第3讲 离心泵特性曲线
- 格式:ppt
- 大小:387.00 KB
- 文档页数:31
离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。
离心泵的主要性能参数有流量、压头、效率、轴功率等。
它们之间的关系常用特性曲线来表示。
特性曲线是在一定转速下,用20℃清水在常压下实验测得的。
(一)离心泵的性能参数1、流量离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。
离心泵的流量与泵的结构、尺寸和转速有关。
2、压头(扬程)离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。
压头的影响因素在前节已作过介绍。
3、效率离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。
反映能量损失大小的参数称为效率。
离心泵的能量损失包括以下三项,即(1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。
闭式叶轮的容积效率值在0.85~0.95。
(2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。
这种损失可用水力效率ηh来反映。
额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。
(3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。
机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。
离心泵的总效率由上述三部分构成,即η=ηvηhηm(2-14)离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。
通常,小泵效率为50~70%,而大型泵可达90%。
4、轴功率N由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。
离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有Ne = HgQρ(2-15)式中Ne------离心泵的有效功率,W;Q--------离心泵的实际流量,m3/s;H--------离心泵的有效压头,m。
离心泵特性曲线离心泵的特性曲线是将由实验测定的q、h、n、η等数据标绘而成的一组曲线。
此图由泵的制造厂家提供,供使用部门选泵和操作时参考。
不同型号泵的特性曲线不同,但均有以下三条曲线:(1)h-q线表示压头和流量的关系;(2)n-q线表示泵轴功率和流量的关系;(3)η-q线表示泵的效率和流量的关系;(4)泵的特性曲线均在一定输出功率下测量,故特性曲线图上Mercoeur输出功率n值。
离心泵特性曲线上的效率最高点称为设计点,泵在该点对应的压头和流量下工作最为经济。
离心泵铭牌上标出的性能参数即为最高效率点上的工况参数。
离心泵的性能曲线可以做为挑选泵的依据。
确认泵的类型后,再依流量和压头选泵。
例2-2用清水测定一台离心泵的主要性能参数。
实验中测得流量为10m/h,泵出口处压力表的读数为0.17mpa(表压),入口处真空表的读数为-0.021mpa,轴功率为 1.07kw,电动机的转速为2900r/min,真空表测压点与压力表测压点的垂直距离为0.2m。
试计算此在实验点下的扬程和效率。
解泵的主要性能参数包括转速n、流量q、扬程h、轴功率n和效率。
直接测出的参数为转速n=2900r/min流量q=10m/h=0.00278m/s轴功率n=1.07kw需要进行计算的有扬程h和效率。
用式排序扬程h,即为已知:于是二、影响离心泵性能的主要因素1液体物理性质对特性曲线的影响生产厂所提供更多的特性曲线就是以清水做为工作介质测量的,当运送其它液体时,必须考量液体密度和粘度的影响。
(1)粘度当输送液体的粘度大于实验条件下水的粘度时,泵体内的能量损失增大,泵的流量、压头减小,效率下降,轴功率增大。
