2016年东城一模数学理
- 格式:doc
- 大小:971.20 KB
- 文档页数:11
2024北京初三一模数学汇编圆章节综合一、单选题1.(2024北京东城初三一模)如图,是的弦,是的直径,于点E .在下列结论中,不一定成立的是( )A .B .C .D .2.(2024北京东城初三一模)如图,作线段,在线段的延长线上作点,使得,取线段的中点,以为圆心,线段的长为半径作,分别过点作直径的垂线,交于点,连接,过点作于点.设,给出下面4个结论:①;;;④;上述结论中,正确结论的个数是()A .4个B .3个C .2个D .1个二、填空题3.(2024北京门头沟初三一模)如图所示,为了验证某个机械零件的截面是个半圆,某同学用三角板放在了如下位置,通过实际操作可以得出结论,该机械零件的截面是半圆,其中蕴含的数学道理是 .4.(2024北京大兴初三一模)如图,是的直径,点,在上,若,则的度数为 .AB O CD O CD AB ⊥AE BE =90CBD ∠=︒2COB D ∠=∠COB C∠=∠AC a =AC B ()CB b a b =<AB O O OA O C O 、AB O D F 、OD AF CF 、、C CE OD ⊥E CF c =2a b c +<c <)a b <+2ab ac bc <+AB O C D O AC BC =D ∠︒5.(2024北京通州初三一模)我国魏晋时期数学家刘徽在《九章算术注》中提出了著名的“割圆术”.所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积,并以此求取圆周率的方法,刘徽指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.例如,的半径为1,运用“割圆术”,以圆内接正六边形面积估计的面积,的面积近似为的面积,可得的估计值为 .6.(2024北京平谷初三一模)如图,内接于,为的直径, D 为上一点,连接.若,则的度数为 .7.(2024北京西城初三一模)如图, 在的内接四边形中, 点A 是的中点,连接, 若,则 .8.(2024北京石景山初三一模)如图,是的直径,是延长线上一点, 与相切于点.若,则 .πO O 1612S =⨯⨯正六边形O πO πABC O BC O O AD CD 、20D ∠=︒ACB ∠O ABCD BDAC 130DAB ∠=︒ACB =∠︒AB O P AB PC O C 40P ∠=︒A ∠=︒9.(2024北京顺义初三一模)如图,是的外接圆,,,平分,交于点D ,则的度数为 .10.(2024北京朝阳初三一模)如图,是的外接圆,于点,交于点,若,,则的长为 .11.(2024北京燕山初三一模)如图,是的直径,点在上,过点作的切线与直线交于点.若,则 °.三、解答题12.(2024北京朝阳初三一模)如图,在矩形中,,,点A 在直线l 上,与直线l 相交所得的锐角为.点F 在直线l 上,,⊥直线l ,垂足为点F 且,以为直径,在的左侧作半圆O ,点M 是半圆O 上任一点.发现:的最小值为 ,的最大值为 ,与直线l 的位置关系是 .思考:矩形保持不动,半圆O 沿直线l 向左平移,当点E 落在边上时,重叠部分面积为多少?O ABC AB AC =36BAC ∠=︒BD ABC ∠O DAB ∠O Rt ABC △OE AB ⊥D O E 8AB =2DE =BC AB O C O B O AC D 50D ∠=︒BOC ∠=ABCD 6AB =8BC =AD 60︒8AF =EF 6EF =EF EF AM AM OB ABCD AD13.(2024北京通州初三一模)如图,为的直径,过点A 作的切线,C 是半圆上一点(不与点A 、B 重合),连结,过点C 作于点E ,连接并延长交于点F .(1)求证:;(2)若的半径为5,,求的长.14.(2024北京东城初三一模)在平面直角坐标系中,的半径为1.对于线段给出如下定义:若线段与有两个交点,,且,则称线段是的“倍弦线”.(1)如图,点的横、纵坐标都是整数,在线段,,中,的“倍弦线”是_____;(2)的“倍弦线”与直线交于点,求点纵坐标的取值范围;(3)若的“倍弦线”过点,直线与线段有公共点,直接写出的取值范围.AB O O AM AB AC CD AB ⊥BD AM ∠=∠CAB AFB O 8AC =DF xOy O PQ PQ O M N ==PM MN NQ PQ O A B C D ,,,AB CB CD O O PQ 2x =E E E y O PQ (1,0)y x b =+PQ b15.(2024北京西城初三一模)在平面直角坐标系 中,已知的半径为.对于上的点 和平面内的直线 给出如下定义:点关于直线的对称点记为,若射线 上的点满足 则称点为点关于直线的“衍生点”.(1)当时,已知上两点 在点, 中,点关于直线的“衍生点”是 ,点关于直线的“衍生点”是 ;(2)为 上任意一点, 直线 与轴, 轴的交点分别为点 ,. 若线段上存在点,,使得点是点关于直线的“衍生点”,点不是点关于直线的“衍生点”,直接写出的取值范围;(3)当时,若过原点的直线上存在线段 ,对于线段 上任意一点,都存在上的点和直线,使得点是点关于直线的“衍生点”. 将线段长度的最大值记为,对于所有的直线,直接写出的最小值.16.(2024北京房山初三一模)在平面直角坐标系中,将中心为的等边三角形记作等边三角形,对于等边三角形和点(不与重合)给出如下定义:若等边三角形的边上存在点N ,使得直线与以为半径的⊙相切于点,则称点为等边三角形的“相关切点”.xOy O 1O P :l y ax =P l P 'OP Q OQ PP =',Q P l 0a =O121.2P P ⎛⎛ ⎝⎝,()112Q,232Q ⎫⎪⎪⎭,()(341,1Q Q --,1P l 2P l P O y x m =+()0m ≠x y A B AB S T S P l T P l m 11a -≤≤s MN MN R O P l R P l MN ()D s s ()D s xOy M M M P O M OP MN M P P M(1)如图,等边三角形的顶点分别为点,,.①在点,,中,等边三角形的“相关切点”是 ;②若直线上存在等边三角形的“相关切点”,求的取值范围;(2)已知点,等边三角形的边长为的两个“相关切点”,,使得△为等边三角形,直接写出的取值范围.17.(2024北京顺义初三一模)在平面直角坐标系中,对于图形M 和图形N 给出如下定义:如果图形M 上存在点P 、轴上存在点T ,使得点P 以点T 为旋转中心,逆时针旋转得到的点Q 在图形N 上,那么称图形N 是形M 的“关联图形”.(1)如图,点,,,.①在点B ,C ,D 中,点A 的“关联图形”是_____;②若不是点A 的“关联图形”,求的半径的取值范围;(2)已知点,,,的半径为1,以线段为对角线的正方形为,若是正方形的“关联图形”,直接写出的最小值和最大值.18.(2024北京门头沟初三一模)在平面直角坐标系中,的半径为2,点P 、Q 是平面内的点,如果点P 关于点Q 的中心对称点在上,我们称圆上的点为点P 关于点Q 的“等距点”.M ()0,0O (A (3,B 132P ⎛ ⎝23,2P ⎛ ⎝()32,2P M y x b =+M b (2)M m m -,M M E F OEF m xOy y 90︒()3,2A -()0,1B -()3,2C ()1,6D -O O r (),0O m '()3,0E m -()2,1G m -O ' EG EFGH O ' EFGH m xOy O O(1)已知如图1点.①如图1,在点 中,上存在点P 关于点Q 的“等距点”的是________;②如图2,点 ,上存在点P 关于点Q 的“等距点”,则m 的取值范围是________;(2)如图3,已知点,点P 在的图象上,若上存在点P 关于点Q 的“等距点”,求b 的取值范围.40(,)P ()()()12330,2,1,1,1Q Q Q -,O (),Q m n O ()1,1Q y x b =-+O参考答案1.D【分析】此题考查了圆周角定理、垂径定理,熟练掌握圆周角定理、垂径定理是解题的关键.根据垂径定理、圆周角定理判断求解即可.【详解】解:是的直径,,,,,,故A 、B 、C 不符合题意,D 符合题意;故选:D .2.C【分析】本题考查了圆的基本性质以及勾股定理内容以及完全平方公式的应用,先找出半径,结合斜边大于直角边,得知①是正确的,结合勾股定理以及完全平方公式的变形运算,得证③是错误的;同理得证②是正确的.对④运用反证法,得出,与①的结论相矛盾,即可作答.【详解】解:∵∴∵∴(斜边)大于即故①是正确的;∴在中,即∴∵故③是错误的;∵∴∴CD OCD AB ⊥AE BE ∴=90CBD ∠=︒2COB D ∠=∠CBO C ∠=∠2a b c +<2a b c +>2a b c +<()A b C a CB b a ==>,()1122OF AB a b ==+OF AB⊥CF OF2a bc +>()111222OC AO AC a b a b a =-=+-=-Rt COF △222OC OF FC +=22211222a b b a c +⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭2222a b c +==2a b c +<)a b =+b a>()2b a ->222b a ab +>,故②是正确的;假设是正确的则∴∵,且∴∴即与①的结论相矛盾故④是错误的综上:正确结论的个数是个故选:C3.的圆周角所对的弦是直径【分析】本题考查圆周角定理,掌握“的圆周角所对的弦是直径”是正确解答的关键.根据圆周角定理进行判断即可.