2009中国数学奥林匹克试题及解答
- 格式:docx
- 大小:442.66 KB
- 文档页数:5
第一天(2009年7月28日上午8:00-12:00)江西·南昌1. 试求满足方程22-+=的所有整数对(,)21262009x xy yx y.(张鹏程供题)2. 在凸五边形ABCDE中,已知,,==≠,且,,,B C D EAB DE BC EA AB EA四点共圆.证明:,,,=.A B C D四点共圆的充分必要条件是AC AD(熊斌供题)3. 设,,x y z R+∈222=-=--;x y z y z x z x y(),(),()求证:2222()++≥++.a b c ab bc ca(唐立华供题)4. 在一个圆周上给定十二个红点;求n的最小值,使得存在以红点为顶点的n个三角形,满足:以红点为端点的每条弦,都是其中某个三角形的一条边.(陶平生供题)第二天(2009年7月29日 上午8:00-12:00) 江西·南昌 5.设1,2,,9 的所有排列129(,,,)X x x x = 的集合为A ;X A ∀∈,记1239()239f X x x x x =++++ ,{()}M f X X A =∈;求M . (其中M 表示集合M 的元素个数)(熊斌供题)6.已知O 、I 分别是ABC ∆的外接圆和内切圆;证明:过O 上的任意一点D ,都可以作一个三角形DEF ,使得O 、I 分别是DEF ∆的外接圆和内切圆.(陶平生供题)7. 设(2)(2)(2)(,,)131313x y z y z x z x y f x y z x y y z z x---=++++++++, 其中,,0x y z ≥ ,且1x y z ++=. 求(,,)f x y z 的最大值和最小值.(李胜宏供题)8.在8×8方格表中,最少需要挖去几个小方格,才能使得无法从剩余的方格表中裁剪出一片形状如下完整的T 型五方连块?(孙文先供题)第六届中国东南地区数学奥林匹克试题与解答第一天1. 试求满足方程2221262009x xy y -+=的所有整数对(,)x y . (张鹏程供题)解: 设整数对(,)x y 满足方程22212620090x xy y -+-= …(1),将其看作关于x 的一元二次方程,其判别式()2222441262009500(4)36y y y ∆=-⨯-=-+的值应为一完全平方数; 若224y >,则0∆<;若224y <,则2y 可取2220,1,2,3,相应的∆值分别为8036,7536,6036和3536 ,它们皆不为平方数;因此,仅当224y =时,()2225004366y ∆=-+=为完全平方数.若4=y ,方程(1)化为2870x x -+=, 解得1=x 或7x =;若4-=y ,方程(1)化为 2870x x ++=,解得1-=x 或7x =-.综上可知,满足原方程的全部整数对为:()()()()(),1,4,7,4,1,4,7,4x y =----. 2. 在凸五边形ABCDE 中,已知,,AB DE BC EA AB EA ==≠,且,,,B C D E 四点共圆.证明:,,,A B C D 四点共圆的充分必要条件是AC AD =. (熊斌供题)证明:必要性:若,,,A B C D 共圆,则由,AB DE BC EA ==,得BAC EDA ∠=∠,ACB DAE ∠=∠,所以ABC DEA ∠=∠,故得AC AD =;充分性:记BCDE 所共的圆为O ,若AC AD =,则圆心O 在CD 的中垂线AH 上,设点B 关于AH 的对称点为F ,则F 在O 上,且因AB EA ≠,即D E D F ≠,所以,E F不共点,且AFD ∆≌ABC ∆,又由,AB DE BC EA ==,知AED ∆≌CBA ∆,因此,AED ∆≌DFA ∆,故由AED DFA ∠=∠,得AEFD 共圆,即点A 在DEF 上,也即点A在O 上,从而,,,A B C D 共圆.3. 设,,x y z R +∈222(),(),()x y z y z x z x y =--=-;求证: 2222()a b c ab bc ca ++≥++.(唐立华供题)()()(),y z z x x y =-+--()()()z x x y y z =-+--,()()()x y y z z x =-+--.