(2)密度离心泵的体积流量及压头与液体密度毫无关系,功率则随其密度减小而减少。
2离心泵的输出功率对特性曲线的影响当液体粘度不大,泵的效率不变时,泵的流量、压头、轴功率与转速可近似用比例定律计算,即式中:q1、h1、n1离心泵输出功率为n1时的流量、扬程和功率。
离心泵的特性曲线离心泵的特性曲线前言我们知道离心泵的流量和扬程是可以调节的,它不仅受管道条件的影响,也受液体粘度的影响。
泵在并联和串联工作时也不一样。
通常我们用泵的排量、扬程、轴功率和效率、转数等基本参数来表明泵的工作性能。
为了方便,我们常把它们之间的关系划成曲线图,用它正确的选择泵,确定电机的功率,使泵在最优工况下工作,并解决遇到的许多实际问题。
一、离心泵特性曲线的基本知识1、概念在泵的转速不变的情况下,泵的流量、圧头、功率和效率等之间存在着相互关系,这些相互关系可用Q—H(流量—扬程)、Q—N(流量—功率)、Q—η(流量—效率)曲线图来表示,这种曲线图就叫做泵的特性曲线。
2、作用离心泵的特性曲线是用来表示离心泵的主要参数之间的关系的曲线,是根据实验获得的数据绘制而成的。
曲线图上的任何一个参数发生变化,其它的数值都会随之改变。
3、性能参数离心泵特性曲线的主要性能参数有流量、扬程、有效功率、轴功率、效率。
①流量:又叫排量,表示泵在单位时间内输出液体的体积或重量的数值。
用Q表示。
体积流量的单位是m3/h(米3/小时)、m3/s(米3/秒)、L/s(升/秒);重量流量的单位是t/h(吨/小时)、kg/s(千克/秒)。
②扬程:它是每一单位重量的液体通过离心泵其能量的增加值,也就是这台离心泵能够扬水的高度。
用H表示,单位是m(米)。
压力与扬程的关系:P=H×γ即:压力=扬程×重度。
③有效功率:离心泵在单位时间内对液体所做的功。
用N表示,单位是kw(千瓦)。
④轴功率:离心泵的输入功率称轴功率,也就是原动机传给泵轴的功率。
用N 轴表示,单位是kw(千瓦)。
⑤效率:泵的有效功率与轴功率之比称泵的效率。
用η表示。
二、测定离心泵有关工作参数的方法1、测定前的准备工作①选用经过标定的外输油流量计(一般为0.2级)②选用标准的精密压力表安装在泵的出口管线上,真空表安装在泵进口管线上。
③选用电压表,电流表(或万用表)及功率因数表。
离心泵的曲线【实用版】目录1.离心泵的特性曲线定义与含义2.离心泵特性曲线的主要参数3.离心泵特性曲线的作用与应用4.离心泵最高效率的工况点正文离心泵是一种广泛应用于工业、农业、建筑等领域的流体输送设备。
离心泵的特性曲线是描述其工作性能的重要参数,通过对特性曲线的分析,可以确定泵在不同工况下的运行状态,从而保证泵的高效、稳定运行。
本文将从离心泵的特性曲线定义与含义、主要参数、作用与应用以及最高效率的工况点等方面进行详细阐述。
一、离心泵的特性曲线定义与含义离心泵的特性曲线是指在一定转速下,扬程(h)、轴功率(n)、效率(η)以及允许吸上真空高度(hs)等参数随流量(q)变化的函数关系曲线。
这些曲线用以表示离心泵在不同流量下的工作性能,有助于我们了解泵的运行状况并确定其工作范围。
二、离心泵特性曲线的主要参数离心泵特性曲线主要包括以下四个参数:1.扬程(h):表示泵能提供的流体压力能力,是泵的重要性能参数之一。
2.轴功率(n):表示泵驱动电机所需的功率,与流量、扬程和效率等因素有关。
3.效率(η):表示泵将输入的机械能转换为流体动能的效果,是评价泵性能优劣的重要指标。
4.允许吸上真空高度(hs):表示泵能承受的最大真空度,与泵的结构、转速等有关。
三、离心泵特性曲线的作用与应用离心泵特性曲线在实际应用中具有重要作用,主要表现在以下几个方面:1.确定泵的工作状态:通过特性曲线,可以在不同流量点找出对应的扬程、功率、效率和汽蚀余量值,这一组参数称为泵的工作状态,简称工况或离心泵工况点。
2.保证泵的高效运行:通过选择合适的工况点,可以使泵在高效率下运行,降低能耗,提高输送效率。
3.防止泵的汽蚀现象:特性曲线可以帮助我们确定泵的允许吸上真空高度,避免泵在吸上过程中产生汽蚀,影响泵的正常运行。
4.指导泵的选型与安装:特性曲线可以为泵的选型、安装和调试提供重要依据,确保泵在不同工况下都能稳定、高效地运行。