【详解】解:根据“的圆周角所对的弦是直径”即可得出答案,故答案为:的圆周角所对的弦是直径.4.45【分析】本题主要考查了圆周角定理,先由直径所对的圆周角为,可得,然后由得:,然后根据同弧所对的圆周角相等,即可求出的度数.【详解】解:∵是的直径,∴,∵,∴,∴.故答案为:455.3【分析】过作于,求得的度数,根据直角三角形的性质得到,求出三角形的面积,于是得到正十二边形的面积,根据圆的面积公式即可得到结论.本题考查了正多边形与圆,三角形的面积的计算,正确地作出辅助线是解题的关键.【详解】如图,是正十二边形的一条边,点是正十二边形的中心,设的半径为1,过作于,>=>c 2ab ac bc <+0ac ab bc ab<-+-()()0a c b b c a <-+-00c b c a -<->,a b<0c b c a ->->b c c a->-2a b c +>2a b c +<290︒90︒90︒90︒90︒90ACB ∠=︒AC BC =45CAB CBA ∠=∠=︒D ∠AB O 90ACB ∠=︒AC BC =45CAB CBA ∠=∠=︒45D CAB ∠=∠=︒A AM OB ⊥M AOB ∠AM AB O O A AM OB ⊥M在正十二边形中,,∴正十二边形的面积为,,,的近似值为3,故答案为:3.6./70度【分析】本题考查了直径所对的圆周角为直角,同弧所对的圆周角相等,三角形内角和定理等知识.熟练掌握直径所对的圆周角为直角,同弧所对的圆周角相等是解题的关键.由为的直径,可得,由,可得,根据,计算求解即可.【详解】解:∵为的直径,∴,∵,∴,∴,故答案为:.7.25【分析】本题考查了圆的内接四边形性质,圆周角定理等知识,利用圆的内接四边形的性质求出的性质,然后利用圆周角定理求解即可.【详解】解:∵的内接四边形中,,∴,∵点A 是的中点,3601230AOB ∠=︒÷=︒1122AM OA ∴==111112224AOB S OB AM ∴=⋅=⨯⨯= 11234⨯=231π∴=⨯3π∴=π∴70︒BC O 90BAC ∠=︒ AC AC =20ABC D ∠=∠=︒180ACB BAC ABC ∠=︒-∠-∠BC O 90BAC ∠=︒ AC AC =20ABC D ∠=∠=︒18070ACB BAC ABC ∠=︒-∠-∠=︒70︒BCD ∠O ABCD 130DAB ∠=︒18500DA BCD B ∠︒∠==︒- BD∴,∴,故答案为:25.8.【分析】本题考查的是等腰三角形的性质,三角形的外角的性质,切线的性质,如图,连接,求解,再根据圆周角定理即可得答案.【详解】解:如图,连接,∵ 与相切于点.,∴,,∴,故答案为:9./72度【分析】本题考查了等腰三角形的性质,圆周角定理及三角形内角和定理,熟练掌握等腰三角形的性质及圆周角定理是解题的关键.根据等边对等角和三角形内角和定理可求得,再由角平分线及圆周角定理确定,即可求解.【详解】解:∵,,∴,∵平分,∴,∴,∴,故答案为:.10.【分析】本题考查了垂径定理,勾股定理和中位线定理,由垂径定理得,,则可得是的中位线,设半径为,由勾股定理得,求出即可求解,熟练掌握知识点的应用是解题的关键.【详解】解:∵,AD AB =1252ACD ACB BCD ∠=∠=∠=︒25OC 904050COP ∠=︒-︒=︒OC PC O C 40P ∠=︒90OCP ∠=︒904050COP ∠=︒-︒=︒1252A COP ∠=∠=︒2572︒72ABC C ∠=∠=︒36CBD CAD ∠=∠=︒AB AC =36BAC ∠=︒180180367222BAC ABC C ︒-∠︒-︒∠=∠===︒BD ABC ∠36CBD ∠=︒36CBD CAD ∠=∠=︒72DAB DAC CAB ∠=∠+∠=︒72︒6142AD BD AB ===90ADO BDO ∠=∠=︒OD ABC r 222OA OD AD =+=5r OE AB ⊥∴,,∵,∴是的中位线,∴,即,设半径为,则,在中,由勾股定理得:,∴,解得,∴,∴.11.【分析】本题考查了切线的性质,圆周角定理,直角三角形的性质,熟练掌握圆周角定理是解题的关键.先根据圆的切线垂直于经过切点的半径得到,根据直角三角形两个锐角互余计算出,然后根据圆周角定理即可求解.【详解】解:∵是的直径,为的切线,∴,∴,∵,∴,∴.故答案为:.12;;平行(或);思考:【分析】发现:如图1,连接,作于,由题意知,,,当三点共线时,最小,为;当重合时,最大,由勾股定理求解即可;由题意知,则,进而求解作答即可; 思考:如图2,连接,作于,则,,由,可得,,根据,计算求解即可.【详解】发现:解:如图1,连接,作于,142AD BD AB ===90ADO BDO ∠=∠=︒OA OC =OD ABC 12OD BC =2BC OD =r 2OD OE DE r =-=-Rt AOD 222OA OD AD =+()22224r r =-+=5r 23OD r =-=26BC OD ==8090ABD Ð=°40A ∠=︒AB O BD O AB BD ⊥90ABD Ð=°50D ∠=︒40A ∠=︒280BOC A ∠=∠=︒80310 3πAO AE 、BP AF ⊥P 3OM =60DAF ∠=︒A M O 、、AM AO OM -M E 、AM 30BAP ∠=︒132BP AB OF ===OG OH AD ⊥H 30AEF ∠=︒1322OH OE ==OE OG =120EOG ∠=︒2GE EH =EOG EOG S S S =- 重叠扇形AO AE 、BP AF ⊥P由题意知,,,当三点共线时,最小,由勾股定理得,∴;当重合时,最大,由勾股定理得,,∴的最大值为;∵矩形,∴,∴,∴,又∵,∴,故答案为:平行(或);;;平行(或);思考:解:如图2,连接,作于,∵,∴,∴,∵,∴,∴3OM =60DAF ∠=︒A M O 、、AM AO ==AM 3-M E 、AM 10AE ==AM 10ABCD 90BAD ∠=︒30BAP ∠=︒132BP AB OF ===BP OF ∥OB l ∥ 310 OG OH AD ⊥H 60DAF EF AF ∠=︒⊥,30AEF ∠=︒1322OH OE ==OE OG =120EOG ∠=︒2GE EH ===EOG EOG S S S =- 重叠扇形212031336022π⋅=-⨯3π=∴重叠部分面积为【点睛】本题考查了勾股定理,含的直角三角形,平行线的判定,等腰三角形的判定与性质,扇形面积等知识.熟练掌握勾股定理,含的直角三角形,平行线的判定,等腰三角形的判定与性质,扇形面积是解题的关键.13.(1)证明见解析(2)【分析】本题考查切线的判定和性质,垂径定理,圆周角定理以及勾股定理,掌握切线的性质和判断方法,垂径定理,圆周角定理以及勾股定理是正确解答的关键.(1)根据切线的性质,平行线的判定和性质以及圆周角定理即可得出结论;(2)根据相似三角形的判定和性质以及垂径定理进行计算即可.【详解】(1)证明:是的切线,,于点,,,,,.(2)解:连结,于点,是的直径,,是的垂直平分线,,的半径为5,,,是的直径,,3π30︒30︒323DF =AM O 90BAM ∴∠=o CD AB ⊥ E 90CEA ∴∠= CD AF ∴∥∴∠=∠CDB AFB CDB CAB ∠=∠ ∴∠=∠CAB AFB AD CD AB ⊥ E AB O CE DE ∴=AB ∴CD 8AC AD ∴==O 10AB ∴=6BD =∴AB O 90BDA =∴∠,,,,.14.(1)、;(2);(3).【分析】本题是新定义阅读题,考查了理解能力,与圆的位置关系,勾股定理等知识,解决问题的关键是几何直观能力,数形结合.(1)根据定义验证可得结果;(2)根据最大值为6,所以以为圆心,3为半径画圆,根据勾股定理求得,进而求得结果;(3)以为圆心,1为半径作圆,直线与圆相切,此时,以为圆心,2为半径作圆,直线与圆相切,求得,进而求得结果.【详解】(1)解:如图1,,,,是的“倍弦线”,与不相交,,和不是的“倍弦线”,故答案为:、;(2)如图2,BAD AFB ∴∠=∠tan tan ∴∠=∠BAD AFB ∴=AD BD DF AD2AD DF BD ∴=⋅323∴=DF AB CD ≤≤E y 21b -≤≤+PQ O EF (2,0)y x b =+2b =-(1,0)-y x b =+I b 2AF FH BH === CG GF DF ===AB ∴CD O BC O 23AI AE DI BH ==BC ∴AD O AB CD以为圆心,3 为半径画圆交直线于和,,;(3)如图3,以为圆心,2为半径画圆,直线与相切,此时,以为圆心,1为半径作,直线与线切,此时15.(1)(2)(3)【分析】(1)先得出直线为,根据轴对称得出进而可得,勾股定理求得点与原点的距离,进而根据新定义即可求解;(2)依题意,当线段上存在一个点到原点的距离为时,则符合题意,进而分画出图形,即可求解;(3)根据题意,画出图形,就点的位置,分类讨论,根据新定义即可求解.【详解】(1)解:∵当时,直线为,即轴,∵∴∴∵, O 2x =E E'EFE y (1,0)O '-O '1y x b =+ 11b =(2,0)O ''O '' 2y x b =+O '' 22b =-21b ∴-≤≤+23Q Q ,2m ≤≤2m -≤≤-2l 0y =121,.2P P ''⎛⎛ ⎝⎝,11PP '=22P P '=1234,,,Q Q Q Q 02PP '≤≤AB 20,0m m ><P 0a =l 0y =x 121.2P P ⎛⎛ ⎝⎝,121,.2P P ''⎛⎛ ⎝⎝,11PP '=22P P '=()112Q ,232Q ⎫⎪⎪⎭,()(341,1Q Q --,∴,,∴点关于直线的“衍生点”是,点关于直线的“衍生点”是,故答案为:.(2)解:依题意,,由(2)可得当点是点关于直线的“衍生点”则,∵为 上任意一点, 直线 与轴, 轴的交点分别为点 ,.