所以[]2()()()()()()0y z z x x y y z z x x y =-+++---≤, 于是 2222()()a b b c c a a b c ++-++=0≤, 故 2222()a b c a b b c c a++≥++. 4. 在一个圆周上给定十二个红点;求n 的最小值,使得存在以红点为顶点的n 个三角形,满足:以红点为端点的每条弦,都是其中某个三角形的一条边.(陶平生供题)解:设红点集为:{}1212,,,A A A A = ,过点1A 的弦有11条,而任一个含顶点1A 的三角形,恰含两条过点1A 的弦,故这11条过点1A 的弦,至少要分布于6个含顶点1A 的三角形中;同理知,过点(2,3,,12)i A i = 的弦,也各要分布于6个含顶点i A 的三角形中,这样就需要12672⨯=个三角形,而每个三角形有三个顶点,故都被重复计算了三次,因此至少需要72243=个三角形. 再说明,下界24可以被取到.不失一般性,考虑周长为12的圆周,其十二等分点为红点,以红点为端点的弦共有21266C =条.若某弦所对的劣弧长为k ,就称该弦的刻度为k ;于是红端点的弦只有6种刻度,其中,刻度为1,2,,5 的弦各12条,刻度为6的弦共6条;如果刻度为,,a b c (a b c ≤≤)的弦构成三角形的三条边,则必满足以下两条件之一:3或者a b c +=;或者12a b c ++=;于是红点三角形边长的刻度组(),,a b c 只有如下12种可能:()()()1,1,2,2,2,4,3,3,6,()()()()()()()()()2,5,5,1,2,3,1,3,4,1,4,5,1,5,6,2,3,5,2,4,6,3,4,5,4,4,4;下面是刻度组的一种搭配:取()()()1,2,3,1,5,6,2,3,5型各六个,()4,4,4型四个;这时恰好得到66条弦,且其中含刻度为1,2,,5 的弦各12条,刻度为6的弦共6条;今构造如下:先作()()()1,2,3,1,5,6,2,3,5型的三角形各六个,()4,4,4型的三角形 三个,再用三个()2,4,6型的三角形来补充.()1,2,3型六个:其顶点标号为:{}{}{}{}{}{}2,3,5,4,5,7,6,7,9,8,9,11,10,11,1,12,1,3; ()1,5,6型六个:其顶点标号为:{}{}{}{}{}{}1,2,7,3,4,9,5,6,11,7,8,1,9,10,3,11,12,5; ()2,3,5型六个:其顶点标号为:{}{}{}{}{}{}2,4,11,4,6,1,6,8,3,8,10,5,10,12,7,12,2,9;()4,4,4型三个:其顶点标号为:{}{}{}1,5,9,2,6,10,3,7,11;()2,4,6型三个:其顶点标号为:{}{}{}4,6,12,8,10,4,12,2,8.(每种情况下的其余三角形都可由其中一个三角形绕圆心适当旋转而得).这样共得到24个三角形,且满足本题条件,因此,n 的最小值为24.第六届中国东南地区数学奥林匹克试题解答第二天5.设1,2,,9 的所有排列129(,,,)X x x x = 的集合为A ;X A ∀∈,记1239()239f X x x x x =++++ ,{()}M f X X A =∈;求M .(其中M 表示集合M 的元素个数).(熊斌供题)解:我们一般地证明,若4n ≥,对于前n 个正整数1,2,,n 的所有排列12(,,,)n n X x x x = 构成的集合A ,若123()23n n f X x x x nx =++++ ,{()}n M f X X A =∈,则366n n n M -+=.下面用数学归纳法证明:n M (1)(2)(1)(2)(1)(21),1,,666n n n n n n n n n ++++++⎧⎫=+⎨⎬⎩⎭.当4n =时,由排序不等式知,集合M 中的最小元素是{}()4,3,2,120f =,最大元素是{}()1,2,3,430f=.又,{}(){}(){}()3,4,2,121,3,4,1,222,4,2,1,323f f f ===,{}(){}(){}(){}()3,2,4,124,2,4,1,325,1,4,3,226,1,4,2,327f f f f ====, {}(){}()2,1,4,328,1,2,4,329ff ==,所以,4M ={}20,21,,30 共有11=34466-+个元素.因此,4n =时命题成立.假设命题在1n -(5n ≥)时成立;考虑命题在n 时的情况.