人教版七年级数学上册期末复习专题:第2章 整式的加减
- 格式:pdf
- 大小:124.17 KB
- 文档页数:5
千里之行,始于足下。
七年级数学上册第二章整式的加减全章知识点总结新版新人教版以下是七年级数学上册第二章整式的加减的知识点总结(新人教版):1. 整式的概念:由常数和变量的乘积以及其和差的形式构成的代数式称为整式。
2. 整式的加法:将同类项相加,不同类项保持不变。
3. 同类项:具有相同字母,相同指数的项称为同类项。
4. 倍数和倍式:若正整数a能整除正整数b(即b/a的结果为整数),则a称为b的因数,b称为a的倍数。
a、b都是整数。
5. 同底数幂的加减法:同底数幂相加(或相减)时,保持底数不变,将指数相加(或相减)。
6. 整式的减法:先将被减整式中的各项取相反数,然后按照整式的加法规则进行加法运算。
7. 约束条件:表示一些情况下的特殊要求,一般用等式或不等式表示。
8. 字母运算规则:(1)相同字母的指数相加(或相减)。
(2)不同字母之间的运算,字母之间互不影响。
9. 整式化简:将整式中的同类项合并后,将不同字母之间的项单独放在一起。
第1页/共2页锲而不舍,金石可镂。
10. 内括号化简:使用分配律将多个内括号化简为单个内括号。
11. 外括号化简:使用分配律将外括号前的数分别与里面的每一项进行乘法运算。
12. 同底数幂的运算规则:(1)乘法:底数相同,指数相加。
(2)除法:底数相同,指数相减。
13. 括号内指数的运算规则:括号内的整个表达式的指数乘以括号外数的指数。
14. 幂的指数为负的意义:a的-n次方等于1除以a的n次方。
15. 合并同类项:将整式中相同的同类项相加或相减,得到的结果仍为整式。
16. 合并同底数幂:将整式中的同底数幂相加或相减,得到的结果仍为整式。
这些是七年级数学上册第二章整式的加减的知识点总结,希望对你有帮助!。
人教版七年级数学上册第2章整式的加减复习题一、选择题1. 下列式子:7x,3,0,4a2+a-5,1x-1,x2y3,12ab+1中,是单项式的有()A.3个B.4个C.5个D.6个2. 下列式子中,不是整式的是()A. B.+b C. D.4y3. 已知M=4x2-3x-2,N=6x2-3x+6,则M与N的大小关系是()A.M<N B.M>NC.M=N D.以上都有可能4. 某校组织若干名师生进行社会实践活动.若学校租用45座的客车x辆,则余下15人无座位;若租用60座的客车,则可少租用1辆,且最后一辆还没坐满,那么乘坐最后一辆60座客车的人数是() A.75-15x B.135-15xC.75+15x D.135-60x5. 观察如图所示的图形,则第n个图形中三角形的个数是()A.2n+2B.4n+4C.4nD.4n-46. 按图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=-4,y=-2C.x=2,y=4 D.x=4,y=27. 用一根长为a cm的铁丝,首尾相接围成一个正方形,现要将这个正方形按图K-26-1所示的方式向外等距扩1 cm得到新的正方形,则这根铁丝的长度需增加()图K-26-1A.4 cm B.8 cm C.(a+4)cm D.(a+8)cm8. 观察下面的一列单项式:-x,2x2,-4x3,8x4,-16x5,…,根据其中的规律,得出第10个单项式是()A.-29x10B.29x10C.-29x9D.29x99. 在一列数:a1,a2,a3,…a n中,a1=7,a2=1,从第三个数开始,每一个数都等于它前面两个数之积的个位数字,则这个数中的第2020个数是()A.1 B.3 C.7 D.910. 如图,在2020年10月份的月历表上,任意圈出一个正方形,则下列等式中错误的是()A.a+d=b+cB.a-c=b-dC.a-b=c-dD.d-a=c-b二、填空题11. 式子axy2-12x与14x-bxy2的和是单项式,则a,b的关系是________.12. 某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台的进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为________元.13. 如图,将长和宽分别是a,b的长方形纸片的四个角各剪去一个边长为x的小正方形.用含a,b,x的式子表示长方形纸片剩余部分的面积为__________.14. 我校七年级学生在今年植树节栽了m棵树,若八年级学生比七年级学生多栽n棵树,则两个年级共栽树________棵.15. 如图是一个数表,现用一个长方形在数表中任意框出4个数,若右上角的数字用a来表示,则这4个数的和为________.三、解答题16. 计算:(1)3-(1-x)+(1-x+x2);(2)(-6x2+5xy)-12xy-(2x2-9xy);(3)2x2y+{2xy-[3x2y-2(-3x2y+2xy)]-4xy2}.17. 已知多项式-a12+a11b-a10b2+…+ab11-b12.(1)请你按照上述规律写出多项式的第五项,并指出它的系数和次数;(2)这个多项式是几次几项式?18. 如图,一个长方形运动场被分隔成A,B,A,B,C共5个区,A区是边长为a m的正方形,C 区是边长为b m的正方形.(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果a=20,b=10,求整个长方形运动场的面积.答案一、选择题1. 【答案】B [解析] 单项式有7x ,3,0,x 2y 3,共4个.2. 【答案】C [解析] +b 是多项式,是整式;4y 是单项式,是整式;只有不是整式.3. 【答案】A [解析] 因为M -N =(4x 2-3x -2)-(6x 2-3x +6)=4x 2-3x -2-6x 2+3x -6=-2x 2-8<0,所以M <N.4. 【答案】B [解析] 总人数为45x +15,则乘坐最后一辆60座客车的人数为45x +15-60(x -2)=135-15x.故选B.5. 【答案】C [解析] 根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律:第n 个图形中三角形的个数是4n .6. 【答案】C [解析] 将四个选项分别按运算程序进行计算.A .当x =3,y =3时,输出结果为32+2×3=15,不符合题意;B .当x =-4,y =-2时,输出结果为(-4)2-2×(-2)=20,不符合题意;C .当x =2,y =4时,输出结果为22+2×4=12,符合题意;D .当x =4,y =2时,输出结果为42+2×2=20,不符合题意.故选C.7. 【答案】B [解析] 因为原正方形的周长为a cm ,所以原正方形的边长为a 4 cm.因为将该正方形按图中所示的方式向外等距扩1 cm ,所以新正方形的边长为(a 4+2)cm.所以新正方形的周长为4(a 4+2)=(a +8)cm.所以需要增加的铁丝长度为a +8-a =8(cm).故选B.8. 【答案】B9. 【答案】C [解析] 依题意得:a 1=7,a 2=1,a 3=7,a 4=7,a 5=9,a 6=3,a 7=7,a 8=1,…,周期为6,2020÷6=336……4,所以a2020=a4=7.故选C.10. 【答案】D二、填空题11. 【答案】a=b[解析] axy2-12x+14x-bxy2=-14x+(a-b)xy2.