∴,∴当线段上存在一个点到原点的距离为时,当时,如图所示,当时,即与点重合时,存在点是点关于直线的“衍生点”,则则(除端点外)上所有的点到的距离都,∵对称轴为直线,不能为轴,则和不是点关于直线的“衍生点”,则符合题意,∵线段上存在点,,使得点是点关于直线的“衍生点”,点不是点关于直线的“衍生点”,∴,当,此时最短,则当时,,此时只有1个点到的距离为,其他的点都不是点关于直线的“衍生点”,∴根据对称性,当时,可得;综上所述,(3)∵时∴随着的变化,点关于直线的对称点始终在圆上,如图所示,依题意,直线是经过圆心,且经过的直线,经过圆心,1OQ =2OQ ==3OQ ==42OQ ==1P l 2Q 2P l 3Q 23Q Q ,02PP '≤≤S P l 2OS ≤P O y x m =+()0m ≠x y A B OA OB m ==AB 20m >2OS =S B S P l 2m =AB O 2<y ax =y ()0,2()2,0-P l 2m =AB S T S P l T P l m 2≥OS y x m '⊥=+OS '2OS '=m =O 2P l 2m ≤≤0m <2m -≤≤-2m ≤≤2m -≤≤-11a -≤≤a P l P 'l AB s①当点在(包括边界)上时,当重合时,当为直径时,则,根据新定义可得,∴,②当点在的内部的圆弧上时(不包括边界),当为直径时,则,则对于线段 上任意一点,都存在上的点和直线,使得点是点关于直线的“衍生点”.当在轴上时,两条边界线的正中间,则P AB ,P P 'PP '2OQ PP '==02PP '≤≤()2D s =P AD PP '2OQ PP '==MN R O P l R P l P y PP '即综上所述,【点睛】本题考查了一次函数,圆的定义,轴对称的性质,勾股定理求线段长,理解新定义,熟练掌握几何变换是解题的关键.16.(1)①,;②;(2)或.【分析】()根据新定义即可求解;找到关键点先求出此时的值,然后即可求解;()由可知,点在直线上,再根据新定义分四种情况画出图即可;本题考查了圆的切线,勾股定理和等边三角形的性质,熟练掌握知识点的应用是解题的关键.【详解】(1)如图,根据题意,直线与以为半径的相切,由图可知,等边三角形的“相关切点”是,故答案为:;根据题意,满足题意的点是以,半径为的弧上,如图,2PP OQ '≤=≤()2D s =()2D s =1P 2P 312b -≤21m ≤≤10m ≤1①②b 2().2M m m -2y x =-①OP MN M M 12P P 、12P P 、②P ()1,01若直线上存在等边三角形的“相关切点”,如图,由,是等腰直角三角形,,∴,∴,即,∵,∴,∴此时,∴的取值范围为;(2)如图,此时中,,,y x b =+M HIK OSK 1HI=KI =1OK OS ==b =3,2P ⎛ ⎝PL =32KL =OG =b =b b 312b -≤≤OEM △30EOM ∠=︒90OEM ∠=︒(),2M m m -此时,,解得:,如图,此时中,,,此时,,解得:(正值舍去),如图,4OM =()22224m m +-=1m =+OEM △30EOM∠=︒90OEM ∠=︒(),2M m m -4OM =()22224m m +-=1m =此时,,解得:或(舍去),如图,此时,,解得:(舍去)或,综上可知:.17.(1)①②;(2).【分析】(1)①根据“关联图形”的定义判断即可;②根据关联图形的定义,判断出点旋转后的轨迹, 从而得到的半径范围(2)根据关联图形的定义,求出点旋转后的轨迹,当与该轨迹有唯一交点时,取最小值;根据关联图形的定义,求出点旋转后的轨迹,当与该轨迹有唯一交点时,取最大值;2OM =()22222m m +-=2m =0m =2OM =()22222m m +-=2m =0m =21m ≤≤10m ≤B0r <<m m A O G O ' m E O ' m【详解】(1)①点绕逆时针旋转得到点,故答案为:;②设点,那么点绕点逆时针旋转得到点,作轴交轴于点,作轴交轴于点,如图所示由旋转可知,,,,坐标为在上运动设与轴的交点为,与轴交点为当,,当时,,,以点为圆心,作圆,当与有为唯一交点时,半径为斜边上的高当不是点的关联图形时,故答案为:.(2)设点绕点逆时针旋转对应点为点,过点作轴交轴于点,连接A (0,2)90B B (0,)T a A T 90 A 'AJ y ⊥y J A K y '⊥y K AT A T '=90ATA ∠='︒90AJT ∠=︒90TAJ ATJ ∴∠+∠=︒90ATJ A TK =︒'+ TAJ A TK'∴∠=ATJ A KT'∴ ≌(3,2)A - 2TJ a KA '∴=-=3AJ TK==3OK TO TK a ∴=-=-∴A '(2,3)a a --A '∴1y x =-1y x =-x M y N0x =1y =-0y =1x =(1,0)M ∴(0,1)N-MN ∴==O O 1y x =-OMNOM ON r MN ⋅∴===∴OA 0r <0r <<(3,0)E m -(0,)T a 90︒E 'E 'E S y '⊥y S,,如图所示由旋转可知,,,,点坐标为所以在上运动,与轴的夹角为设在轴的交点为,那么点坐标为当与有唯一交点时,最大与相切为等腰直角三角形且故;TE TE 'AE =TE T E '=90ETE ∠='︒90ETO E TO '∴∠+∠=︒90ETO TEO ∠+∠=︒0E T TEO'∴∠=∠90EOT E ST '∠=∠=︒ETO TE S'∴ ≌3EO TS m ∴==-TO E S a'==(3)3TS TO SO a m a m∴=-=--=+-E '∴(,3)a a m +-E '3y x m =+-1k = 3y x m ∴=+-x 45︒3y x m =+-x Q Q (3,0)m -3y x m =+-O ' R m 3y x m =+- O ' 90O RQ ∴='∠︒O RQ '∴ 1O R '=(3)23O Q m m m '∴=--=-=m ∴=m设点绕点逆时针旋转对应点为点,过点作轴交轴于点,过点作轴交连接,,如图所示同理可证,,的坐标是在上运动设与轴的交点为,当与该直线有唯一交点时,取最小值.同理可证为等腰直角三角形,且故【点睛】本题考查了线段的旋转,三角形全等的判定与性质,圆与直线的关系判断,圆的切线的性质与计算,一次函数, “关联图形”等知识点,熟练掌握以上知识点并根据画出正确的图形是解题的关键.18.(1)①;②(2)【分析】(1)①求出点P关于的对称点,利用点到圆心的距离与半径比较,即可判断“等距点”;②在上任取一点点P 关于点Q 的“等距点”M ,连接,取的中点即为点Q ,连接,取其中点,连接,根据中位线定理则判断出点Q 的在以为圆心,半径为1的上,即可求解;(2)过点O 作点Q 的对称点,则点为,则上所有的点关于点Q 的对称点都在以为圆心,半径为2的上,那么直线与有公共点即可,找到两个临界状态,即相切位置,分别求b 即可.(2,1)G m -(0,)T a 90 G 'G 'G P y '⊥y P G GQ y ⊥TG TG 'GTQ G TP ' ≌1TQ PG a '∴==-2GQ TP m==-(2)2PO TO TP a m a m ∴=-=--=+-G '∴(1,2)a a m -+-G '∴1y x m =+-1y x m =+-x (1,0)L m -O ' K m O KL ' O L K ''==112O L m m m '∴=--=-=m ∴=m 12,Q Q 13m ≤≤44b -≤≤+()()()12330,2,1,1,1Q Q Q -,O MP MP OP O 'QO '()2,0O 'O ' O 'O '()2,2O O '()2,2O ' y x b =-+O '【详解】(1)解:①如图,点P 关于的对称点分别为,则,,∴在上,∴点P 关于点Q 的“等距点”的是故答案为:;②在上任取一点点P 关于点Q 的“等距点”M ,连接,取的中点即为点Q ,连接,取其中点,连接,∴,∴点Q 的在以为圆心,半径为1的上,()()()12330,2,1,1,1Q Q Q -,()()()2,0,0,2,2,2--12d R ==22d R ==3d R==>()()2,0,0,2-O 12,Q Q 12,Q Q O MP MP OP O 'QO '112QO OM '==()2,0O 'O '∵与轴交于点,∴,故答案为:.(2)解:过点O 作点Q 的对称点,则点为,∴上所有的点关于点Q 的对称点都在以为圆心,半径为2的上,∵点P 在的图象上,∴当直线与相交即可,当直线与第一次相切时,设切点为点E ,直线与y 轴交点G ,当直线与第二次相切时,设切点为点F ,∵,∴∴,∵点,∴其点Q 与点O 的水平距离与铅锤距离均是1,∴,由相切得:,∴为等腰直角三角形,∴,同理可求当直线与第二次相切时,综上:【点睛】本题考查了新定义,中心对称,圆的定义,中位线定理,点与圆的位置关系,直线与圆的位置关系,勾股定理,熟练掌握知识点是解题的关键.O ' x ()()1,0,3,0-13m ≤≤13m ≤≤O 'O '()2,2O O '()2,2O ' y x b =-+y x b =-+O ' y x b =-+O ' y x b =-+O ' ()2,2O 'OO ¢=2OE OO O E ''=-=()1,1Q 45EOG ∠=︒GE OO '⊥ OGE 4OG b ==-=y x b =-+O ' 4b =+44b -≤≤+。