对于1,2,,1n - 的任一排列1121(,,,)n n X x x x --= ,恒取n x n =,得到1,2,,n 的一个排列121,,,,n x x x n - ,则1nkk kx=∑121n k k n kx -==+∑.由归纳假设知,此时1nk k kx =∑取遍区间222(1)(1)(1)(21)(5)(1)(21),,6666n n n n n n n n n n n n n ⎡⎤-+--+++⎡⎤++=⎢⎥⎢⎥⎣⎦⎣⎦上所有整数. 再令1n x =,则11111(1)(1)2n n n k k k k k k n n kx n kx n k x --===-=+=+-+∑∑∑11(1)(1)2n k k n n k x -=+=+-∑, 再由归纳假设知,1nkk kx=∑取遍区间2(1)(1)(1)(1)(1)(21)(1)(2)2(2),,262666n n n n n n n n n n n n n n n ⎡⎤+-++--+++⎡⎤++=⎢⎥⎢⎥⎣⎦⎣⎦上的所有整数.因为222(2)(5)66n n n n ++≥,所以,1nk k kx =∑取遍区间(1)(2)(1)(21),66n n n n n n ++++⎡⎤⎢⎥⎣⎦ 上的所有整数.即命题对n 也成立.由数学归纳法知,命题成立.由于 3(1)(21)(1)(2)6666n n n n n n n n ++++-+-=,从而,集合n M的元素个数为366n n -+.特别是,当9n =时,9121M M ==.6.已知O 、I 分别是ABC ∆的外接圆和内切圆;证明:过O上的任意一点D ,都可作一个三角形DEF ,使得O 、I 分别是DEF ∆的外接圆和内切圆.(陶平生供题)证:如图,设OI d =,,R r 分别是ABC ∆的外接圆和内切圆半径,延长AI 交O 于K ,则2s in 2AK I K B R ==,sin 2r AI A =,延长OI 交O 于,M N ;则()()2R d R d IM IN AI KI Rr +-=⨯=⨯=,即222R d Rr -=;过D 分别作I 的切线,DE DF ,,E F 在O 上,连EF ,则DI 平分EDF ∠,只要证,EF 也与I 相切;设DI O P = ,则P 是 EF的中点,连PE ,则 2sin 2DPE R =,sin2r DI D =,()()22ID IP IM IN R d R d R d ⋅=⋅=+-=-,所以2222sin 2sin 22R d R d D DPI R PE DI r --==⋅==,N F由于I 在角D 的平分线上,因此点I 是DEF ∆的内心, (这是由于,()()0011180180222D E PEI PIE P F +∠=∠=-∠=-∠=,而 2D PEF ∠=,所以2EFEI ∠=,点I 是DEF ∆的内心). 即弦EF 与I 相切. 7.设(2)(2)(2)(,,)131313x y z y z x z x y f x y z x y y z z x---=++++++++, 其中,,0x y z ≥ ,且 1x y z ++=. 求(,,)f x y z 的最大值和最小值.(李胜宏供题)解:先证1,7f ≤当且仅当13x y z ===时等号成立. 因(31)121313x x y xf x y x y+-=∑=-∑++++ … ()*由哥西不等式:2()113(13)(13)x x x y x x y x x y ∑∑≥=++∑++∑++,因为7(13)(24)2.3x x y x x y z xy ∑++=∑++=+∑≤从而 3,137x x y ∑≥++3112,77f ≤-⨯=max 1,7f =当且仅当13x y z ===时等号成立. 再证0,f ≥当1,0x y z ===时等号成立.事实上,(2)(2)(2)(,,)131313x y z y z x z x y f x y z x y y z z x---=++++++++=2121()()13131313xy xz x y y z z x x y -+-++++++++21()1313yz y z z x+-++++ 77(13)(13)(13)(13)xyz xyz x y y z z x x y =+++++++++70(13)(13)xyzy z z x +≥++++ 故min 0f =,当1,0x y z ===时等号成立.