不合理问题。
现行成品油价格机制是否合理,需要一个量化指标来判定,然而影响成品油定价机制的指标的相关关系和所反应结果的准确度都是模糊不清的。
应此我们需要基于FCE模糊综合评判算法建立一个评价模型,还需要基于AHP层次分析法得到在各级别指标的权重向量。
全国第五届研究生数学建模竞赛题 目 货运列车的编组调度问题摘 要货运列车的编组调度问题是铁路运输系统的关键问题之一。
合理地设计编组调度方案对于提高铁路运输能力和运行效率具有十分重要的意义,是关乎我国铁路系统能否又好又快开展的全局性问题。
针对货运列车的编组调度问题,在深入研究编组站中到达列车的转发、解体及新车编发等规那么和要求的根底上,对所提供的数据进行了分析和处理,建立了各问题相应的数学模型,制订了相应的编组调度方案:针对问题一,详细探讨了白、夜班中所有车辆在编组站的滞留时间,包括解体等待时间、解体时间、编组时间、出发等待时间以及转发时间等等;求出了所有车辆在编组站的滞留时间之和,并用其除以所有车辆的总数,即得到每班中时的优化模型;模型以每班的最小中时为目标函数,其约束条件包括出发列车的总重量、总长度、每辆车的中时约束等等;最后利用遗传算法和Matlab 遗传算法工具箱,计算出了白班和夜班的最小中时,并给出了详细的列车解体方案和编组方案。
针对问题二,优先考虑了发往1S 的货物、军用货物及救灾货物等的运输问题;优先安排了含有专供货物和救灾货物车辆数较多的列车,使其尽快解体、编组和发车,以减少其等待时间。
建模时,在问题一模型的根底上添加了专供货物和救灾货物车辆的中时约束,并利用遗传算法计算出了每班的最小中时,制订了列车解体方案和编组方案。
针对问题三,由于所提供的信息具有动态性,所以在解编列车时,要对后续车辆和现存车辆的具体情况同时进行分析才能作出合理决策。
在考虑相邻时段递推关系的根底上,以每班的最小中时和发出车辆最大数目为目标函数,建立了一个多目标多阶段动态规划模型,并利用神经网络方法和Matlab 软件计算出了每班的最小中时和发出车辆的最大数目,制订了列车解体方案和编组方案。
针对问题四,首先根据条件处理了所给的数据,然后在模型一的根底上建立了相应的模型,并计算出了相应各班的中时,给出了相应的调度方案。
一篇标准的数学建模论文范文(优选28篇)数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。
它给学生再现了一种“微型科研”的过程。
数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。
同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。
使用数学语言描述的事物就称为数学模型。
有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
1.只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。
动手实践、自主探索与合作交流是学生学习数学的重要方式。
学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。
因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。
教师不应只是“讲演者”,而应不时扮演下列角色:参谋,提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。
询问者,故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。
仲裁者和鉴赏者,评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。
摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。
建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。
本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
2022年研究生数模国赛B题论文模板2022年研究生数模国赛B题论文模板方形件组批优化问题数学模型摘要方形件组批优化问题本是本文要解决的数学问题,为了明确方形件组批优化问题,本文针对方形件组批优化问题进行了分析建模,对方形件组批优化问题进行了参考文献研究,建立了方形件组批优化问题的相应模型,推导出方形件组批优化问题的计算公式,编写了方形件组批优化问题的计算程序,经过程序运行,得到方形件组批优化问题程序计算结果。
具体有:对于问题一,这是方形件组批优化问题最重要的问题,根据题目,对问题一进行了分析,参考已有的资料,建立了方形件组批优化问题一的数学模型,推导出问题一的计算公式,编写出方形件组批优化问题一的计算程序。