2016年北京市海淀区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)函数f(x)=的定义域是()A.[O,+∞)B.[1,+∞)C.(﹣∞,0]D.(﹣∞,1] 2.(5分)某程序的框图如图所示,若输入的z=i(其中i为虚数单位),则输出的S值为()A.﹣1B.1C.﹣i D.i3.(5分)若x,y满足,则z=x+y的最大值为()A.B.3C.D.44.(5分)某三棱锥的三视图如图所示,则其体积为()A .B.C .D .5.(5分)已知数列{a n}的前n项和为S n,则“{a n}为常数列”是“∀n∈N*,S n =na n”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)在极坐标系中,圆C1:ρ=2cosθ与圆C2:ρ=2sinθ相交于A,B两点,则|AB|=()A.1B.C .D.27.(5分)已知函数f(x )=是偶函数,则下列结论可能成立的是()A.a =,b =﹣B.a=,b =C.a =,b =D.a =,b =8.(5分)某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示,若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则下列叙述正确的是()A.甲只能承担第四项工作B.乙不能承担第二项工作C.丙可以不承担第三项工作D.丁可以承担第三项工作二、填空题共6小题,每小题5分,共30分.9.(5分)已知向量,若,则t=.10.(5分)在等比数列{a n}中,a2=2,且,则a1+a3的值为.11.(5分)在三个数2中,最小的数是.12.(5分)已知双曲线C:=1的一条渐近线l的倾斜角为,且C的一个焦点到l的距离为,则C的方程为.13.(5分)如图,在三角形三条边上的6个不同的圆内分别填入数字1,2,3 中的一个.(ⅰ)当每条边上的三个数字之和为4 时,不同的填法有种;(ⅱ)当同一条边上的三个数字都不同时,不同的填法有种.14.(5分)已知函数f(x),对于实数t,若存在a>0,b>0,满足:∀x∈[t﹣a,t+b],使得|f(x)﹣f(t)|≤2,则记a+b的最大值为H(t).(1)当f(x)=2x时,H(0)=;(2)当f(x)=x2且t∈[1,2]时,函数H(t)的值域为.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(13分)如图,在△ABC中,点D在边AB上,且=.记∠ACD=α,∠BCD=β.(Ⅰ)求证:=(Ⅱ)若α=,β=,AB=,求BC的长.16.(13分)2004 年世界卫生组织、联合国儿童基金会等机构将青蒿素作为一线抗疟药品推广.2015 年12 月10 日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖.目前,国内青蒿人工种植发展迅速.某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中分别种植了100 株青蒿进行对比试验.现在从山上和山下的试验田中各随机选取了4株青蒿作为样本,每株提取的青蒿素产量(单位:克)如表所示:(Ⅰ)根据样本数据,试估计山下试验田青蒿素的总产量; (Ⅱ)记山上与山下两块试验田单株青蒿素产量的方差分别为,,根据样本数据,试估计与的大小关系(只需写出结论);(Ⅲ)从样本中的山上与山下青蒿中各随机选取1 株,记这2 株的产量总和为ξ,求随机变量ξ的分布列和数学期望.17.(14分)如图,在四棱锥P ﹣ABCD 中,P A ⊥平面ABCD ,四边形ABCD 为正方形,点M 、N 分别为线段PB ,PC 上的点,MN ⊥PB . (Ⅰ)求证:BC ⊥平面P AB ;(Ⅱ)求证:当点M 不与点P ,B 重合时,M ,N ,D ,A 四个点在同一个平面内;(Ⅲ)当P A =AB =2,二面角C ﹣AN ﹣D 的大小为时,求PN 的长.18.(13分)已知函数f(x)=ln x+﹣1,g(x)=(Ⅰ)求函数f(x)的最小值;(Ⅱ)求函数g(x)的单调区间;(Ⅲ)求证:直线y=x不是曲线y=g(x)的切线.19.(14分)已知椭圆C:+=1(a>b>0)的离心率为,椭圆C与y轴交于A,B两点,且|AB|=2.(Ⅰ)求椭圆C的方程;(Ⅱ)设点P是椭圆C上的一个动点,且点P在y轴的右侧.直线P A,PB与直线x=4分别交于M,N两点.若以MN为直径的圆与x轴交于两点E,F,求点P横坐标的取值范围及|EF|的最大值.20.(13分)给定正整数n(n≥3),集合U n={1,2,…,n}.若存在集合A,B,C,同时满足下列条件:①U n=A∪B∪C,且A∩B=B∩C=A∩C=∅;②集合A中的元素都为奇数,集合B中的元素都为偶数,所有能被3 整除的数都在集合C中(集合C中还可以包含其它数);③集合A,B,C中各元素之和分别记为S A,S B,S C,有S A=S B=S C;则称集合U n为可分集合.(Ⅰ)已知U8为可分集合,写出相应的一组满足条件的集合A,B,C;(Ⅱ)证明:若n是3 的倍数,则U n不是可分集合;(Ⅲ)若U n为可分集合且n为奇数,求n的最小值.2016年北京市海淀区高考数学一模试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)函数f(x)=的定义域是()A.[O,+∞)B.[1,+∞)C.(﹣∞,0]D.(﹣∞,1]【解答】解:要使函数有意义,则需2x﹣1≥0,即为2x≥1,解得,x≥0,则定义域为[0,+∞).故选:A.2.(5分)某程序的框图如图所示,若输入的z=i(其中i为虚数单位),则输出的S值为()A.﹣1B.1C.﹣i D.i【解答】解:模拟执行程序,可得z=i,n=1不满足条件n>5,S=i1,n=2不满足条件n>5,S=i2,n=3不满足条件n>5,S=i3,n=4不满足条件n>5,S=i4,n=5不满足条件n>5,S=i5,n=6满足条件n>5,退出循环,输出S=i5=i.故选:D.3.(5分)若x,y满足,则z=x+y的最大值为()A.B.3C.D.4【解答】解:作出不等式组对应的平面区域如图由z=x+y得y=﹣x+y,平移y=﹣x+y,由图象知当直线y=﹣x+y经过点A直线的截距最大,此时z最大,由得,即A(1,3),则z=+3=,故选:C.4.(5分)某三棱锥的三视图如图所示,则其体积为()A.B.C.D.【解答】解:根据三视图可知几何体是一个三棱锥,底面是一个三角形:即俯视图:底是2、高是侧视图的底边,三棱锥的高是侧视图和正视图的高1,∴几何体的体积V==,故选:A.5.(5分)已知数列{a n}的前n项和为S n,则“{a n}为常数列”是“∀n∈N*,S n =na n”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:若{a n}为常数列,则d=0,则S n=na n成立,即充分性成立,若S n=na n,则当n≥2时,a n=S n﹣S n﹣1=na n﹣(n﹣1)a n﹣1,即(n﹣1)a n﹣1=(n﹣1)a n,则a n﹣1=a n,则{a n}为常数列,即必要性成立.故“{a n}为常数列”是“∀n∈N*,S n=na n”的充要条件,故选:C.6.(5分)在极坐标系中,圆C1:ρ=2cosθ与圆C2:ρ=2sinθ相交于A,B两点,则|AB|=()A.1B.C.D.2【解答】解:由ρ=2cosθ得,ρ2=2ρcosθ;∴x2+y2=2x;∴(x﹣1)2+y2=1;∴该圆表示以(1,0)为圆心,1为半径的圆;由ρ=2sinθ得,ρ2=2ρsinθ;∴x2+y2=2y;∴x2+(y﹣1)2=1;∴该圆表示以(0,1)为圆心,1为半径的圆;画出这两个圆的图形如图:△ABC2为Rt△,C2A=C2B=1;∴.故选:B.7.(5分)已知函数f(x)=是偶函数,则下列结论可能成立的是()A.a=,b=﹣B.a=,b=C.a=,b=D.a=,b=【解答】解:函数f(x)=是偶函数,x=0时,sin a=cos b,…①可得sin(x+a)=cos(﹣x+b)=sin(x+﹣b),…②,当a=,b=﹣,满足①,不满足②,A不成立.a=,b=,满足①,不满足②,B不正确.a=,b=,满足①,满足②,所以C正确.a=,b=,不满足①,所以不正确.故选:C.8.(5分)某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示,若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则下列叙述正确的是()A.甲只能承担第四项工作B.乙不能承担第二项工作C.丙可以不承担第三项工作D.丁可以承担第三项工作【解答】解:由表知道,五项工作后获得的效益值总和最大为17+23+14+11+15=80,但不能同时取得.要使总和最大,甲可以承担第一或四项工作,丙只能承担第三项工作,丁则不可以承担第三项工作,所以丁承担第五项工作;乙若承担第四项工作;戊承担第一项工作,此时效益值总和为17+23+14+11+13=78;乙若不承担第二项工作,承担第一项,甲承担第二项工作,则戊承担第四项工作,此时效益值总和为17+22+14+11+15=79,所以乙不承担第二项工作,故选:B.二、填空题共6小题,每小题5分,共30分.9.(5分)已知向量,若,则t=±3.【解答】解:∵向量,若,则9﹣t2=0,求得t=±3,故答案为:±3.10.(5分)在等比数列{a n}中,a2=2,且,则a1+a3的值为5.【解答】解:设等比数列{a n}的公比为q,∵a2=2,且,∴+=,解得q=2或.当q=2时,则a1+a3==5;当q=时,则a1+a3=+2×=5.故答案为:5.11.(5分)在三个数2中,最小的数是.【解答】解:=,log 32>=,∴三个数2中,最小的数是.故答案为:.12.(5分)已知双曲线C:=1的一条渐近线l的倾斜角为,且C的一个焦点到l的距离为,则C的方程为x2﹣=1.