另证:设{}min ,,z x y z =,若0z =,则22(,,0)0131242xy xy xy xyf x y x y y x y x y=-=-=+++++;下设,0x y z ≥>,由()*式,要证0f ≥,只要证,1132x x y ≤++∑ …①注意到12242x yx y x y =+++,于是①等价于 8()()()132413213241313z x x y y z x yz x x y x y x y y z x y x y y z≤-+-=++++++++++++++即 248131313x y x yz x x y y z+≤+++++++ …②而由柯西不等式,可得228(2)1313(13)(13)/2x y x y x y y z x x y y y z +=+++++++++ 222(2)24(3)(3)/213x y x yx x xy y y yz z x++≥=+++++++ 即②成立,从而0f ≥,故min 0f =,当1,0x y z ===时等号成立.8.在8×8方格表中,最少需要挖去几个小方格,才能使得无法从剩余的方格表中裁剪出一片形状如下完整的T 型五方连块?(孙文先供题)答:至少要如下图挖去14个小方格.如右图,将8×8棋盘切为五个区域.中央部份的区域至少要挖去2个小方格才能使T 形的五方块放不进去。
2009年湖北省小学数学奥林匹克六年级决赛试题与答案1、计算题1又1/2+3又1/6+5又1/12+7又1/20+9又1/30+11又1/42解:原式=(1+3+5+7+9+11)+1/2+1/6+1/12+1/20+1/30+1/42=36又6/72、计算题2.4÷1又24/31×4.125-(9又5/31-4.42)解:原式=5.58-9又5/31+4.42=10-9又5/31=26/313、在所有的四位数中,各个数位上的数字之和等于34的所有的数字有多少个?解:四位数每个位置上最高为9 全部是9也只能是36 ,刚好少了2,所以可能是一个位置上少2或者两个位置各少1,所以可能有两种情况:a、3个9和1个7分别为:9997、9979、9799、7999一共4种;b、2个9和2个8分别为:9988、9898、9889、8989、8998、88999一共4+6=10种。
答案:10种。
4、平面上有10个点,其中4个点在一条直线上,其余再无三点共线,则连接这些点的直线共有多少条?分析:除了4个点是在同一条直线上,其他再找不到三个在一条直线上了。
(2点确定一条直线,不管是6点内部还是共线的4点还是各取1点的情况,都满足2点确定一条直线。
)1)、所以另外6点内部可以构成多少条直线?...............15条直线 . 2)、在同一条直线上的4个点构成多少条直线?.................1条直线.3)、6点中取1点,共线的4点种取1点构成多少条直线?......6乘以4=24条直线.一共可以构成:15+1+24=40条直线。
3)中6点中取得1点有6种不同的取法,4点中取1点有4种取法,构成1条直线需要两个点,取完2个点才算完成这件事,所以符合乘法原理:6乘以4=24条。
正确答案:40条。
5、甲乙丙三个小朋友一起去春游,甲负责买门票,乙负责买食品,丙负责买饮料,结果乙付的钱是甲的4/5,丙付的钱是乙的3/8.根据事先的约定,三个人所花的钱需要一样多,于是丙又拿出24元钱给甲和乙,乙应该得多少钱?分析:乙:甲=4:5 丙:乙=3:8可见:甲:乙:丙=10:8:3可见,三个人一共付款10+8+3=21份每个人都应该平摊:21除以3=7份。
2009年九年级数学奥林匹克竞赛题(五)第 一 试一. 选择题.(每小题7分,共42分)( )1.正实数,x y 满足1xy =,那么44114x y+的最小值为:(A)12 (B)58(C)1 ( )2.33333333(21)(31)(41)(1001)(21)(31)(41)(1001)----++++ 的值最接近于: (A)12 (B)23 (C)35 (D)58( )3.