求出了方形件组批优化问题一的计算结果。
对于问题二,方形件组批优化问题二比问题一复杂的,是方形件组批优化问题的核心,分析的内容多,计算机的东西也多。
在方形件组批优化问题一的基础上,根据方形件组批优化问题,对问题二进行了分析,参考已有的资料,建立了方形件组批优化问题二的数学模型,推导出问题二的计算公式,编写出方形件组批优化问题二的计算程序。
求出了问题二的计算结果,并以图表形式表达结果。
对于问题三,方形件组批优化问题三是问题一和问题二的深入。
在问题一和问题二的基础上,根据方形件组批优化问题,对问题三进行了分析,参考已有的资料,建立了问题三的数学模型,推导出方形件组批优化问题三的计算公式,编写出方形件组批优化问题三的计算程序。
求出了方形件组批优化问题三的计算结果,并以图表形式表达结果,并且进行了分析讨论。
对于问题4,方形件组批优化问题4是问题一、问题二和问题三的扩展。
在问题一、问题二和问题三的基础上,根据方形件组批优化问题,对方形件组批优化问题4进行了分析,参考已有的资料,建立了方形件组批优化问题数学模型,推导出方形件组批优化问题4的计算公式,编写出问题4的计算程序。
求出了问题4的计算结果,并以图表形式表达结果,并且进行了分析讨论。
数学建模全论文写作模板免费版一、引言(1)背景介绍:简要介绍数学建模的背景和意义。
(2)问题陈述:阐述要解决的问题以及其重要性。
(3)文献综述:回顾相关领域的研究成果和方法。
(4)本文的目的和贡献:明确本文的研究目的和研究结果的贡献。
二、问题分析(1)问题拆解:将整体问题分解为若干子问题。
(2)模型假设:对问题进行适度简化并给出所做的假设。
(3)模型建立:建立数学模型,包括变量定义、符号表示和方程等。
三、模型求解(1)模型求解方法选择:选择适合求解该模型的方法。
(2)算法和程序设计:详细描述算法步骤和程序设计过程。
(3)参数估计和敏感性分析:对模型进行参数估计和敏感性分析。
(4)模型求解结果:给出模型得到的数值结果,并进行分析和讨论。
四、模型验证(1)数据处理和准备:对实际数据进行处理和准备。
(2)模型适用性验证:对模型的适用性进行验证,包括模型的精度和鲁棒性等。
(3)与实际情况比较:将模型结果与实际情况进行对比,并进行分析和讨论。
五、模型推广(1)模型推广应用:探讨模型在其他领域的推广应用。
(2)模型改进和扩展:对模型进行改进和扩展,并给出相应的理论分析和实验结果。
六、结论(1)研究总结:总结本文的研究内容和方法。
(2)结果分析:对本文的研究结果进行总结和分析。
(3)研究展望:对未来进一步研究的方向和问题提出展望。
以上是一个标准的数学建模全论文写作模板,你可以根据自己的具体需求和实际情况进行适当修改和调整。
在写作过程中,需要注意逻辑严谨、分析深入、以及对结果的准确评估和合理解释。
同时,注意语言表达清晰、文字流畅,以确保读者能够理解你的研究内容和结论。
希望这个模板对你的论文写作有所帮助!。
城市出租车交通规划综合模型一、问题重述城市中出租车的需求随着经济发展、城市规模扩大及居民生活方式改变而不断变化。
目前某城市中出租车行业管理存在一定的问题,城市居民普遍反映出租车价格偏高,另一方面,出租车司机却抱怨劳动强度大,收入相对来说偏低,整个出租车行业不景气,长此以往将影响社会稳定。
现为了配合该城市发展的战略目标,最大限度地满足城市中各类人口的出行需要,并协调市民、出租车司机和社会三者的关系,实现该城市交通规划可持续发展,需解决以下的问题:(1)从该城市当前经济发展、城市规模及总体人口规划情况出发,类比国内城市情况,预测该城市居民的出行强度和出行总量,这里的居民指的是该城市的常住人口。
同时结合人口出行特征,进一步给出该城市当前与今后若干年乘坐出租车人口的预测模型。
(2)根据该城市的公共出行情况与出租车主要状况,建立出租车最佳数量预测模型。
(3)油价调整(3.87元/升与4.30元/升)会影响城市居民与出租车司机的双方的利益关系,给出能够使双方都满意的价格调节最优方案。
(4)针对当前的数据采集情况,提出更合理且实际可行的数据采集方案。
(5)从公用事业管理部门的角度考虑出租车规划的问题,写一篇短文介绍自己的方案。
二、模型假设1.常住人口和暂住人口的出行特征相近,划分为第一类人,在所有分析过程中假设其出行特征完全一样。
而短期及当日进出人口为第二类。
2.由于短期及当日进出人口情况复杂,假设第二类人口在于乘坐出租车方面相关出行特征(如乘车出行强度等)在未来几年内保持不变。
3.由于城市地理状况和居民的生活习惯在短时期内不易改变,所以在各交通小4.假设居民中出行人口占总人口数的比例不变。
5.假设对于出行人口而言,在出行方式选择方面的比例与出行人次的比例一样。
6.假设在未来几年内,出租车固定营运成本不变。
7.由于每次一起打车的人数,与居民的生活习惯相关,所以假设出租车每趟载客人次不变,即不受出租车数目和收费方案的不同而改变。