第9章--离散系统的零极点分析
- 格式:ppt
- 大小:653.50 KB
- 文档页数:38
课程设计报告课程名称数字信号课程设计系别:工程技术系专业班级:电子信息工程0901学号:**姓名:**课程题目:离散系统的频域分析与零极点分布完成日期:2012年6月29日指导老师:**2012 年6 月29 日离散系统的频域分析与零极点分布摘要本课题主要是根据系统函数求出系统的零极点分布图并且求解系统的单位脉冲响应,利用MATLAB软件绘制出系统零极点的分布图,根据零极点在单位圆的分布,判断因果系统的稳定性.再比较不同零极点对系统频率响应特性的影响。
从课题研究和设计过程当中对系统稳定性的判断有了清楚的认识,既极点在单位圆内,则该系统稳定,极点在单位圆外,则该系统为非稳定系统。
同时也对系统函数零极点分布对系统频率响应特性的影响有了深入的了解。
既极点位置主要影响频率响应的峰值及尖锐程度,零点位置主要影响频率响应的谷点位置及形状。
本次课题也对系统的幅频特性曲线和相频特性曲线进行了绘制,并求出了系统的单位脉冲响应以及绘制出了波形图。
关键字:离散系统,频域分析,零极点分布目录一、绪论 (1)二、方案 (1)实验原理 (1)三、过程论述及结果分析 (2)1.分别画出各系统的零极点分布图,并判断系统的稳定性 (2)2.分别画出系统的幅频特性和相频特性曲线 (5)3.分别求出系统的单位脉冲响应,并画出其波形 (9)四、结论 (12)致谢 (13)参考文献 (13)一、绪论编制Matlab 程序,完成以下功能,根据系统函数求出系统的零极点分布图,并求解系统的单位脉冲响应;根据零极点分布图判断系统的稳定性;比较不同零极点发布对系统频率响应特性的影响;绘制相关信号的波形。
具体要求如下:下面四种二阶网络的系统函数具有相同的极点发布:1121()1 1.60.9425H z z z --=-+121210.3()1 1.60.9425z H z z z ----=-+131210.8()1 1.60.9425z H z z z ----=-+ 124121 1.60.8()1 1.60.9425z z H z z z-----+=-+ (1)分别画出各系统的零极点分布图,并判断系统的稳定性; (2)分别画出系统的幅频特性和相频特性曲线; (3)分别求出系统的单位脉冲响应,并画出其波形。
实验4 离散时间系统的频域分析一、实验目的(1)了解离散系统的零极点与系统因果性和稳定性的关系; (2)加深对离散系统的频率响应特性基本概念的理解; (3)熟悉MATLAB 中进行离散系统零极点分析的常用子函数; (4)掌握离散系统幅频响应和相频响应的求解方法。
二、知识点提示本章节的主要知识点是频率响应的概念、系统零极点对系统特性的影响;重点是频率响应的求解方法;难点是MATLAB 相关子函数的使用。
三、实验原理1.离散时间系统的零极点及零极点分布图设离散时间系统系统函数为NMzN a z a a z M b z b b z A z B z H ----++++++++==)1()2()1()1()2()1()()()(11 (4-1) MATLAB 提供了专门用于绘制离散时间系统零极点图的zplane 函数: ①zplane 函数 格式一:zplane(z, p)功能:绘制出列向量z 中的零点(以符号"○" 表示)和列向量p 中的极点(以符号"×"表示),同时画出参考单位圆,并在多阶零点和极点的右上角标出其阶数。
如果z 和p 为矩阵,则zplane 以不同的颜色分别绘出z 和p 各列中的零点和极点。
格式二:zplane(B, A)功能:绘制出系统函数H(z)的零极点图。
其中B 和A 为系统函数)(z H (4-1)式的分子和分母多项式系数向量。
zplane(B, A) 输入的是传递函数模型,函数首先调用root 函数以求出它们的零极点。
②roots 函数。
用于求多项式的根,调用格式:roots(C),其中C 为多项式的系数向量,降幂排列。
2.离散系统的频率特性MATLAB 提供了专门用于求离散系统频响特性的freqz 函数,调用格式如下: ①H = freqz(B,A,W)功能:计算由向量W (rad )指定的数字频率点上(通常指[0,π]范围的频率)离散系统)(z H 的频率响应)e (j ωH ,结果存于H 向量中。
第1章信号与系统的根本概念1.信号、信息与消息的差异?信号:随时间变化的物理量;消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等信息:所接收到的未知内容的消息,即传输的信号是带有信息的。