如图1, ΔABC 中,AB=AC,∠A=40O ,延长AC 到D,使CD=BC,点P 是ΔABD 的内心,则∠BPC=:(A)145O (B)135O (C)120O (D)105O( )4.,,,a b c d 为两两不同的正整数,且,a b cd ab c d +==+,则满足上述要求的四元数组 ,,,a b c d 共有: (A)4组 (B)6组(C)8组 (D)10组( )5. ΔABC 的三边长皆为整数,且24a bc b ca +++=,当ΔABC 为等腰三角形时,它的面积的答案有:(A)1种 (B)2种(C)3种 (D)4种( )6. ΔABC 的∠A,∠B 皆为锐角,CD 是高,已知2()AD AC DB BC=,则ΔABC 是: (A) 直角三角形 (B)等腰三角形 (C)等腰直角三角形 (D)等腰三角形或直角三角形二. 填空题.(每小题7分,共28分)1.使方程1223x x x c ---+-=恰好有两个解的所有实数c 为 .2.如图2,正方形ABCD 中,延长边BC 到E,AE 分别交BD,CD 于点P,Q.当AP=QE时,PQ:AE= .3.如图3, ΔABC 内接于⊙O,,,BC a CA b ==∠A -∠B=90O ,则⊙O 的面积为 .4.某中学生暑期社会调查团共17人到几个地方去考察,事先预算住宿费平均每人每天不超过x 元.一日到达某地,该地有两处招待所A,B.A 有甲级床位8个,乙级床位11个;B 有甲级床位10个,乙级床位4个,丙级床位6个.已知甲,乙,丙床位每天分别为14元,8元,5元.若全团集中住在一个招待所里,按预算只能住B 处,则整数x = .第 二 试一.(20分)一批货物准备运往某地,有甲,乙,丙三辆卡车可雇用.已知甲,乙,丙三辆车每次运货量不变,且甲乙两车单独运这批货物分别用2,a a 次;若甲,丙两车合运相同次数,运完这批货物,甲车共运了180t ;若乙,丙两车合运相同次数,运完这批货物,乙车共运了270t .现甲,乙,丙合运相同次数把这批货物运完,货主应付车方运费各多少元?(按每吨运费20元计算)?二.(25分)如图4,在圆外切凸六边形ABCDEF 中,AB ∥DE,BC ∥EF,CD ∥FA.求证: 凸六边形ABCDEF 是中心对称图形.三. (25分)试求出所有这样的正整数a 使得关于x 的二次方程22(21)4(3)0ax a x a +-+-=至少有一个整数根.。
2009届小学数学奥林匹克竞赛预赛试题及答案2009届小学数学奥林匹克竞赛预赛试题及答案时间:2012-12-06 11:18 来源:世奥赛资讯站作者:世奥赛小编阅读:175次2009年小学数学奥林匹克预赛试卷及参考答案(本卷共12个题,每题10分,总分120分)1、23×( +)+13×( -)-15×( +)=( )解:原式=69/11+11+13×15/23-39/11-30/11-15×13/23=112、(1-)(1-)…(1-)=( )解:原式=1/2×2/3×3/4×4/5×……×2007/2008×2008/2009=1/20093、两个整数相除,商数=4,余数=7。
已知被除数比除数大58,那么除数是( )。
解:设除数为x。
则x+58=4x+7 x=174、四位数- =5904,如果是偶数,那么=( 8892 )。
解:8892-2988=59045、右图中的三角形都是等腰直角三角形。
图中阴影部分的面积=( )。
解:5×5÷2÷2-2×2÷2=4.256、下面是一个乘法算式,它的得数是(69104 )。
12□□×5□□□04□□70□□□□□解:1234×56=690147、一个泉水池,每分钟涌出的泉水量不变。
如果用8台抽水机工作,10小时能把水抽干;如果用12台抽水机工作,6小时能把水抽干。
那么,用14台抽水机把水抽干,需要工作( )小时。
解:设1台抽水机1小时抽的水为1份。
则每小时涌出的泉水量为(8×10-12×6)÷(10-6)=2(份)原有的水量为8×10-10×2=60(份)用14台抽水机把水抽干,需要工作60÷(14-2)=5(小时)。
2009年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.已知非零实数a ,b 满足24242a b a -+++=,则a b +等于( ).(A )-1 (B )0 (C )1 (D )2【答】C . 解:由题设知a ≥3,所以,题设的等式为20b +=,于是32a b ==-,,从而a b +=1.2.如图,菱形ABCD 的边长为a ,点O 是对角线AC 上的一点,且OA =a ,OB =OC =OD =1,则a 等于( ).(A(B(C )1 (D )2 【答】A . 