因为axy2-12x与14x-bxy2的和是单项式,所以a-b=0,即a=b.12. 【答案】1.08a[解析] 由题意可得,该型号洗衣机的零售价为a(1+20%)×0.9=1.08a(元).故答案为1.08a.13. 【答案】ab-4x214. 【答案】(2m+n)[解析] 因为七年级学生在今年植树节栽了m棵树,八年级学生比七年级学生多栽n棵树,所以八年级学生栽树(m+n)棵,所以两个年级共栽树m+m+n=(2m+n)棵.15. 【答案】4a+8[解析] 由图可知,右上角的数为a,则左上角的数为a-1,右下角的数为a+5,左下角的数为a+4,所以这4个数的和为a+(a-1)+(a+4)+(a+5)=4a+8.三、解答题16. 【答案】解:(1)原式=3+x2.(2)原式=-6x2+5xy-12xy-2x2+9xy=-8x2+2xy.(3)原式=2x2y+[2xy-(3x2y+6x2y-4xy)-4xy2]=2x2y+(2xy-3x2y-6x2y+4xy-4xy2)=2x2y+2xy-3x2y-6x2y+4xy-4xy2=-7x2y-4xy2+6xy.17. 【答案】[解析] 观察所给条件,a的指数逐次减1,b的指数逐次加1,每一项的次数都为12.各项系数分别为-1,1,-1,1,…,“-1”与“1”间隔出现,奇数项系数为-1,偶数项系数为1.解:(1)第五项为-a8b4,它的系数为-1,次数为12.(2)十二次十三项式.18. 【答案】解:(1)2[(a+b)+(a-b)]=2(a+b+a-b)=4a(m).(2)2[(a+a+b)+(a+a-b)]=2(a+a+b+a+a-b)=8a(m).(3)当a=20,b=10时,整个长方形运动场的长=a+a+b=50(m),整个长方形运动场的宽=a+a-b=30(m),所以整个长方形运动场的面积=50×30=1500(m2).。
人教版七年级数学上册第二章整式的加减专题练习试题专题一、与整式加减相关的新定义问题方法指导:新定义问题,即给出一个新的数学符号标记,规定一种新的运算规则,并按新规定的运算规则进行计算.解题的关键是看懂规定的运算,将新规定的运算转化为整式加减运算问题,在转化过程中,要特别注意括号的作用.1.定义新运算:a#b=3a-2b,则(x+y)#(x-y)=x+5y.2.定义一种新运算:a⊕b=2a-b,a b=b-a,求(x⊕y)⊕(y x)=3x-y.专题二、利用数轴去绝对值符号化简1.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=-a;(2)因为b>0,-b<0,所以|b|=b;|-b|=b;(3)因为1+a>0,所以|1+a|=1+a;(4)因为1-b <0,所以|1-b|=-(1-b)=b-1;(5)因为a+b>0,所以|a+b|=a+b;(6)因为a-b <0,所以|a-b|=-(a-b)=b-a.2.有理数a,b在数轴上的位置如图所示,则化简式子|a+b|+a的结果是-b.3.有理数a,b在数轴上的位置如图所示,化简|a-b|-|b-a|的结果是(C)A.2a+2b B.2bC.0 D.2a4.有理数a,b在数轴上的位置如图所示,则化简|a-b|-2|a+b|的结果为(A)A.a+3b B.-3a-bC.3a+b D.-a-3b5.已知有理数a ,b ,c 在数轴上的对应点分别是A ,B ,C ,其位置如图所示,化简:2|b +c|-3|a -c|-4|a +b|.解:由数轴知,a <b <0<c ,且|b|<|c|,所以b +c >0,a -c <0,a +b <0,所以原式=2(b +c)-[-3(a -c)]-[-4(a +b)]=2b +2c +3(a -c)+4(a +b)=2b +2c +3a -3c +4a +4b=7a +6b -c.专题三、 整体思想在整式求值中的运用方法指导:整式的化简求值中,当单个字母的值不易求出或化简后的结果与已知值的式子相关联时,需要将已知式子的值整体代入计算.1.已知x -2y =5,那么5(x -2y)2-4(x -2y)-60的值为(B )A .55B .45C .80D .402.已知式子3y 2-2y +6的值是8,那么32y 2-y +1的值是(B ) A .1 B .2C .3D .43.若m -n =-1,则(m -n)2-2m +2n 的值为(A )A .3B .2C .1D .-14.若式子2x 2+3x +7的值是8,则式子4x 2+6x -9的值是(C )A .2B .-17C .-7D .75.已知x 2+2x -1=0,则3x 2+6x -2=1.6.如果m ,n 互为相反数,那么(3m -2n)-(2m -3n)=0.7.已知x =2y +3,则式子4x -8y +9的值是21.8.若2a -b =2,则6+4b -8a =-2.9.若a 2-5a -1=0,则5(1+2a)-2a 2的值为3.10.已知a 2+b 2=6,ab =-2,求(4a 2+3ab -b 2)-(7a 2-5ab +2b 2)的值.解:原式=-3a 2+8ab -3b 2=-3(a 2+b 2)+8ab ,因为a 2+b 2=6,ab =-2,所以原式=-3×6+8×(-2)=-34.专题四、 整式的化简与求值类型1 整式的加减运算1.计算:(1)6a 2+4b 2-4b 2-7a 2;解:原式=(6-7)a 2+(4-4)b 2=-a 2.(2)3(m 2-2m -1)-2(m 2-3m)-3;解:原式=3m 2-6m -3-2m 2+6m -3=m 2-6.(3)-12(4x 2-2x -2)+13(-3+6x 2); 解:原式=-2x 2+x +1-1+2x 2=x.(4)3x2y-[2xy-2(xy-23x2y)+xy].解:原式=3x2y-(2xy-2xy+43x2y+xy)=3x2y-2xy+2xy-43x2y-xy=53x2y-xy.2.已知A=x2-2x+1,B=2x2-6x+3.求:(1)A+2B;(2)2A-B.解:(1)A+2B=x2-2x+1+2(2x2-6x+3)=x2-2x+1+4x2-12x+6=5x2-14x+7.(2)2A-B=2(x2-2x+1)-(2x2-6x+3)=2x2-4x+2-2x2+6x-3=2x-1.类型2整式的化简求值3.先化简,再求值:(1)2(a2+3a-2)-3(2a+2),其中a=-2;解:原式=2a2+6a-4-6a-6=2a2-10.当a =-2时,原式=2×(-2)2-10=-2.(2)2x -y +(2y 2-x 2)-(x 2+2y 2),其中x =-12,y =-3; 解:原式=2x -y +2y 2-x 2-x 2-2y 2=-2x 2+2x -y.当x =-12,y =-3时, 原式=-2×14-1-(-3)=32. (3)2(a 2b -ab 2)-3(a 2b -1)+2ab 2+1,其中a =2,b =14; 解:原式=2a 2b -2ab 2-3a 2b +3+2ab 2+1=-a 2b +4.当a =2,b =14时, 原式=-22×14+4=3. (4)(5a 2+3a -1)-3(a +a 2),其中a 2-2=0;解:原式=5a 2+3a -1-3a -3a 2=2a 2-1.因为a 2-2=0,即a 2=2,所以原式=2×2-1=3.(5)3x 2y -[2xy 2-2(xy -32x 2y)+xy]+3xy 2,其中|x -3|+(y +13)2=0. 