2.什么是奇异信号?函数本身有不连续点或其导数或积分有不连续点的这类函数统称为奇异信号或奇异函数。
例如:单边指数信号〔在t=0点时,不连续〕,单边正弦信号〔在t =0时的一阶导函数不连续〕。
较为重要的两种奇异信号是单位冲激信号d(t)和单位阶跃信号u(t)。
5.线性时不变系统:同时满足叠加性和均匀性以及时不变特性的系统线性时不变系统对信号的处理作用可以用冲激响应〔或单位脉冲响应〕、系统函数或频率响应进行描述。
而且多个系统可以以不同的方式进行连接,根本的连接方式为:级联和并联。
第2章连续时间系统的时域分析1.如何获得系统的数学模型?数学模型是实际系统分析的一种重要手段,广泛应用于各种类型系统的分析和控制之中。
不同的系统,其数学模型可能具有不同的形式和特点。
对于线性时不变系统,其数学模型通常由两种形式:建立输入-输出信号之间关系的一个方程或建立系统状态转换的假设干个方程组成的方程组〔状态方程〕。
对于本课程研究较多的电类系统而言,建立系统数学模型主要依据两个约束特性:元件特性约束和网络拓扑约束。
一般地,对于线性时不变连续时间系统,其输入-输出方程是一个高阶线性常系数微分方程,而状态方程那么是一阶常系数微分方程组。
在本章里,主要讨论系统的输入-输出方程。
2.系统的起始状态和初始状态的关系?起始状态:通常又称状态,它是指系统在鼓励信号参加之前的状态初始状态:通常又称状态,它是指系统在鼓励信号参加之后的状态。
起始状态是系统中储能元件储能情况的反映。
3.零输入响应和零状态响应的含义?零输入响应和零状态响应是根据系统的输入信号和起始状态的性质划分的。
如果系统无外加输入信号〔即输入信号为零〕时,由起始状态所产生的响应〔也可以看作为由起始状态等效的电压源或电流源----等效输入信号所产生的响应〕,称为零输入响应,一般用表示;如果系统起始无储能,系统的响应只由外加信号所产生,称为零状态响应,一般用表示。
(一)离散时间信号的Z 变换1.利用MATLAB 实现z 域的部分分式展开式MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为:[r,p,k]=residuez(num,den)式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。
【实例1】 利用MATLAB 计算321431818)(-----+zz z z F 的部分分式展开式。
解:利用MATLAB 计算部分分式展开式程序为% 部分分式展开式的实现程序num=[18];den=[18 3 -4 -1];[r,p,k]=residuez(num,den)2.Z 变换和Z 反变换MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为)()(F iztrans f f ztrans F ==上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为()A sym S =式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。
【实例2】求(1)指数序列()n u a n 的Z 变换;(2)()()2a z az z F -=的Z 反变换。
解 (1)Z 变换的MATLAB 程序% Z 变换的程序实现f=sym('a^n');F=ztrans(f)程序运行结果为:z/a/(z/a-1)可以用simplify( )化简得到 :-z/(-z+a)(2)Z 反变换的MATLAB 程序% Z 反变换实现程序F=sym('a*z/(z-a)^2');f=iztrans(F)程序运行结果为f =a^n*n(二)系统函数的零极点分析1. 系统函数的零极点分布离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即)()()(z X z Y z H = (3-1)如果系统函数)(z H 的有理函数表示式为:11211121)(+-+-++++++++=n n n n m m m m a z a z a z a b z b z b z b z H (3-2) 那么,在MATLAB 中系统函数的零极点就可通过函数roots 得到,也可借助函数tf2zp 得到,tf2zp 的语句格式为:[Z,P,K]=tf2zp(B,A)其中,B 与A 分别表示)(z H 的分子与分母多项式的系数向量。