解:因为△BOC ∽ △ABC ,所以BO BC AB AC =,即11a a a =+,所以,2a 由0a >,解得a =. 3.将一枚六个面编号分别为1,2,3,4,5,6后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y 的方程组322ax by x y +=⎧⎨+=⎩, 只有正数解的概率为( ). (A )121 (B )92 (C )185 (D )3613 【答】D .解:当20a b -=时,方程组无解.当02≠-b a 时,方程组的解为62,223.2b x a b a y a b -⎧=⎪⎪-⎨-⎪=⎪-⎩由已知,得⎪⎪⎩⎪⎪⎨⎧>-->--,0232,0226b a a b a b 即⎪⎪⎩⎪⎪⎨⎧<>>-,3,23,02b a b a 或⎪⎪⎩⎪⎪⎨⎧><<-.3,23,02b a b a 由a ,b 的实际意义为1,2,3,4,5,6,可得2345612a b =⎧⎨=⎩,,,,,,,共有 5×2=10种情况;或1456a b =⎧⎨=⎩,,,,共3种情况. 又掷两次骰子出现的基本事件共6×6=36种情况,故所求的概率为3613. 4.如图1所示,在直角梯形ABCD 中,AB ∥DC ,90B ∠=︒. 动点P 从点B 出发,沿梯形的边由B →C →D →A 运动. 设点P 运动的路程为x ,△ABP 的面积为y . 把y看作x 的函数,函数的图像如图2所示,则△ABC 的面积为( ).(A )10 (B )16 (C )18 (D )32【答】B .解:根据图像可得BC 5,AB △ABC =12×8×4=16. 5.关于x ,y 的方程2x y =x ,y ).(A )2组 (B )3组 ( (D )无穷多组【答】C .解:可将原方程视为关于x 的二次方程,将其变形为22(229)0x yx y ++-=.由于该方程有整数根,则判别式∆≥0,且是完全平方数.由 2224(229)7116y y y ∆=--=-+≥0,解得 2y ≤11616.57≈.于是 显然,只有216y =时,4∆=是完全平方数,符合要求.当4y =时,原方程为2430x x ++=,此时121,3x x =-=-;当y =-4时,原方程为2430x x -+=,此时341,3x x == .所 以,原方程的整数解为111,4;x y =-⎧⎨=⎩ 223,4;x y =-⎧⎨=⎩ 331,4;x y =⎧⎨=-⎩ 443,4.x y =⎧⎨=-⎩二、填空题(共5小题,每小题7分,共35分)6.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶 3000 km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶 km .【答】3750.解:设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1 km 磨损量为5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000k .又设一对新轮胎交换位置前走了x km ,交换位置后走了y km .分别以一个轮胎的总磨损量为等量关系列方程,有,50003000,50003000kx ky k ky kx k ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相加,得 ()()250003000k x y k x y k +++=, 则 237501150003000x y +==+.7.已知线段AB 的中点为C ,以点A 为圆心,AB 的长为半径作圆,在线段AB 的延长线上取点D ,使得BD =AC ;再以点D 为圆心,DA 的长为半径作圆,与⊙A 分别相交于F ,G 两点,连接FG 交AB 于点H ,则AH AB的值为 . 解:如图,延长AD 与⊙D 交于点E ,连接AF ,EF . 由题设知13AC AD =,13AB AE =,在△FHA 和△EF A 中,EFA ∠=∠FAH EAF ∠=∠ 所以Rt △FHA ∽Rt △EF A , AH AF AF AE=. 而AF AB =以AH AB 13=. 8.已知12345a a a a a ,,,,是满足条件123459a a a a a ++++=的五个不同的整数,若b 是关于x 的方程()()()()()123452009x a x a x a x a x a -----=的整数根,则b 的值为 .