解:原式=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy +xy 2.因为|x -3|+(y +13)2=0, 所以x =3,y =-13.所以原式=-1+13=-23.专题五、与整式的化简有关的说理题1.是否存在数m ,使化简关于x ,y 的多项式(mx 2-x 2+3x +1)-(5x 2-4y 2+3x)的结果中不含x 2项?若不存在,说明理由;若存在,求出m 的值.解:原式=mx 2-x 2+3x +1-5x 2+4y 2-3x=(m -6)x 2+4y 2+1.由题意,得m -6=0,所以m =6.2.有一道题“先化简,再求值:17x 2-(8x 2+5x)-(4x 2+x -3)+(5x 2+6x -1)-3,其中x =2 020.”小明做题时把“x =2 020”错抄成了“x =-2 020”.但他计算的结果却是正确的,请你说明这是什么原因.解:17x 2-(8x 2+5x)-(4x 2+x -3)+(5x 2+6x -1)-3=17x 2-8x 2-5x -4x 2-x +3+5x 2+6x -1-3=10x 2-1.因为当x =2 020和x =-2 020时,x 2的值相同,所以他计算的结果是正确的.3.已知关于x ,y 的多项式x 2+ax -y +b 与多项式bx 2-3x +6y -3的和的值与x 的取值无关,求式子3(a 2-2ab +b 2)-[4a 2-2(12a 2+ab -32b 2)]的值. 解:(x 2+ax -y +b)+(bx 2-3x +6y -3)=(b +1)x 2+(a -3)x +5y +b -3.因为该多项式的值与x 的取值无关,所以b +1=0,a -3=0.所以b =-1,a =3.原式=3a 2-6ab +3b 2-(3a 2-2ab +3b 2)=3a2-6ab+3b2-3a2+2ab-3b2=-4ab=12.4.嘉淇在计算一个多项式A减去多项式2b2-3b-5的差时,因一时疏忽忘了将两个多项式用括号括起来,因此得到的差是b2+3b-1.(1)求这个多项式A;(2)求这两个多项式运算的正确结果;(3)当b=-1时,求(2)中结果的值.解:(1)由题意,得A-2b2-3b-5=b2+3b-1,则A=(b2+3b-1)+(2b2+3b+5)=b2+3b-1+2b2+3b+5=3b2+6b+4.(2)这两个多项式运算的正确结果为(3b2+6b+4)-(2b2-3b-5)=3b2+6b+4-2b2+3b+5=b2+9b+9.(3)当b=-1时,原式=(-1)2+9×(-1)+9=1-9+9=1.5.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若a≠b,把这个两位数的十位数字与个位数字对换,得到一个新的两位数,则原两位数与新两位数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?解:(1)10a+b.(2)由题意得,这两个数的和为(10a+b)+(10b+a)=11a+11b=11(a+b),因为a,b都是整数,所以a+b也是整数.所以这两个数的和能被11整除.这两个数的差为(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b),因为a,b都是整数,所以a-b也是整数.所以这两个数的差一定是9的倍数.专题六、规律探究类型1数式规律1.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取的种子数是(2n+1)粒.2.按规律写出空格中的数:-2,4,-8,16,-32,64.3.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是13a+21b.4.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是65=33+32.5.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为(n+1)2-1=n(n+2).6.观察以下图案和算式,解答问题:(1)1+3+5+7+9=25;(2)1+3+5+7+9+…+19=100;(3)猜想:1+3+5+7+…+(2n -1)=n 2.7.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数11-(-1)=12,已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数…,依此类推,a 2 019的值是(D )A .5B .-14C .43D .458.观察下列等式:70=1,71=7,72=49,73=343,74=2 401,75=16 807,…,根据其中的规律可得70+71+72+…+72 019的结果的个位数字是(A )A .0B .1C .7D .89.观察下列单项式:-x ,3x 2,-5x 3,7x 4,…,-37x 19,39x 20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n 个单项式是什么?(4)请你根据猜想,写出第2 019,2 020个单项式.解:(1)这组单项式的系数的符号规律是(-1)n ,系数的绝对值规律是2n -1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n 个单项式是(-1)n (2n -1)x n .(4)第2 019个单项式是-4 037x 2 019,第2 020个单项式是4 039x 2 020.类型2图形规律10.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为(D)A.3n B.6nC.3n+6 D.3n+311.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2 019个图形中共有6_058个〇.…12.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为3n+2.…。
七年级数学上册期末复习整式的加减知识点+易错题整式的加减知识点整式知识点1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:错误!未找到引用源。
.6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.11. 列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了.12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值.13. 列代数式要注意①数字与字母、字母与字母相乘,要把乘号省略;②数字与字母、字母与字母相除,要把它写成分数的形式;③如果字母前面的数字是带分数,要把它写成假分数。