【解答】解:双曲线C:=1的一条渐近线l的方程为y=x,由题意可得=tan=,即b=a,由C的一个焦点到l的距离为,可得=b=,解得a=1,则双曲线的方程为x2﹣=1.故答案为:x2﹣=1.13.(5分)如图,在三角形三条边上的6个不同的圆内分别填入数字1,2,3 中的一个.(ⅰ)当每条边上的三个数字之和为4 时,不同的填法有4种;(ⅱ)当同一条边上的三个数字都不同时,不同的填法有6种.【解答】解:(i)当三个顶点都填1时,中间的只能填2,若其中一个填2,另外两个填1,由3种,故共有1+3=4种,(ⅱ)同一条边上的三个数字都不同时,有A33=6种,故答案为:4,6.14.(5分)已知函数f(x),对于实数t,若存在a>0,b>0,满足:∀x∈[t﹣a,t+b],使得|f(x)﹣f(t)|≤2,则记a+b的最大值为H(t).(1)当f(x)=2x时,H(0)=2;(2)当f(x)=x2且t∈[1,2]时,函数H(t)的值域为[﹣,2]∪[2,4].【解答】解:(1)根据题意,当f(x)=2x时,存在a>0,b>0,满足:∀x∈[﹣a,b],使得|f(x)﹣f(0)|≤2,即|f(x)|≤2,∴|2x|≤2,即|x|≤1,解得﹣1≤x≤1;令,解得a=b=1;∴a+b的最大值为H(0)=2;(2)根据题意,当f(x)=x2且t∈[1,2]时,不等式|f(x)﹣f(t)|≤2可化为|x2﹣t2|≤2,∴t2﹣2≤x2≤t2+2,即;又t∈[1,2],∴t2∈[1,4],∴t2+2∈[3,6];∴∈[,],t2﹣2∈[﹣1,2],∴∈[0,];解不等式组得﹣≤x≤2或2≤x≤4;∴函数H(t)的值域为[﹣,2]∪[2,4].故答案为:(1)2,(2)[﹣,2]∪[2,4].三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(13分)如图,在△ABC中,点D在边AB上,且=.记∠ACD=α,∠BCD=β.(Ⅰ)求证:=(Ⅱ)若α=,β=,AB=,求BC的长.【解答】解:(Ⅰ)在△ACD中,由正弦定理得:,在△BCD中,由正弦定理得:,∵∠ADC+∠BDC=π,∴sin∠ADC=sin∠BDC,∵,∴.(Ⅱ)∵,,∴,∠ACB =α+β=.设AC =2k ,BC =3k ,k >0,由余弦定理得:AB 2=AC 2+BC 2﹣2AC •BC •cos ∠ACB , 即,解得k =1,∴BC =3.16.(13分)2004 年世界卫生组织、联合国儿童基金会等机构将青蒿素作为一线抗疟药品推广.2015 年12 月10 日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖.目前,国内青蒿人工种植发展迅速.某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中分别种植了100 株青蒿进行对比试验.现在从山上和山下的试验田中各随机选取了4株青蒿作为样本,每株提取的青蒿素产量(单位:克)如表所示:(Ⅰ)根据样本数据,试估计山下试验田青蒿素的总产量; (Ⅱ)记山上与山下两块试验田单株青蒿素产量的方差分别为,,根据样本数据,试估计与的大小关系(只需写出结论);(Ⅲ)从样本中的山上与山下青蒿中各随机选取1 株,记这2 株的产量总和为ξ,求随机变量ξ的分布列和数学期望.【解答】解:(I )由山下试验田4株青蒿样本青蒿素产量数据, 得样本平均数…(2分)则山下试验田100株青蒿的青蒿素产量S 估算为g . …(3分)(Ⅱ)比较山上、山下单株青蒿素青蒿素产量方差和,结果为.…(6分)(Ⅲ)依题意,随机变量ξ可以取7.2,7.4,8,8.2,8.6,9.4,…(7分),,,,,,…(9分)随机变量ξ的分布列为:…(11分)随机变量ξ的期望.…(13分)17.(14分)如图,在四棱锥P﹣ABCD中,P A⊥平面ABCD,四边形ABCD为正方形,点M、N分别为线段PB,PC上的点,MN⊥PB.(Ⅰ)求证:BC⊥平面P AB;(Ⅱ)求证:当点M不与点P,B重合时,M,N,D,A四个点在同一个平面内;(Ⅲ)当P A=AB=2,二面角C﹣AN﹣D的大小为时,求PN的长.【解答】证明:(Ⅰ)在正方形ABCD中,AB⊥BC,…(1分)因为P A⊥平面ABCD,BC⊂平面ABCD,所以P A⊥BC.…(2分)因为AB∩P A=A,且AB,P A⊂平面P AB,所以BC⊥平面P AB…(4分)(Ⅱ)因为BC⊥平面P AB,PB⊂平面P AB,所以BC⊥PB…(5分)在△PBC中,BC⊥PB,MN⊥PB,所以MN∥BC.…(6分)在正方形ABCD中,AD∥BC,所以MN∥AD,…(7分)所以AM,AD可以确定一个平面,记为α所以M,N,D,A四个点在同一个平面α内…(8分)解:(Ⅲ)因为P A⊥平面ABCD,AB,AD⊂平面ABCD,所以P A⊥AB,P A⊥AD.又AB⊥AD,如图,以A为原点,AB,AD,AP所在直线为x,y,z轴,建立空间直角坐标系A﹣xyz,…(9分)所以C(2,2,0),D(0,2,0),B(2,0,0),P(0,0,2).设平面DAN的一个法向量为,平面CAN的一个法向量为,设,λ∈[0,1],因为,所以,又,所以,即,取z=1,得到,…(9分)因为,,所以,即,取a=1得,到,…(10分)因为二面C﹣AN﹣D大小为,所以,所以解得,所以…(12分)18.(13分)已知函数f(x)=ln x+﹣1,g(x)=(Ⅰ)求函数f(x)的最小值;(Ⅱ)求函数g(x)的单调区间;(Ⅲ)求证:直线y=x不是曲线y=g(x)的切线.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),,当x变化时,f'(x),f(x)的变化情况如下表:函数f(x)在(0,+∞)上的极小值为f(1)=ln1+1﹣1=0,所以f(x)的最小值为0;(Ⅱ)函数g(x)的定义域为(0,1)∪(1,+∞),,由(Ⅰ)得,f(x)≥0,所以g'(x)≥0,所以g(x)的单调增区间是(0,1),(1,+∞),无单调减区间;(Ⅲ)证明:假设直线y=x是曲线g(x)的切线.设切点为(x0,y0),则g'(x0)=1,即,又,则.所以,得g'(x0)=0,与g'(x0)=1矛盾,所以假设不成立,直线y=x不是曲线g(x)的切线19.(14分)已知椭圆C:+=1(a>b>0)的离心率为,椭圆C与y轴交于A,B两点,且|AB|=2.(Ⅰ)求椭圆C的方程;(Ⅱ)设点P是椭圆C上的一个动点,且点P在y轴的右侧.直线P A,PB与直线x=4分别交于M,N两点.若以MN为直径的圆与x轴交于两点E,F,求点P横坐标的取值范围及|EF|的最大值.【解答】解:(Ⅰ)由题意可得,2b=2,即b=1,,得,解得a2=4,椭圆C的标准方程为;(Ⅱ)方法一、设P(x0,y0)(0<x0≤2),A(0,﹣1),B(0,1),所以,直线P A的方程为,同理:直线PB的方程为,直线P A与直线x=4的交点为,直线PB与直线x=4的交点为,线段MN的中点,所以圆的方程为,令y=0,则,因为,所以,所以,设交点坐标(x1,0),(x2,0),可得x1=4+,x2=4﹣,因为这个圆与x轴相交,该方程有两个不同的实数解,所以,解得.则()所以当x0=2时,该圆被x轴截得的弦长为最大值为2.方法二:设P(x0,y0)(0<x0≤2),A(0,﹣1),B(0,1),所以,直线P A的方程为,同理:直线PB的方程为,直线P A与直线x=4的交点为,直线PB与直线x=4的交点为,若以MN为直径的圆与x轴相交,则,即,即.因为,所以,代入得到,解得.该圆的直径为,圆心到x轴的距离为,该圆在x轴上截得的弦长为;所以该圆被x轴截得的弦长为最大值为2.20.(13分)给定正整数n(n≥3),集合U n={1,2,…,n}.若存在集合A,B,C,同时满足下列条件:①U n=A∪B∪C,且A∩B=B∩C=A∩C=∅;②集合A中的元素都为奇数,集合B中的元素都为偶数,所有能被3 整除的数都在集合C中(集合C中还可以包含其它数);③集合A,B,C中各元素之和分别记为S A,S B,S C,有S A=S B=S C;则称集合U n为可分集合.(Ⅰ)已知U8为可分集合,写出相应的一组满足条件的集合A,B,C;(Ⅱ)证明:若n是3 的倍数,则U n不是可分集合;(Ⅲ)若U n为可分集合且n为奇数,求n的最小值.【解答】解:(I)依照题意,可以取A={5,7},B={4,8},C={1,2,3,6}.(II)假设存在n是3的倍数且U n是可分集合.设n=3k,则依照题意{3,6,…,3k}⊆C,故S C≥3+6+…+3k=,而这n个数的和为,故S C==,矛盾,所以n是3的倍数时,U n一定不是可分集合.(Ⅲ)n=35.因为所有元素和为,又S B 中元素是偶数,所以=3S B=6m(m为正整数),所以n(n+1)=12m,因为n,n+1为连续整数,故这两个数一个为奇数,另一个为偶数.由(Ⅱ)知道,n不是3的倍数,所以一定有n+1是3的倍数.当n为奇数时,n+1为偶数,而n(1+n)=12m,所以一定有n+1既是3的倍数,又是4的倍数,所以n+1=12k,所以n=12k﹣1,k∈N*.…(10分)定义集合D={1,5,7,11,…},即集合D由集合U n中所有不是3的倍数的奇数组成,定义集合E={2,4,8,10,…},即集合E由集合U n中所有不是3的倍数的偶数组成,根据集合A,B,C的性质知道,集合A⊆D,B⊆E,此时集合D,E中的元素之和都是24k2,而,此时U n中所有3的倍数的和为,24k2﹣(24k2﹣2k)=2k,(24k2﹣2k)﹣(24k2﹣6k)=4k显然必须从集合D,E中各取出一些元素,这些元素的和都是2k,所以从集合D={1,5,7,11,…}中必须取偶数个元素放到集合C中,所以2k ≥6,所以k≥3,此时n≥35而令集合A={7,11,13,17,19,23,25,29,31,35},集合B={8,10,14,16,20,22,26,28,32,34},集合C={3,6,9,12,15,18,21,24,27,30,33,1,5,2,4},检验可知,此时U35是可分集合,所以n的最小值为35.…(13分)第21页(共21页)。