四、离心泵最高效率的工况点离心泵最高效率的工况点是指泵在运行时,效率达到最大值的流量点。
离心泵特性曲线首先离心泵的特性曲线图如下接下来是对于这个图的一些解读:离心泵的性能曲线包括流量-扬程(Q-H)曲线、流量-功率曲线(Q-N)、流量-效率曲线(Q-ŋ)以及流量-汽蚀余量(Q-NPSHr)曲线。
水泵的性能参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。
水泵性能曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—效率曲线。
它是离心泵的基本的性能曲线。
比转速小于80的离心泵具有上升和下降的特点称驼峰性能曲线。
比转速在80~150之间的离心泵具有平坦的性能曲线。
比转数在150以上的离心泵具有陡降性能曲线。
一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。
上述曲线都是在一定的转速下,以试验的方法求得的。
不同的转速,可以通过公式进行换算。
在性能曲线上,对于一个任意的流量点,都可以找出一组与其相对应的扬程、功率、效率以及汽蚀余量值。
通常,把这一组相对应的参数称为工作状况,简称工况或工况点。
对于离心泵最高效率点的工况称为最佳工况点。
泵在最高效率点工况下运行是最理想的。
但是用户要求的性能千差万别,不一定和最高效率点下的性能相一致。
要想使每一个用户要求的泵都在泵最高效率点下运行,那样做需要的泵规格就太多了。
为此,规定一个范围(通常以效率下降5%~8%为界),称为泵的工作范围。
我们利用叶轮的切割或者变频技术可以扩大泵的工作范围。
我们把同一类型的水泵,将它的各种不同比转数以及相同比转数不同口径的泵的工作区域集中画在同一个Q-H坐标平面上。
为了使图面上大泵的方块不致太大,坐标可以采用对数坐标,于是就得到了该类型泵的系列型谱。
各类型的泵均有各自的型谱,使用户选用水泵十分方便。
每种系列用几种比转数的水力模型,泵的口径按一定的流量间隔比变化。
同一口径的泵扬程也按一定的间隔变化。
ISO 2858规定了标准的型谱。
实验报告三:离心泵的特性曲线离心泵的特性曲线一、实验目的1、了解离心泵结构与特性,学会离心泵的操作。
2、掌握离心泵特性曲线测定方法。
二、实验原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下扬程h、轴功率n及效率η与流量v之间的关系曲线,它是流体在泵内流动规律的外部表现形式。
由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实验测定。
1.水头H的测量和计算在泵进、出口取截面列柏努利方程:2u2?u12p2?p1h??z2?z1??G2gp1,P2:泵进口和出口处的压力,N/mρ:液体密度kg/mu1,U2:泵进口和出口的流量分别为m/SG:重力加速度m/S当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为:二232.轴功率n的测量和计算h?p2?p1?gn=0.94ww-电机输出功率;w可以看出,要测量泵的轴功率,只需测量电机的输出功率,并将其乘以功率转换中的放大倍数。
3、效率η的计算泵效率η是泵的有效功率ne与轴功率n的比值。
有效功率ne是单位时间内流体从泵获得的功,轴功率n是单位时间内泵从电机获得的功。
两者之间的差异反映了水力损失、体积损失和机械损失的大小。
泵的有效功率ne可用下式计算:ne=hvρg故η=ne/n=hvρg/n4、转速改变时的换算泵的特性曲线是规定速度下的数据,也就是说,特性曲线上所有试验点的速度相同。
然而,事实上,当感应电动机的转矩发生变化时,其速度也会发生变化。
这样,随着流量的变化,多个实验点的速度会有所不同。
因此,在绘制特性曲线之前,必须将测量数据转换为平均转速下的数据。
转换关系如下:三、实验装置流程离心泵性能特性曲线测量系统装置过程控制流程图和离心泵性能特性曲线测量实验仪表控制柜面板图如图所示:四、实验步骤及注意事项1.关闭入口阀和管道阀。