第2章整式的加减一.选择题(共12小题)1.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣2.若关于x,y的多项式化简后不含二次项,则m=()A.B.C.D.03.若单项式a m+1b2与的和是单项式,则m n的值是()A.3 B.4 C.6 D.84.如果单项式﹣x a+1y3与x2y b是同类项,那么a、b的值分别为()A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=2 5.已知m﹣n=100,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.99 B.101 C.﹣99 D.﹣1016.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是()A.8x2+13x﹣1 B.﹣2x2+5x+1 C.8x2﹣5x+1 D.2x2﹣5x﹣1 7.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b8.如果关于x的多项式3x3﹣4x2+x+k2x2﹣5中不含x2项,则k的值为()A.2 B.﹣2 C.2或﹣2 D.09.已知A是关于a的三次多项式,B是关于a的二次多项式,则A+B的次数是()A.二次B.三次C.四次D.五次10.下列去括号正确的是()A.4(x﹣1)=4x﹣1 B.a+2(﹣2b+c)=a﹣4b+2cC.a﹣(﹣2b+c)=a+2b+c D.﹣5(1﹣x)=﹣5﹣x11.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b (a>b),则a﹣b的值为()A.6 B.8 C.9 D.1212.如图,有四个大小相同的小长方形和两个大小相同的大长方形按如图位置摆放,按照图中所示尺寸,则小长方形的长与宽的差是()A.3b﹣2a B.C.D.二.填空题(共9小题)13.若代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m的值是.14.单项式.的系数是m,多项式a2b+2ab﹣3的次数是n,则m+n=.15.在计算:A﹣(5x2﹣3x﹣6)时,小明同学将括号前面的“﹣”号抄成了“+”号,得到的运算结果是﹣2x2+3x﹣4,则多项式A是.16.嘉淇准备完成题目:化简:(4x2﹣6x+7)﹣(4x2﹣口x+2)发现系数“口”印刷不清楚,妈妈告诉她:“我看到该题标准答案的结果是常数”,则题目中“口”应是.17.去括号合并:3(a﹣b)﹣(2a+3b)=.18.把多项式2m3﹣m2n2+3﹣5m按字母m的升幂排列是.19.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为.20.数学课上老师讲了合并同类项,小玉回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现了一道题目:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)=5a2﹣6b2,横线上的一项被墨水弄脏了,则被墨水弄脏的一项是.21.观察下面的一列单项式:﹣2x、4x3、﹣8x5、16x7、…根据你发现的规律,第n个单项式为.三.解答题(共4小题)22.(1)先化简,再求值:(a2b+ab2)﹣(a2b﹣1)﹣ab2﹣1,其中a=﹣2,b=2.(2)先化简,再求值:5ab2﹣[3ab﹣2(﹣2ab2+ab)],其中a是最小的正整数,b是绝对值最小的负整数.23.实数a,b,c在数轴上的位置如图,化简|b+c|﹣|b+a|+|a+c|.24.小丽放学回家后准备完成下面的题目:化简(□x2﹣6x+8)+(6x﹣5x2﹣2),发现系数“□“印刷不清楚.(1)她把“□”猜成3,请你化简(3x2﹣6x+8)+(6x﹣5x2﹣2);(2)她妈妈说:你猜错了,我看到该题的标准答案是6.通过计算说明原题中“□”是几?25.有一道题“求代数式的值:(﹣4x2+2x﹣8y)﹣(x﹣2y),其中x=,y=2019”,小亮做题时把“y=2019”错抄成“y=﹣2019”,但他的结果也是正确的,为什么?参考答案与试题解析一.选择题(共12小题)1.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.【解答】解:单独的一个数字也是单项式,故A正确;单项式﹣a的系数应是﹣1,次数是1,故B错误;xy的次数是2,符合单项式的定义,故C正确;﹣的系数是﹣,故D正确.故选:B.2.若关于x,y的多项式化简后不含二次项,则m=()A.B.C.D.0【分析】将原式合并同类项,可得知二次项系数为6﹣7m,令其等于0,即可解决问题.【解答】解:∵原式=x2y+(6﹣7m)xy+y3,若不含二次项,即6﹣7m=0,解得m=.故选:B.3.若单项式a m+1b2与的和是单项式,则m n的值是()A.3 B.4 C.6 D.8【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得x的指数要相等,y的指数也要相等,即可得到m,n的值,再代入所求式子计算即可.【解答】解:∵整式a m+1b2与的和为单项式,∴m+1=3,n=2,∴m=2,n=2,∴m2=22=4.故选:B.4.如果单项式﹣x a+1y3与x2y b是同类项,那么a、b的值分别为()A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=2 【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可求得.【解答】解:根据题意得:a+1=2,b=3,则a=1.故选:C.5.已知m﹣n=100,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.99 B.101 C.﹣99 D.﹣101【分析】原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵m﹣n=100,x+y=﹣1,∴原式=n+x﹣m+y=﹣(m﹣n)+(x+y)=﹣100﹣1=﹣101.故选:D.6.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是()A.8x2+13x﹣1 B.﹣2x2+5x+1 C.8x2﹣5x+1 D.2x2﹣5x﹣1 【分析】根据和减去一个加数等于另一个加数,计算即可得到结果.【解答】解:根据题意得:(5x2+4x﹣1)﹣(3x2+9x)=5x2+4x﹣1﹣3x2﹣9x=2x2﹣5x ﹣1.故选:D.7.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:2[a﹣b+(a﹣3b)]=4a﹣8b.故选:B.8.如果关于x的多项式3x3﹣4x2+x+k2x2﹣5中不含x2项,则k的值为()A.2 B.﹣2 C.2或﹣2 D.0【分析】根据合并同类项,可得整式的化简,根据二次项的系数为零,可得关于k的一元二次方程,解一元二次方程,可得答案.【解答】解:原式=3x3+(k2﹣4)x2+x﹣5,由多项式不含x2,得k2﹣4=0,解得k=±2,故选:C.9.已知A是关于a的三次多项式,B是关于a的二次多项式,则A+B的次数是()A.二次B.三次C.四次D.五次【分析】因为三次项没有同类项,所以和中最高次是3次.【解答】解:因为三次项与二次项不可相加减所以A+B的次数是三次.故选:B.10.下列去括号正确的是()A.4(x﹣1)=4x﹣1 B.a+2(﹣2b+c)=a﹣4b+2cC.a﹣(﹣2b+c)=a+2b+c D.