2016年上海市各区县中考数学一模压轴题图文解析目录第一部分第24、25题图文解析2016年上海市崇明县中考数学一模第24、25题/ 22016年上海市奉贤区中考数学一模第24、25题/ 52016年上海市虹口区中考数学一模第24、25题/ 82016年上海市黄浦区中考数学一模第24、25题/ 112016年上海市嘉定区中考数学一模第24、25题/ 142016年上海市静安区青浦区中考数学一模第24、25题/ 172016年上海市闵行区中考数学一模第24、25题/ 202016年上海市浦东新区中考数学一模第24、25题/ 242016年上海市普陀区中考数学一模第24、25题/ 282016年上海市松江区中考数学一模第24、25题/ 312016年上海市徐汇区中考数学一模第24、25题/ 342016年上海市杨浦区中考数学一模第24、25题/ 382016年上海市闸北区中考数学一模第24、25题/ 412016年上海市长宁区金山区中考数学一模第24、25题/ 452016年上海市宝山区中考数学一模第25、26题/ 48如图1,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于点C,其中B(3, 0),C(0, 4),点A在x轴的负半轴上,OC=4OA.(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上的一个动点,过点P作PM//BC交射线AC于M,联结CP,若△CPM的面积为2,则请求出点P的坐标.图1动感体验请打开几何画板文件名“16崇明一模24”,拖动点P在x轴的正半轴上运动,可以体验到,有两个时刻,△CPM的面积为2.满分解答(1)由C(0, 4),OC=4OA,得OA=1,A(-1, 0).设抛物线的解析式为y=a(x+1)(x-3),代入点C(0, 4),得4=-3a.解得43a=-.所以244(1)(3)(23)33y x x x x=-+-=---2416(1)33x=--+.顶点坐标为16 (1)3,.(2)如图2,设P(m, 0),那么AP=m+1.所以S△CP A=12AP CO⋅=1(1)42m+⨯=2m+2.由PM//BC,得CM BPCA BA=.又因为CPMCPAS CMS CA=△△,所以S△CPM =(22)BPmBA+.①如图2,当点P在AB上时,BP=3-m.解方程3(22)4mm-+=2,得m=1.此时P(1, 0).②如图3,当点P在AB的延长线上时,BP=m-3.解方程3(22)4mm-+=2,得1m=±P(1+.图2 图3如图1,已知矩形ABCD 中,AB =6,BC =8,点E 是BC 边上一点(不与B 、C 重合),过点E 作EF ⊥AE 交AC 、CD 于点M 、F ,过点B 作BG ⊥AC ,垂足为G ,BG 交AE 于点H .(1)求证:△ABH ∽△ECM ; (2)设BE =x ,EHEM=y ,求y 关于x 的函数解析式,并写出定义域; (3)当△BHE 为等腰三角形时,求BE 的长.图1 备用图动感体验请打开几何画板文件名“16崇明一模25”,拖动点E 在BC 上运动,可以体验到,有三个时刻,△BHE 可以成为为等腰三角形.满分解答(1)如图2,因为∠1和∠2都是∠BAC 的余角,所以∠1=∠2. 又因为∠BAH 和∠CEM 都是∠AEB 的余角,所以∠BAH =∠CEM . 所以△ABH ∽△ECM .图2 图3(2)如图3,延长BG 交AD 于N .在Rt △ABC 中,AB =6,BC =8,所以AC =10. 在Rt △ABN 中,AB =6,所以AN =AB tan ∠1=34AB =92,BN =152. 如图2,由AD //BC ,得92AH AN EH BE x ==. 由△ABH ∽△ECM ,得68AH AB EM EC x ==-. 所以y =EHEM=AH AH EM EH ÷=6982x x ÷-=12729x x -. 定义域是0<x <8.(3)如图2,由AD//BC,得92NH ANBH BE x==.所以292BN xBH x+=.所以215292xBHx=⨯+=1529xx+.在△BHE中,BE=x,cos∠HBE=35,1529xBHx=+.分三种情况讨论等腰三角形BHE:①如图4,当BE=BH时,解方程1529xxx=+,得x=3.②如图5,当HB=HE时,1cos2BE BH B=⋅∠.解方程11532295xxx=⨯+,得92x=.③如图6,当EB=EH时,1cos2BH BE B=⋅∠.解方程11532295xxx⨯=+,得74x=.图4 图5 图6如图1,二次函数y=x2+bx+c的图像经过原点和点A(2, 0),直线AB与抛物线交于点B,且∠BAO=45°.(1)求二次函数的解析式及顶点C的坐标;(2)在直线AB上是否存在点D,使得△BCD为直角三角形,若存在,求出点D的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16奉贤一模24”,可以体验到,以BC为直径的圆恰好经过点A,直角三角形BCD存在两种情况.满分解答(1)因为抛物线y=x2+bx+c与x轴交于O、A(2, 0)两点,所以y=x(x-2)=(x-1)2-1.顶点C的坐标为(1,-1).(2)如图2,作BH⊥x轴于H.设B(x, x2-2x).由于∠BAH=45°,所以BH=AH.解方程x2-2x=2-x,得x=-1,或x=2.所以点B的坐标为(-1, 3).图2①∠BDC=90°.如图3,由A(2, 0)、C(1,-1),可得∠CAO=45°.因此∠BAC=90°.所以当点D与点A(2, 0)重合时,△BCD是直角三角形.②∠BCD=90°.由A(2, 0)、B(-1, 3),可得直线AB的解析式为y=-x+2.【解法一】如图4,过点C作BC的垂线与直线AB交于点D.设D(m,-m+2 ).由BD2=BC2+CD2,得(m+1)2+(-m-1)2=22+42+(m-1)2+(-m+3)2.解得73m=.此时点D的坐标为71(,)33-.【解法二】构造△BMC∽△CND,由BM CNMC ND=,得4123mm-=-+.解得73m=.图2 图3 图4如图1,在Rt △ABC 中,∠ACB =90°,AB =5,BC =3,点D 是斜边AB 上任意一点,联结DC ,过点C 作CE ⊥CD ,联结DE ,使得∠EDC =∠A ,联结BE .(1)求证:AC ·BE =BC ·AD ;(2)设AD =x ,四边形BDCE 的面积为S ,求S 与x 之间的函数关系式,并写出定义域;(3)当S △BDE =14S △ABC 时,求tan ∠BCE 的值.图1 备用图动感体验请打开几何画板文件名“16奉贤一模25”,拖动点E 在AD 边上运动,可以体验到,△ABC 与△DEC 保持相似,△ACD 与△BCE 保持相似,△BDE 是直角三角形.满分解答(1)如图2,在Rt △BAC 和Rt △EDC 中,由tan ∠A =tan ∠EDC ,得BC ECAC DC=. 如图3,已知∠ACB =∠DCE =90°,所以∠1=∠2. 所以△ACD ∽△BCE .所以AC BCAD BE=.因此AC ·BE =BC ·AD .图2 图3(2)在Rt △ABC 中,AB =5,BC =3,所以AC =4.所以S △ABC =6.如图3,由于△ABC 与△ADC 是同高三角形,所以S △ADC ∶S △ABC =AD ∶AB =x ∶5. 所以S △ADC =65x .所以S △BDC =665x -. 由△ADC ∽△BEC ,得S △ADC ∶S △BEC =AC 2∶BC 2=16∶9.所以S △BEC =916S △ADC =96165x ⨯=2740x . 所以S =S 四边形BDCE =S △BDC +S △BEC =6276540x x -+=21640x -+.定义域是0<x <5.(3)如图3,由△ACD ∽△BCE ,得AC BCAD BE=,∠A =∠CBE . 由43x BE =,得BE =34x . 由∠A =∠CBE ,∠A 与∠ABC 互余,得∠ABE =90°(如图4).所以S △BDE =1133(5)(5)2248BD BE x x x x ⋅=-⨯=--. 当S △BDE =14S △ABC =13642⨯=时,解方程33(5)82x x --=,得x =1,或x =4.图4 图5 图6作DH ⊥AC 于H .①如图5,当x =AD =1时,在Rt △ADH 中,DH =35AD =35,AH =45AD =45. 在Rt △CDH 中,CH =AC -AH =416455-=,所以tan ∠HCD =DHCH =316.②如图6,当x =AD =4时,在Rt △ADH 中,DH =35AD =125,AH =45AD =165.在Rt △CDH 中,CH =AC -AH =164455-=,所以tan ∠HCD =DHCH=3. 综合①、②,当S △BDE =14S △ABC 时, tan ∠BCE 的值为316或3.如图1,在平面直角坐标系中,抛物线y =ax 2+bx +3与x 轴分别交于点A (2, 0)、点B (点B 在点A 的右侧),与y 轴交于点C ,tan ∠CBA =12. (1)求该抛物线的表达式;(2)设该抛物线的顶点为D ,求四边形ACBD 的面积; (3)设抛物线上的点E 在第一象限,△BCE 是以BC 为一条直角边的直角三角形,请直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16虹口一模24”,可以体验到,以BC 为直角边的直角三角形BCE 有2个.