【答】 10. 解:因为()()()()()123452009b a b a b a b a b a -----=,且12345a a a a a ,,,,是五个不同的整数,所有12345b a b a b a b a b a -----,,,,也是五个不同的整数.又因为()()2009117741=⨯-⨯⨯-⨯,所以1234541b a b a b a b a b a -+-+-+-+-=. 由123459a a a a a ++++=,可得10b =.9.如图,在△ABC 中,CD 是高,CE 为ACB ∠的平分线.若AC =15,BC =20,CD =12,则CE 的长等于 .【答】7.解:如图,由勾股定理知AD =9,BD =16,所以AB =AD +BD =25 . 故由勾股定理逆定理知△ACB且90ACB ∠=︒.作EF ⊥BC,垂足为F .设EF =x ,由12ECF ∠=CF =x ,于是BF =20-x .由于EF ∥AC ,所以 EF BF AC BC =,即 15x =解得607x =.所以7CE ==. 10.10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉他两旁的两个人,然后每个人将他两旁的两个人告诉他的数的平均数报出来.若报出来的数如图所示,则报3的人心里想的数是 . 【答】2-. 解:设报3的人心里想的数是x ,则报5于是报7的人心里想的数是 12(8)4x x --=+,报9数是16(4)12x x -+=-,报1的人心里想的数是 20(12)8x x --=+是4(8)4x x -+=--.所以4x x =--,解得2x =-.三、解答题(共4题,每题20分,共80分)11.已知抛物线2y x =与动直线c x t y --=)12(有公共点),(11y x ,),(22y x ,且3222221-+=+t t x x . (1)求实数t 的取值范围;(2)当t 为何值时,c 取到最小值,并求出c 的最小值.解:1.联立2y x =与c x t y --=)12(,消去y 得二次方程2(21)0x t x c --+= ①有实数根1x ,2x ,则121221,x x t x x c +=-=.所以2221212121[()()]2c x x x x x x ==+-+ =221[(21)(23)]2t t t --+-=21(364)2t t -+. ②………………5分 把②式代入方程①得221(21)(364)02x t x t t --+-+=. ③………………10分 t 的取值应满足2221223t t x x +-=+≥0, ④ 且使方程③有实数根,即22(21)2(364)t t t ∆=---+=2287t t -+-≥0,⑤解不等式④得 t ≤-3或t ≥1,解不等式⑤得 2t ≤2+所以,t 的取值范围为22-≤t ≤22+⑥ ………………15分(2) 由②式知22131(364)(1)222c t t t =-+=-+.由于231(1)22c t =-+在22-≤t ≤22+22t =-时,2min 3111(21)2224c -=--+=. ………………20分 12.已知正整数a 满足3192191a +,且2009a <,求满足条件的所有可能的正整数a 的和.解:由3192191a +可得31921a -.619232=⨯,且()[]311(1)1(1)(1)(1)a a a a a a a a -=-++=-++-. ………………5分 因为()11a a ++是奇数,所以6321a -等价于621a -,又因为3(1)(1)a a a -+,所以331a -等价于31a -.因此有1921a -,于是可得1921a k =+.………………15分又02009a <<,所以0110k =,,,.因此,满足条件的所有可能的正整数a 的和为11+192(1+2+…+10)=10571. ………………20分13.已知AB 为⊙O 的直径,弦//DC AB ,连接DO .过点D 作DO 的垂线,与BA 的延长线交于点E ,过点E 作AC 的平行线交CD 于点F ,过点D 作AC 的平行线交BF 于点G .求证:AG BG ⊥. (第13题)证明:连接AD ,BC ,因为四边形AEFC 是平行四边形,所以AE FC =.