﹣5(1﹣x)=﹣5﹣x【分析】根据去括号法则解答.【解答】解:A、原式=4x﹣4,故本选项不符合题意.B、原式=a﹣4b+2c,故本选项符合题意.C、原式=a+2b﹣c,故本选项不符合题意.D、原式=﹣5+x,故本选项不符合题意.故选:B.11.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b (a>b),则a﹣b的值为()A.6 B.8 C.9 D.12【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.12.如图,有四个大小相同的小长方形和两个大小相同的大长方形按如图位置摆放,按照图中所示尺寸,则小长方形的长与宽的差是()A.3b﹣2a B.C.D.【分析】设小长方形的长为x,宽为y,根据题意求出x﹣y的值,即为长与宽的差.【解答】解:设小长方形的长为x,宽为y,根据题意得:a+y﹣x=b+x﹣y,即2x﹣2y=a﹣b,整理得:x﹣y=,则小长方形的长与宽的差是,故选:B.二.填空题(共9小题)13.若代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m的值是 2 .【分析】先合并同类项,再根据与字母x的取值无关,则含字母x的系数为0,求出m 的值.【解答】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.14.单项式.的系数是m,多项式a2b+2ab﹣3的次数是n,则m+n=.【分析】直接利用多项式的次数以及单项式的次数确定方法分别得出m,n的值进而得出答案.【解答】解:∵单项式的系数是m,∴m=﹣,∵多项式a2b+2ab﹣3的次数是n,∴n=3,则m+n=3﹣=.故答案为:.15.在计算:A﹣(5x2﹣3x﹣6)时,小明同学将括号前面的“﹣”号抄成了“+”号,得到的运算结果是﹣2x2+3x﹣4,则多项式A是﹣7x2+6x+2 .【分析】根据题意列出算式,去括号后求出即可.【解答】解:根据题意得:A=(﹣2x2+3x﹣4)﹣(5x2﹣3x﹣6)=﹣2x2+3x﹣4﹣5x2+3x+6=﹣7x2+6x+2,故答案为:﹣7x2+6x+2.16.嘉淇准备完成题目:化简:(4x2﹣6x+7)﹣(4x2﹣口x+2)发现系数“口”印刷不清楚,妈妈告诉她:“我看到该题标准答案的结果是常数”,则题目中“口”应是 6 .【分析】设“□”为a,根据整式的运算法则进行化简后,由答案为常数即可求出“□”的答案.【解答】解:设“□”为a,∴(4x2﹣6x+7)﹣(4x2﹣口x+2)=4x2﹣6x+7﹣4x2+ax﹣2=(a﹣6)x+5,∵该题标准答案的结果是常数,∴a﹣6=0,解得a=6,∴题目中“□”应是6.故答案为:6.17.去括号合并:3(a﹣b)﹣(2a+3b)=a﹣6b.【分析】直接利用去括号法则去掉括号,进而合并同类项得出答案.【解答】解:3(a﹣b)﹣(2a+3b)=3a﹣3b﹣2a﹣3b=a﹣6b.故答案为:a﹣6b.18.把多项式2m3﹣m2n2+3﹣5m按字母m的升幂排列是+3﹣5m﹣m2n2+2m3.【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列.【解答】解:把多项式2m3﹣m2n2+3﹣5m按字母m的升幂排列是+3﹣5m﹣m2n2+2m3.故答案为:+3﹣5m﹣m2n2+2m3.19.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为 2 .【分析】由题意得2x2+3x=3,将6x2+9x﹣7变形为3(2x2+3x)﹣7可得出其值.【解答】解:由题意得:2x2+3x=36x2+9x﹣7=3(2x2+3x)﹣7=2.20.数学课上老师讲了合并同类项,小玉回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现了一道题目:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)=5a2﹣6b2,横线上的一项被墨水弄脏了,则被墨水弄脏的一项是2ab.【分析】将等式右边的已知项移到左边,再去括号,合并同类项即可.【解答】解:依题意,空格中的一项是:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)﹣(5a2﹣6b2)=2a2+3ab﹣b2+3a2﹣ab﹣5b2﹣5a2+6b2=2ab.故答案是:2ab.21.观察下面的一列单项式:﹣2x、4x3、﹣8x5、16x7、…根据你发现的规律,第n个单项式为(﹣1)n2n x2n﹣1.【分析】先根据所给单项式的次数及系数的关系找出规律,再确定所求的单项式即可.【解答】解:∵﹣2x=(﹣1)1•21•x1;4x3=(﹣1)2•22•x3;8x5=(﹣1)3•23•x5;﹣16x7=(﹣1)4•24•x7.第n个单项式为(﹣1)n•2n•x2n﹣1.故答案为:(﹣1)n2n x2n﹣1.三.解答题(共4小题)22.(1)先化简,再求值:(a2b+ab2)﹣(a2b﹣1)﹣ab2﹣1,其中a=﹣2,b=2.(2)先化简,再求值:5ab2﹣[3ab﹣2(﹣2ab2+ab)],其中a是最小的正整数,b是绝对值最小的负整数.【分析】(1)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;(2)原式去括号合并得到最简结果,确定出a与b的值,代入计算即可求出值.【解答】解:(1)原式=a2b+ab2﹣a2b+﹣ab2﹣1=﹣a2b+,当a=﹣2,b=2时,原式=﹣8+=﹣;(2)原式=5ab2﹣3ab﹣4ab2+2ab=ab2﹣ab,由题意得:a=1,b=﹣1,则原式=1+1=2.23.实数a,b,c在数轴上的位置如图,化简|b+c|﹣|b+a|+|a+c|.【分析】先由数轴上点的关系,可得a,、c互为相反数,再根据负数的绝对值是它的相反数,可化简去掉绝对值,再合并同类项,得答案.【解答】解:|b+c|﹣|b+a|+|a+c|=﹣(b+c)﹣(﹣b﹣a)+(a+c)=﹣b﹣c+b+a+a+c=2a.24.小丽放学回家后准备完成下面的题目:化简(□x2﹣6x+8)+(6x﹣5x2﹣2),发现系数“□“印刷不清楚.(1)她把“□”猜成3,请你化简(3x2﹣6x+8)+(6x﹣5x2﹣2);(2)她妈妈说:你猜错了,我看到该题的标准答案是6.通过计算说明原题中“□”是几?【分析】(1)原式去括号、合并同类项即可得;(2)设“□”是a,将a看做常数,去括号、合并同类项后根据结果为6知二次项系数为0,据此得出a的值.【解答】解:(1)(3x2﹣6x+8)+(6x﹣5x2﹣2)=3x2﹣6x+8+6x﹣5x2﹣2=﹣2x2+6;(2)设“□”是a,则原式=(ax2﹣6x+8)+(6x﹣5x2﹣2)=ax2﹣6x+8+6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案是6,∴a﹣5=0,解得a=5.25.有一道题“求代数式的值:(﹣4x2+2x﹣8y)﹣(x﹣2y),其中x=,y=2019”,小亮做题时把“y=2019”错抄成“y=﹣2019”,但他的结果也是正确的,为什么?【分析】原式去括号合并得到最简结果,即可作出判断.【解答】解:原式=﹣x2+x﹣2y﹣x+2y=﹣x2,结果与y的值无关,故小亮做题时把“y=2019”错抄成“y=﹣2019”,但他的结果也是正确的.。