满分解答(1)由y =ax 2+bx +3,得C (0, 3),OC =3. 由tan ∠CBA =OC OB =12,得OB =6,B (6, 0). 将A (2, 0)、B (6, 0)分别代入y =ax 2+bx +3,得4230,36630.a b a b ++=⎧⎨++=⎩解得14a =,b =-2.所以221123(4)144y x x x =-+=--. (2)如图2,顶点D 的坐标为(4,-1).S 四边形ACBD =S △ABC +S △ABD =1123+2122⨯⨯⨯⨯=4.(3)如图3,点E 的坐标为(10, 8)或(16, 35).思路如下:设E 21(,23)4x x x -+. 当∠CBE =90°时,过点E 作EF ⊥x 轴于F ,那么2EF BOBF CO==.所以EF =2BF . 解方程21232(4)4x x x -+=-,得x =10,或x =4.此时E (10, 8). 当∠BCE =90°时,EF =2CF . 解方程21224x x x -=,得x =16,或x =0.此时E (16, 35).图2 图3如图1,在平行四边形ABCD 中,E 为BC 的中点,F 为线段AE 上一点,联结BF 并延长交边AD 于点G ,过点G 作AE 的平行线,交射线DC 于点H .设AD EFx AB AF==. (1)当x =1时,求AG ∶AB 的值; (2)设GDHEBAS S △△=y ,求y 关于x 的函数关系式,并写出x 的取值范围; (3)当DH =3HC 时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16虹口一模25”,拖动点B 可以改变平行四边形的邻边比,可以体验到,当菱形ABCD 时,G 是AD 的中点,△GDH 与△EBA 保持相似.还可以体验到,DH =3HC 存在两种情况.满分解答(1)如图2,当x =1时,AD =AB ,F 是AE 的中点. 因为AD //CB ,所以AG =BE =12BC =12AD =12AB . 所以AG ∶AB =1∶2.(2)如图3,已知AD EF x AB AF ==,设AB =m ,那么AD =xm ,BE =12xm . 由AD //BC ,得BE EFx AG AF ==.所以12BE AG m x ==.所以DG =12xm m -.图2 图3 图4 如图4,延长AE 交DC 的延长线于M . 因为GH //AE ,所以△GDH ∽△ADM . 因为DM //AB ,所以△EBA ∽△ADM . 所以△GDH ∽△EBA .所以y =GDH EBA S S △△=2()DG BE =2211()()22xm m xm -÷=22(21)x x -. (3)如图5,因为GH //AM ,所以11()2122DH DG xm m m x HM GA ==-÷=-. 因为DM //AB ,E 是BC 的中点,所以MC =AB =DC . DH =3HC 存在两种情况:如图5,当H 在DC 上时,35DH HM =.解方程3215x -=,得45x =. 如图6,当H 在DC 的延长线上时,3DH HM =.解方程213x -=,得45x =.图5 图6如图1,在平面直角坐标系中,抛物线y =ax 2-3ax +c 与x 轴交于A (-1, 0)、B 两点(点A 在点B 左侧),与y 轴交于点C (0, 2).(1)求抛物线的对称轴及点B 的坐标; (2)求证:∠CAO =∠BCO ;(3)点D 是射线BC 上一点(不与B 、C 重合),联结OD ,过点B 作BE ⊥OD ,垂足为△BOD 外一点E ,若△BDE 与△ABC 相似,求点D 的坐标.图1动感体验请打开几何画板文件名“16黄浦一模24”,拖动点D 在射线BC 上运动,可以体验到,当点E 在△BOD 外时,有两个时刻,Rt △BDE 的两条直角边的比为1∶2.满分解答(1)由y =ax 2-3ax +c ,得抛物线的对称轴为直线32x =. 因此点A (-1, 0)关于直线32x =的对称点B 的坐标为(4, 0). (2)如图2,因为tan ∠CAO =2CO AO =,tan ∠BCO =2BOCO=,所以∠CAO =∠BCO .(3)由B (4, 0)、C (0, 2),得直线BC 的解析式为122y x =-+.设D 1(,2)2x x -+.以∠ABC (∠OBC )为分类标准,分两种情况讨论:①如图3,当∠OBC =∠DBE 时,由于∠OBC 与∠OCB 互余,∠DBE 与∠ODC 互余,所以∠OCB =∠ODC .此时OD =OC =2.根据OD 2=4,列方程221+(2)42x x -+=.解得x =0,或85x =.此时D 86(,)55. ②如图4,当∠OBC =∠EDB 时,OD =OB =4. 根据OD 2=16,列方程221+(2)162x x -+=.解得x =4,或125x =-.此时D 1216(,)55-.图2 图3 图4如图1,已知直线l1//l2,点A是l1上的点,B、C是l2上的点,AC⊥BC,∠ABC=60°,AB=4,O是AB的中点,D是CB的延长线上的点,将△DOC沿直线CO翻折,点D与点D′重合.(1)如图1,当点D落在直线l1上时,求DB的长;(2)延长DO交直线l1于点E,直线OD′分别交直线l1、l2于点M、N.①如图2,当点E在线段AM上时,设AE=x,DN=y,求y关于x的解析式及定义域;②若△DON AE的长.图1 图2动感体验请打开几何画板文件名“16黄浦一模25”,拖动点D在CB的延长线上运动,可以体验到,CD′与AB保持平行,△BON与△BDO保持相似.还可以体验到,有两个时刻DN=3.满分解答(1)如图3,在Rt△ABC中,∠ABC=60°,AB=4,O是AB的中点,所以△OBC是边长为2的等边三角形.又因为△DOC与△D′OC关于CO对称,所以∠BCD′=120°,CD′=CD.所以AB//D′C.当点D′ 落在直线l1上时,AD′//BC.所以四边形ABCD′是平行四边形.所以CD′=BA=4.此时BD=CD-CB=CD′-CB=4-2=2.图3(2)①如图4,由于AE//BD,O是AB的中点,所以AE=BD=x.因为AB//D′C,所以∠AOM=∠2.又因为∠AOM=∠BON,∠2=∠1,所以∠BON=∠1.又因为∠OBN=∠DBO,所以△BON∽△BDO.所以BO BDBN BO=.因此22xx y=+.于是得到24xyx-=.定义域是0<x≤2.②在△DON中,DN当S△DON DN=3.有两种情形:情形1,如图4,当D在BN上时,DN=24xyx-==3,解得x=1,或x=-4.此时AE=1.情形2,如图5,当D在BN的延长线上时,由BO BDBN BO=,得22xx y=-.于是得到24xyx-=.当DN=24xyx-==3时,解得x=4,或x=-1.此时AE=4.图4 图5如图1,在平面直角坐标系中,抛物线212y x bx c =++经过点A (4, 0)、点C (0,-4),点B 与点A 关于这条抛物线的对称轴对称.(1)用配方法求这条抛物线的顶点坐标; (2)联结AC 、BC ,求∠ACB 的正弦值;(3)点P 是这条抛物线上的一个动点,设点P 的横坐标为m (m >0),过点P 作y 轴的垂线PQ ,垂足为Q ,如果∠QPO =∠BCO ,求m 的值.图1动感体验请打开几何画板文件名“16嘉定一模24”,可以体验到,QO ∶QP =OB ∶OC .满分解答(1)将A (4, 0)、C (0,-4)分别代入212y x bx c =++,得840,4.b c c ++=⎧⎨=-⎩解得b =-1,c =-4.所以2142y x x =--=1(2)(4)2x x +-=219(1)22x --. 点B 的坐标是(-2, 0),顶点坐标是9(1,)2-.(2)由A (4, 0)、B (-2, 0)、C (0,-4),得AC =BC =AB =6,CO =4. 作BH ⊥AC 于H .由S △ABC =12AB CO ⋅=12AC BH ⋅.得AB CO BH AC ⋅==因此sin ∠ACB =BH BC .(3)点P 的坐标可以表示为21(,4)2m m m --. 由tan ∠QPO =tan ∠BCO ,得12QO OB QP OC ==. 所以QP =2QO .解方程212(4)2m m m =--,得m =图2所以点P 的横坐标m .如图1,已知△ABC 中,∠ABC =90°,tan ∠BAC =12.点D 在AC 边的延长线上,且DB 2=DC ·DA .(1)求DCCA的值; (2)如果点E 在线段BC 的延长线上,联结AE ,过点B 作AC 的垂线,交AC 于点F ,交AE 于点G .①如图2,当CE =3BC 时,求BFFG的值; ②如图3,当CE =BC 时,求BCDBEGS S △△的值.图1动感体验请打开几何画板文件名“16嘉定一模25”,拖动点E 运动,可以体验到,当CE =3BC 时,BD //AE ,BG 是直角三角形ABE 斜边上的中线.当CE =BC 时,△ABF ≌△BEH ,AF =2EH =4CF .满分解答(1)如图1,由DB 2=DC ·DA ,得DB DADC DB=. 又因为∠D 是公共角,所以△DBC ∽△DAB .所以DB BC CDDA AB BD==. 又因为tan ∠BAC =BC AB =12,所以12CD BD =,12BD DA =.所以14CD DA =.所以13DCCA=. (2)①如图4,由△DBC ∽△DAB ,得∠1=∠2. 当BF ⊥CA 时,∠1=∠3,所以∠2=∠3.