2、打开总开关,打开仪表开关通电,把离心泵电源转换到“直接”位置。
停止按钮灯亮。
图文解析离心泵的特性曲线一、离心泵的特性曲线定义当转速n为常量时,列出扬程(H)、轴功率(N)、效率(η)以及允许吸上真空高度(Hs)等随流量(Q)变化的函数关系,即:H = f(Q);N = F(Q);Hs = Ψ(Q);η= φ(Q),我们把这些方程关系用曲线来表示,就称这些曲线为离心泵的特性曲线。
离心泵的特性曲线是液体在泵内运动规律的外在表现形式,这三条曲线需要根据试验的方法(采用离心泵特性曲线的测定装置,逐渐开启水泵出口阀门改变其流量,测得一系列的流量及相应的扬程和轴功率,然后将H一Q、N —Q、η一Q曲线绘制在同一张坐标纸上,即为一定型式离心泵在一定转速下的特性曲线),不同的水泵特性曲线不同,水泵的特性曲线由设备生产厂家提供。
严格意义上讲,每一台水泵都有特定的特性曲线。
在水泵特性曲线上,对应任意流量点都可以找到一组与其相对应的扬程、轴功率和效率值,通常把这一组相对应的参数称为工况,其对应最高效率点的一组工况称为最佳工况。
在生产实践中,水泵的运行工况点是通过管路的特性曲线与水泵的特性曲线确定的(M工况点,见下图)。
在选择和使用泵时,使水泵在高效区运行,以保证运转的经济和安全。
二、影响离心泵特性曲线的因素离心泵的特性曲线与很多因素有关,如液体的粘度与密度、叶轮出口宽度、叶片的出口安放角与叶片数及离心泵的压出室形状等均会对离心泵的特性曲线产生影响。
1、叶轮出口直径对性能曲线的影响在叶轮其它几何形状相同的情况下,如果改变叶轮的出口直径,则离心泵的特性曲线平行移动,见下图。
根据这一特性,水泵制造厂和使用单位可以采用车削离心泵叶轮外径的方法改变一台泵的性能范围,以使泵的性能更适合实际运行需要。
例如,某厂的一台离心式循环泵,其运行压力偏高,为降低压力,将叶轮外径由270mm车削到250mm后,在流量相同的情况下,压力下降,给水泵的电机电流减小,满足了运行的要求。
2、转速与性能曲线的关系同一台离心泵输送同一种液体,泵的各项性能参数与转速之间的关系式为:Q1/Q2 = n1/n2H1/H2 = (n1/n2)2Nl/N2 = (n1/n2)2三、理论特性曲线的定性分析1、理论扬程特性曲线的定性分析由HT =中,将C2u = u2 - C2rctgβ2 代入,可得:HT =(u2 - C2rctgβ2)叶轮中通过的水量可用此式表示:QT = F2C2r,也即:C2r =式中QT:泵理论流量(m3/s);F2:叶轮的出口面积(m2);C2r:叶轮出口处水流绝对速度的径向(m/s)。
离心泵特性曲线
离心泵特性曲线(Centrifugal pump performance curve)是描述离心泵在不同工作条件下流量、扬程、效率和功率
等性能参数的变化关系的曲线。
离心泵特性曲线通常由以下几个要素构成:
1. 流量(Flow):流经离心泵的液体体积或质量的量度,
通常以升/秒或立方米/小时表示。
2. 扬程(Head):液体在离心泵内获得的压力能量,通常以米或千帕表示。
3. 效率(Efficiency):离心泵将输入的功率转化为输出的液体动能的比例。
效率通常以百分比表示。
4. 功率(Power):离心泵所需的电功率或机械功率,通常以千瓦或马力表示。
离心泵特性曲线一般由实验测量得到,根据不同工作条件下的流量、扬程和功率等数据绘制而成。
典型的离心泵特性曲线通常呈现出以下特点:
1. 最大扬程点(Maximum Head Point):离心泵在某一流量下能够提供的最大扬程。
该点通常是离心泵特性曲线上的最高点,也是离心泵的额定扬程。
2. 最大效率点(Maximum Efficiency Point):离心泵在某一流量下能够达到的最高效率。
该点通常是离心泵特性曲线上的效率最大值点。
3. 关闭阻塞点(Shut-off Head Point):离心泵在流量为零时的扬程。
该点通常是离心泵特性曲线上的最低点。
离心泵特性曲线的形状和特点对于选型和运行离心泵都具有重要的参考价值,可以帮助用户了解离心泵在不同工况下的性能和适用范围,并进行合理的运行和维护。