人教版 七年级数学 第2章 整式的加减 章末复习一、选择题(本大题共10道小题)1. 当a =-2,b =3时,a 2-2b +3的值为() A .-7 B .1 C .4D .62. 如果2x a +1y 与x 2y b -1是同类项,那么ab 的值是( )A.12B.32 C .1D .33. 化简13(9x -3)-2(x +1)的结果是( )A .2x -2B .x +1C .5x +3D .x -34. 针对215,下列说法错误的是() A .它是单项式B .它的次数是15C .它的指数是15D .它是偶数5. 下列说法正确的是() A .-1不是单项式 B .2πr 2的次数是3 C.x2y3的次数是3D .-xy2的系数是-16. 正方体的棱长为a ,那么它的表面积和体积分别是()A .6a ,a 3B .6a 2,a 3C .6a 3,a 3D .6a ,3a 37.某校组织若干名师生进行社会实践活动.若学校租用45座的客车x 辆,则余下15人无座位;若租用60座的客车,则可少租用1辆,且最后一辆还没坐满,那么乘坐最后一辆60座客车的人数是( ) A .75-15x B .135-15x C .75+15xD .135-60x8.小李家住房的结构如图所示(单位:米),小李打算把卧室和客厅铺上木地板,请你帮他算一算,他至少需买多少平方米的木地板( )A.12ab B.10abC.8ab D.6ab9.在一列数:a1,a2,a3,…a n中,a1=7,a2=1,从第三个数开始,每一个数都等于它前面两个数之积的个位数字,则这个数中的第2020个数是( )A.1 B.3 C.7 D.910. 将正整数1~2020按一定规律排列如下表:12345678 910111213141516 1718192021222324 2526272829303132 …上下平移表中带阴影的方框,则方框中五个数的和可以是( )A.2018 B.2019 C.2020 D.2021二、填空题(本大题共6道小题)11. 式子axy2-12x与14x-bxy2的和是单项式,则a,b的关系是________.12. 合并同类项:4a2+6a2-a2=________.13.若M,N是两个多项式,且M+N=6x2,则符合条件的多项式M,N可以是M=________,N=________.(写出一组即可)14. 若|a+1|+b-2=0,则5a2+3b2+2(a2-b2)-(5a2-3b2)的值为.15.一个单项式含x,y,z三个字母,次数是5,系数是x的指数的相反数,写出满足这些条件的所有单项式:___________________________________________.16.将连续的自然数1至36按图K-26-2所示的方式排成一个正方形阵列,用一个小正方形任意圈出其中的9个数,设圈出的9个数中中心的数为a,则圈出的9个数中,最小的数为________,最大的数为________,最大数与最小数的差为___ _____.图K-26-2三、解答题(本大题共5道小题)17.某商场的一种彩电标价为m元/台.节日期间,商场按九折的优惠价出售,商场销售n台彩电共得多少元?你所得到的单项式的系数和次数分别是多少?18. 有理数a,b,c在数轴上的对应点的位置如图所示.(1)用“>”或“<”填空:b-2c________0,2a-b________0,a+c________0;(2)化简:|b-2c|+|2a-b|-2|a+c|.19. 暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠.” 乙旅行社说:“所有人按全票价的六折优惠.”已知全票价为a元,学生有x人,带队老师有1人.(1)试用含a和x的式子分别表示甲、乙旅行社的收费情况;(2)若有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.20. 已知A=2a2-a,B=-5a+1.(1)化简:3A-2B+2;(2)当a=-时,求3A-2B+2的值.21.若(2x-1)3=a+bx+cx2+dx3,要求a+b+c+d的值,可令x=1,原等式变形为______________,所以a+b+c+d=________.想一想:利用上述求a+b+c+d的方法,能否求:(1)a的值?(2)a+c的值?若能,写出解答过程;若不能,请说明理由.人教版七年级数学第2章整式的加减章末复习-答案一、选择题(本大题共10道小题)1. 【答案】B[解析] 当a=-2,b=3时,a2-2b+3=4-6+3=-2+3=1.故选B.2. 【答案】A [解析] 因为2x a+1y与x2y b-1是同类项,所以a+1=2,b-1=1,解得a=1,b=2.所以ab=1 2.故选A.3. 【答案】D [解析] 原式=3x-1-2x-2=x-3.故选D.4. 【答案】B5. 【答案】C6. 【答案】B7. 【答案】 B [解析] 总人数为45x+15,则乘坐最后一辆60座客车的人数为45x+15-60(x-2)=135-15x.故选B.8. 【答案】 A [解析] 客厅的面积为4b·2a=8ab(米2),卧室的面积为2a·2b=4ab(米2),所以需买木地板的面积为8ab+4ab=12ab(米2).故选A.9. 【答案】C[解析] 依题意得:a1=7,a2=1,a3=7,a4=7,a5=9,a6=3,a7=7,a8=1,…,周期为6,2020÷6=336……4,所以a2020=a4=7.故选C.10. 【答案】 C [解析] 从表中正整数1~2020的排列情况来看,每一行是8个数,也就是每一列下面的数减去上面的数是8.随着方框的上下平移,可表示出其变化规律的表达式为:2+8n,3+8n,4+8n,5+8n,6+8n,将这五个数相加为40n+20,用四个答案中的数来尝试,可见只有40n+20=2020时,n为整数.故选C.二、填空题(本大题共6道小题)11. 【答案】a=b [解析] axy2-12x+14x-bxy2=-14x+(a-b)xy2.因为axy2-12x与14x-bxy2的和是单项式,所以a-b=0,即a=b.12. 【答案】9a213. 【答案】2x2+1 4x2-1(答案不唯一)[解析]当M=2x2+1,N=4x2-1时,M+N=(2x2+1)+(4x2-1)=2x2+1+4x2-1=6x 2.14. 【答案】3[解析] 原式=5a2+3b2+2a2-2b2-5a2+3b2=2a2+4b2.因为|a+1|+b-2=0,所以a+1=0,b-=0,即a=-1,b=,则原式=2+1=3.15. 【答案】-3x3yz,-2x2y2z,-2x2yz2,-xy3z,-xy2z2,-xyz316. 【答案】a-7 a+7 14三、解答题(本大题共5道小题)17. 【答案】解:共得0.9mn元,单项式的系数是0.9,次数是2.18. 【答案】解:(1)<<>(2)原式=(2c-b)+(b-2a)-2(a+c)=2c-b+b-2a-2a-2c=-4a.19. 【答案】解:(1)甲旅行社收取的费用为a+50%ax=a+ax元,乙旅行社收取的费用为(x+1)×60%a=ax+a元.(2)当x=30时,甲旅行社收取的费用为=a+15a=16a(元),乙旅行社收取的费用为a·31=a(元).因为a>0,所以16a<a.所以选择甲旅行社更优惠.20. 【答案】解:(1)3A-2B+2=3(2a2-a)-2(-5a+1)+2=6a2-3a+10a-2+2=6a2+7a.(2)当a=-时,3A-2B+2=6a2+7a=6×-2+7×-=-2.21. 【答案】解:(2-1)3=a+b+c+d 1(1)能.令x=0,得a=(-1)3=-1.(2)能.令x=-1,得a-b+c-d=(-2-1)3=-27.又因为a+b+c+d=1,所以2a+2c=-26.所以a+c=-13.。