由于AD CB DAE BCF =∠=∠,,因此有DAE ∆≌BCF ∆,于是可得ADE CBF ∠=∠. ………………10分又因为DE 与⊙O 相切于点D ,所以DCA ADE ∠=∠.结合//DG AC ,可得 GDC DCA ADE GBC ∠=∠=∠=∠,于是D B C G ,,,四点共圆.因此点G 在⊙O 上,从而有AG BG ⊥.……………20分14.n 个正整数12n a a a ,,,满足如下条件:1212009n a a a =<<<=;且12n a a a ,,,中任意n -1个不同的数的算术平均数都是正整数.求n 的最大值.解:设12n a a a ,,,中去掉i a 后剩下的n -1个数的算术平均数为正整数i b ,12i n =,,,.即 12()1n i i a a a a b n +++-=-. 于是,对于任意的1≤i j <≤n ,都有1j ii j a a b b n --=-, 从而 1()j i n a a --. ………………5分由于 11200811n n a a b b n n --==--是正整数,故312251n -⨯. ………………10分 由()()()112211n n n n n a a a a a a a ----=-+-++- ≥()()()2111(1)n n n n -+-++-=-, 所以,2(1)n -≤2008,于是n ≤45. 结合312251n -⨯,所以,n ≤9. ……15分另一方面,令123801,811,821a a a =⨯+=⨯+=⨯+,…,8871a =⨯+,982511a =⨯+,则这9个数满足题设要求.综上所述,n 的最大值为9. ………20分情感语录1.爱情合适就好,不要委屈将就,只要随意,彼此之间不要太大压力2.时间会把最正确的人带到你身边,在此之前,你要做的,是好好的照顾自己3.女人的眼泪是最无用的液体,但你让女人流泪说明你很无用4.总有一天,你会遇上那个人,陪你看日出,直到你的人生落幕5.最美的感动是我以为人去楼空的时候你依然在6.我莫名其妙的地笑了,原来只因为想到了你7.会离开的都是废品,能抢走的都是垃圾8.其实你不知道,如果可以,我愿意把整颗心都刻满你的名字9.女人谁不愿意青春永驻,但我愿意用来换一个疼我的你10.我们和好吧,我想和你拌嘴吵架,想闹小脾气,想为了你哭鼻子,我想你了11.如此情深,却难以启齿。
2009年全国小学数学奥林匹克决赛试卷2009年4月19日9:00—10:30(本卷共12题,每题10分,总分120分)1、5)69221223221514653.0(÷-⨯⨯+⨯∙= 。
2、)200911()311)(211(222--- = 。
3、自然数1,2,…,100中,数字“1”共使用了 次。
4、如图,在一个4×4的正方形内,两个41圆周的半径分别是2和4。
取π=3,那么图中两个阴影部分的面积之差是 。
5、某种商品,去年的售价比前年上涨10%,今年的售价比去年下跌10%,,比前年下跌0.09元。
那么,该商品前年的售价是 元。
6、假日里有57位同学去郊外野餐,他们分成3人或4人一个小组进行准备,可以都是分成3人一组,这算一种分组方法;也可以分成若干3人组,若干个4人组。
3人组和4人组的个数不同就是不同的分组方法。
那么,不同的分组方法有 种。
7、一项工程,交甲工程队做需30天完成,每天工程费用32万元;交乙工程队做需40天完成,每天工程费用41万元,为了在20天内完成,安排甲、乙两队共同参与这项工程,如果两队工作的天数可以不一样,那么,两队共同完成这项工程的总费用至少需要 万元。
2222共2页 第1页Z X Y D E F K L M AB C8、如图,半径分别是8和28的两个圆盘。
大圆是固定的。
小圆在大圆的外面,沿大圆圆周按逆时针方向滚动。
开始时小圆圆周上的A 点与大圆圆周上的B 点重合。
当A 、B 两点再次重合时,A 至少绕小圆圆心转动了 圈。
9、右下图中有12个点,A 、B 、…X 、Y 、Z ,和若干个三角形。
如果从中选出4个三角形,使得它们的顶点正好是图中的12个点,就称这样的选法是合格的选法。
例如,图中用粗线标出的4个三角形(ABM ,CLF ,DZY ,EKX )就是一个合格的选法。
那么,不同的合格选法共有 种。
10、字母A 、B 、C 、D 、E 、F 、G 代表不同的数字。