人教版七年级数学上册第二章整式的加减专题训练考试时间:90分钟;考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、下列式子中a ,﹣23xy 2,29x y-+,0,是单项式的有()个.A.2B.3C.4D.52、若3223323M x x y xy y =-++,322325N x x y xy y =-+-,则322327514x x y xy y -++的值为().A.M N+B.M N-C.3M N-D.3N M-3、观察下面一列有序数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按这些规律,第50个有序数对是()A.(3,8)B.(4,7)C.(5,6)D.(6,5)4、已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是()A.28131x x +-B.2251x x -++C.2851x x -+D.2251x x --5、下列去括号错误的个数共有().①222(33)233y x y z y x y z --+=--+;②229[(54)]954x y z x y z --+=-++;③4[6(51)]4651x y z x y z +-+-=--+;④(92)(4)924x y z x y z -+++=----.A.0个B.1个C.2个D.3个6、下列代数式中单项式共有()2312314,,,0.3,,,,0,353a b m ax b r a x y ππ+--+-.A.2个B.4个C.6个D.8个7、下列不能用4m 表示的是()A.葡萄的价格是4元/千克,买kg m 葡萄的价钱B.一个正方形的边长是m ,这个正方形的周长C.甲平均每小时加工m 个零件,4h 后共加工的零件个数D.若4和m 分别表示一个两位数中的十位数字和个位数字,表示这个两位数8、用代数式表示:a 的2倍与3的和.下列表示正确的是()A.2a -3B.2a +3C.2(a -3)D.2(a +3)9、下列运算中,正确的是()A.3x+4y=12xy B.x 9÷x 3=x 3C.(x 2)3=x6D.(x﹣y)2=x 2﹣y210、下列是按一定规律排列的多项式:﹣x +y ,x 2+2y ,﹣x 3+3y ,x 4+4y ,﹣x 5+5y ,x 6+6y ,…,则第n 个多项式是()A.(﹣1)nxn +ny B.﹣1nxn +nyC.(﹣1)n +1xn +nyD.(﹣1)nxn +(﹣1)nny第Ⅱ卷(非选择题70分)二、填空题(5小题,每小题4分,共计20分)1、已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数 ,x y ,代数式 2A B -的值不变,则12()(2)33a Ab B ---的值是_______.2、某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、5元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q =______;(2)若共购进3510⨯本甲种书及3310⨯本乙种书,Q =______(用科学记数法表示).3、多项式2333325467a c bc ab a -+--最高次项为__________,常数项为__________.4、多项式112510m x x -+-是关于x 的四次三项式,则m =________________5、去括号:3254(1)a a a ⎡⎤---=⎣⎦________.三、解答题(5小题,每小题10分,共计50分)1、如图,用字母表示图中阴影部分的面积.2、已知230a b -++=,试求:(1)a b +的值;(2)a b +的值.3、化简求值:132(41)(34)2x x x +-+--,其中12x =-.4、化简:(1)4xy -(3x 2-3xy )-2y +2x 2(2)(a+b)-2(2a-3b)+3(a-2b)5、探究规律题:按照规律填上所缺的单项式并回答问题:(1)a,﹣2a2,3a3,﹣4a4,,;(2)试写出第2017个和第2018个单项式;(3)试写出第n个单项式;(4)当a=﹣1时,求代数式a+2a2+3a3+4a4+…+99a99+100a100+101a101的值.-参考答案-一、单选题1、B【解析】【分析】根据单项式的定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式进行逐一判断即可.【详解】解:式子中a,﹣23xy2,29x y-+,0,是单项式的有a,﹣23xy2,0,一共3个.故选B.【考点】本题主要考查了单项式的定义,解题的关键在于能够熟练掌握单项式的定义.2、C【解析】【分析】分别计算:M N +,M N -,3M N -,3N M -化简后可得答案.【详解】解:32232532M N x x y xy y +=-+-,故A 不符合题意;2238M N x y xy y -=-++,故B 不符合题意;322332233396925M N x x y xy y x x y xy y -=-++-+-+3223=27514x x y xy y -++,故C 符合题意;322332233=36315323N M x x y xy y x x y xy y --+--+--3223=2318x x y xy y -+-,故D 不符合题意;故选:.C 【考点】本题考查的是整式的加减运算,掌握合并同类项的法则与去括号的法则是解题的关键.3、C 【解析】【分析】不难发现横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,根据此规律即可知第50个有序数对.【详解】观察发现,横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,12345678945++++++++= ,∴第46、47、48、49、50个有序数对依次是()1,10、()2,9、()3,8、()4,7、()5,6.所以C 选项是正确的.【考点】本题主要考查了点的坐标探索规律题,找出有序数对的横、纵坐标变化规律是解决问题的关键.4、D 【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:2541x x +--(239x x +)=2251x x --,故选D.【考点】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.5、D 【解析】【分析】根据整式加减的计算法则进行逐一求解判断即可.【详解】解:①222(33)233y x y z y x y z --+=-+-,故此项错误;②229[(54)]954x y z x y z --+=-++,故此项正确;③4[6(51)]4651x y z x y z +-+-=-+-,故此项错误;④(92)(4)924x y z x y z -+++=--++,故此项错误;故选D.【考点】本题主要考查了整式的加减运算,解题的关键在于能够熟练掌握相关知识进行求解.6、C 【解析】【分析】根据单项式的定义,即可得到答案.【详解】解:2312314,,,0.3,,,,,0,353a b m ax b r a x y ππ+--+-中,单项式有,m -30.3,,,5b π-340,3r π,共6个,故选C.【考点】本题主要考查单项式的定义,掌握“数字和字母,字母和字母的乘积叫做单项式,单独的字母和数字也叫单项式”是解题的关键.7、D 【解析】【分析】对选项逐个计算,查看是否为4m 即可.【详解】解:A.m 千克葡萄的价钱是4m ,不合题意;B.正方形的周长是4m ,不合题意;C.甲4h 后共加工4m 个零件,不合题意;D.这个两位数是410m ⨯+,也就是40m +,符合题意.故选D.【考点】此题考查了根据题意列代数式,解题的关键是理解题意.8、B 【解析】【分析】a 的2倍与3的和也就是用a 乘2再加上3,列出代数式即可.【详解】9、C 【解析】【分析】直接应用整式的运算法则进行计算得到结果【详解】解:A、原式不能合并,错误;B、原式=6x ,错误;C、原式=6x ,正确;D、原式=22x 2xy y -+,错误,故选:C.【考点】整式的乘除运算是进行整式的运算的基础,需要完全掌握.10、A 【解析】【分析】从三方面(符号、系数的绝对值、指数)总结规律,再根据规律进行解答便可.【详解】解:按一定规律排列的多项式:﹣x +y ,x 2+2y ,﹣x 3+3y ,x 4+4y ,﹣x 5+5y ,x 6+6y ,…,则第n 个多项式是:(﹣1)nxn +ny ,故选:A .【考点】本题考查的是整式中的多项式的规律探究,掌握探究的方法是解题的关键.二、填空题1、-2【解析】【分析】先根据代数式 2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可.【详解】222(251)2(34)A B x ax y x x by -=+-+-+--222512628x ax y x x by =+-+--++(6)(25)9a xb y =-+-+∵对于任意有理数 ,x y ,代数式 2A B -的值不变∴60,250a b -=-=,29A B -=56,2a b ∴==∵121()(2)2(2)333a Ab B a b A B ---=---∴原式=51629653223-⨯-⨯=--=-故答案为:-2【考点】本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.2、4m +5n43.510⨯【解析】【分析】(1)根据题意列代数式即可;(2)根据题意列出算式进行化简即可.【详解】解:(1)由题意,得Q =4m +5n ;(2)Q =4×3510⨯+5×3310⨯=20×310+15×310=35×310=43.510⨯.故答案为:4m +5n ,43.510⨯.【考点】本题考查了整式中的列代数式,科学记数法的运算,正确地理解能力和计算能力是解决问题的关键.3、35ab 4-【解析】【分析】根据多项式的项数和次数的确定方法即可求出答案.【详解】多项式2333325467a c bc ab a -+--各项分别是:22a c ,37bc -,35ab ,4-,336a -最高次项是35ab ,常数项是4-.故答案为:35ab ,4-.【考点】本题主要考查了多项式的有关定义,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.4、5【解析】【分析】根据多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:∵多项式1110m x -+2x -5是关于x 的四次三项式,∴m ﹣1=4,解得m =5,故答案为:5.【考点】此题考查的是多项式的次数,掌握多项式的次数的定义是解决此题的关键.5、32541a a a -+-【解析】【分析】先去小括号,再去中括号.括号外为负,则括号内每项均要变号;括号外为正,则直接去括号即可.【详解】原式()3232541541a a a a a a =--+=-+-.故答案为:32541a a a -+-.【考点】本题考查的知识点是去括号的方法,解题关键是注意从外到内去括号.三、解答题1、阴影部分的面积为mn pq-【解析】【分析】根据阴影部分面积=大长方形面积-空白部分长方形面积进行求解即可.【详解】解:由题意得:==S S S mn pq --阴影大长方形空白长方形,∴阴影部分的面积为mn pq -.【考点】本题考查列代数式,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.2、(1)﹣1;(2)5【解析】【分析】(1)由非负数的性质可求得a 、b 的值,然后将a 、b 的值代入a b +即可;(2)由非负数的性质可求得a 、b 的值,然后分别求得a 、b 的绝对值,最后带入计算即可.【详解】解:(1)∵230a b -++=,∴20a -=,30b +=,∴2a =,3b =-,∴()+231a b =+-=-;(2)∵2a =,3b =-,∴2=a ,3=3b =-,∴=2+3=5a b +.【考点】本题主要考查的是求代数式的值、求一个数绝对值、非负数的性质,几个非负数的和为0,这几数都为0.3、132x -+,2【解析】【分析】利用去括号法则先化简再求值.【详解】解:原式338222x x x =-+-+132x =-+,把12x =-代入上式得,原式2=.【考点】此题主要考查学生利用去括号法则先化简再求值的能力,学生做这类题时要认真细心.4、(1)-x 2+7xy -2y ;(2)b-3a .【解析】【分析】(1)去括号,根据合并同类项法则计算;(2)去括号,根据整式的加减混合运算法则计算.(1)解:4xy -(3x 2-3xy )-2y +2x 2=4xy -3x 2+3xy -2y +2x2=-x 2+7xy -2y ;(2)解:(a +b )-2(2a -3b )+3(-2b )=a +b-4a +6b-6b=b-3a .【考点】本题考查的是整式的加减,掌握整式的加减运算法则是解题的关键.5、(1)55a ,66a -;(2)20172017a ,20182018a -;(3)1(1)n n a +-;(4)51-【解析】【分析】(1)根据规律找出系数和次数的规律即可;(2)根据(1)的规律即可求得第2017个和第2018个单项式;(3)根据(1)的规律写出第n 个单项式;(4)将1a =-代入求值即可【详解】(1)根据规律第5个单项式为55a ,第6个单项式为66a -故答案为:55a ,66a -(2)第2017个和第2018个单项式分别为20172017a ,20182018a -(3)系数的规律:第n 个对应的系数是1(1)n n +-⨯,指数的规律:第n 个对应的指数是n ,∴第n 个单项式是1(1)n n a +-,(4)当a =﹣1时,a +2a 2+3a 3+4a 4+…+99a 99+100a 100+101a 1011234100101=-+-+-+-……()()()123499100101=-++-+++-+- (50101)=-51=-【考点】此题考查单项式的规律探索,分别找出单项式的系数和指数的规律是解决此类问题的关键.。