因为13DC CA =,当CE =3BC 时,得DC BCCA CE =.所以BD //AE . 所以13BD EA =,∠2=∠E .所以∠3=∠E .所以GB =GE .于是可得G B 是Rt △ABE 斜边上的中线.所以23BD GA =.所以23BF BD FG GA ==.②如图5,作EH⊥BG,垂足为H.当CE=BC时,CF是△BEH的中位线,BF=FH.设CF=m.由tan∠1=tan∠3=12,得BF=2m,AF=4m.所以FH=2m,EH=2m,DC=1533CA m=.因此422FG AF mHG EH m===.所以2433FG FH m==.所以103BG m=.于是5121321102323BCDBEGm mDC BFSS BG EH m m⨯⋅===⋅⨯△△.图4 图5如图1,直线121+=x y 与x 轴、y 轴分别相交于点A 、B ,二次函数的图像与y 轴相交于点C ,与直线121+=x y 相交于点A 、D ,CD //x 轴,∠CDA =∠OCA . (1)求点C 的坐标;(2)求这个二次函数的解析式.图1动感体验请打开几何画板文件名“16静安青浦一模24”,可以体验到,△AOB 与△COA 相似.满分解答(1)由121+=x y ,得A (-2, 0),B (0, 1).所以OA =2,OB =1. 由于CD //x 轴,所以∠CDA =∠1.又已知∠CDA =∠OCA ,所以∠1=∠OCA . 由tan ∠1=tan ∠OCA ,得OB OAOA OC=. 所以122OC=. 解得OC =4.所以C (0, 4).(2)因为CD //x 轴,所以y D =y C =4. 图2 解方程1142x +=,得x =6.所以D (6, 4). 所以抛物线的对称轴为直线x =3.因此点A (-2, 0)关于直线x =3的对称点为(8, 0). 设抛物线的解析式为y =a (x +2)(x -8).代入点C (0, 4),得4=-16a . 解得14a =-.所以2113(2)(8)4442y x x x x =-+-=-++.如图1,在梯形ABCD 中,AD //BC ,AC =BC =10,cos ∠ACB =45,点E 在对角线AC 上,且CE =AD ,BE 的延长线与射线AD 、射线CD 分别相交于点F 、G .设AD =x ,△AEF 的面积为y .(1)求证:∠DCA =∠EBC ;(2)当点G 在线段CD 上时,求y 关于x 的函数解析式,并写出它的定义域; (3)如果△DFG 是直角三角形,求△AEF 的面积.图1动感体验请打开几何画板文件名“16静安青浦一模25”,拖动点D 运动,可以体验到,直角三角形DFG 存在两种情况.满分解答(1)如图2,因为AD //BC ,所以∠DAC =∠ECB .又因为AC =CB ,AD =CE ,所以△ADC ≌△CEB .所以∠DCA =∠EBC . (2)如图3,作EH ⊥BC 于H . 在Rt △EHC 中,CE =x ,cos ∠ECB =45,所以CH =45x ,EH =35x . 所以S △CEB =12BC EH ⋅=131025x ⨯⨯=3x . 因为AD //BC ,所以△AEF ∽△CEB .所以2()AEF CEB S AE S CE=△△. 所以22103(10)()3AEF x x y S x x x--==⨯=△.定义域是0<x≤5. 定义域中x=5的几何意义如图4,D 、F 重合,根据AD AECB CE=,列方程1010x xx-=.图2 图3 图4(3)①如图5,如果∠FGD=90°,那么在Rt△BCG和Rt△BEH中,tan∠GBC=335104504xGC HE xGB HB x x ===--.由(1)得∠ACD=∠CBE.由cos∠ACD=cos∠CBE,得GC GBCE BC=.所以10GC CE xGB BC==.因此350410x xx=-.解得x=5.此时S△AEF=23(10)15xyx-==.②如图6,如果∠FDG=90°,那么在Rt△ADC中,AD=AC cos∠CAD=4105⨯=8.此时S△AEF=23(10)32xyx-==.图5 图6例 2016年上海市闵行区中考一模第24题如图1,在平面直角坐标系中,二次函数y =x 2+bx +c 的图像与x 轴交于A 、B 两点,点B 的坐标为(3, 0),与y 轴交于点C (0,-3),点P 是直线BC 下方的抛物线上的任意一点.(1)求这个二次函数的解析式;(2)联结PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP ′C ,如果四边形POP ′C 为菱形,求点P 的坐标;(3)如果点P 在运动过程中,使得以P 、C 、B 为顶点的三角形与△AOC 相似,请求出此时点P 的坐标.图1动感体验请打开几何画板文件名“16闵行一模24”,拖动点P 在直线BC 下方的抛物线上运动,可以体验到,当四边形POP ′C 为菱形时,PP ′垂直平分OC .还可以体验到,当点P 与抛物线的顶点重合时,或者点P 落在以BC 为直径的圆上时,△PCB 是直角三角形.满分解答(1)将B (3, 0)、C (0,-3)分别代入y =x 2+bx +c ,得930,3.b c c ++=⎧⎨=-⎩.解得b =-2,c =-3.所以二次函数的解析式为y =x 2-2x -3.(2)如图2,如果四边形POP ′C 为菱形,那么PP ′垂直平分OC ,所以y P =32-.解方程23232x x --=-,得22x =.所以点P 的坐标为23()22-.图2 图3 图4(3)由y =x 2-2x -3=(x +1)(x -3)=(x -1)2-4,得A (-1, 0),顶点M (1,-4). 在Rt △AOC 中,OA ∶OC =1∶3.分两种情况讨论△PCB 与△AOC 相似:①如图3,作MN⊥y轴于N.由B(3, 0)、C(0,-3),M(1,-4),可得∠BOC=∠MCN=45°,所以∠BCM=90°.又因为CM∶CB=1∶3,所以当点P与点M(1,-4)重合时,△PCB∽△AOC.②如图4,当∠BPC=90°时,构造△AEP∽△PFB,那么CE PF EP FB=.设P(x, x2-2x-3),那么22(3)(23)3(23)x x xx x x-----=---.化简,得1(2)1xx--=+.解得x=.此时点P的横坐标为x=.而2(23)32CB NB x xxCP MP x x---===-++是个无理数,所以当∠BPC=90°时,△PCB与△AOC不相似.例 2016年上海市闵行区中考一模第25题如图1,在直角梯形ABCD 中,AB //CD ,∠ABC =90°,对角线AC 、BD 交于点G ,已知AB =BC =3,tan ∠BDC =12,点E 是射线BC 上任意一点,过点B 作BF ⊥DE ,垂足为F ,交射线AC 于点M ,交射线DC 于点H .(1)当点F 是线段BH 的中点时,求线段CH 的长;(2)当点E 在线段BC 上时(点E 不与B 、C 重合),设BE =x ,CM =y ,求y 关于x 的函数解析式,并指出x 的取值范围;(3)联结GF ,如果线段GF 与直角梯形ABCD 中的一条边(AD 除外)垂直时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16闵行一模25”,拖动点E 在射线BC 上运动,可以体验到,点G 是BD 的一个三等分点,CH 始终都有CE 的一半.还可以体验到,GF 可以与BC 垂直,也可以与DC 垂直.满分解答(1)在Rt △BCD 中,BC =3,tan ∠BDC =BC DC =12,所以DC =6,DB =.如图2,当点F 是线段BH 的中点时,DF 垂直平分BH ,所以DH =DB =.此时CH =DB -DC =6.图2 图3(2)如图3,因为∠CBH 与∠CDE 都是∠BHD 的余角,所以∠CBH =∠CDE . 由tan ∠CBH =tan ∠CDE ,得CH CE CB CD =,即336CH x-=. 又因为CH //AB ,所以CH MC AB MA =,即3CH =.因此36x -=.整理,得)3x y x -=+.x 的取值范围是0<x <3. (3)如图4,不论点E 在BC 上,还是在BC 的延长线上,都有12BG AB GD DC ==, 12CH CE =. ①如图5,如果GF ⊥BC 于P ,那么AB //GF //DH .所以13BP PF BG BC CH BD ===.所以BP =1,111(3)366PF CH CE x ===-. 由PF //DC ,得PF PE DC CE =,即12(3)(3)363x x x---=-. 整理,得242450x x -+=.解得21x =±21BE =- ②如图6,如果GF ⊥DC 于Q ,那么GF //BE . 所以23QF DQ DG CE DC DB ===.所以DQ =4,2(3)3QF x =-. 由QF //BC ,得QF QH BC CH =,即21(3)2(3)3213(3)2x x x ---=-. 整理,得223450x x --=.解得x =34BE +=.图4 图5 图6如图1,抛物线y =ax 2+2ax +c (a >0)与x 轴交于A (-3,0)、B 两点(A 在B 的左侧),与y 轴交于点C (0,-3),抛物线的顶点为M .(1)求a 、c 的值; (2)求tan ∠MAC 的值;(3)若点P 是线段AC 上的一个动点,联结OP .问:是否存在点P ,使得以点O 、C 、P 为顶点的三角形与△ABC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16浦东一模24”,拖动点P 在线段AC 上运动,可以体验到,△COP 与△ABC 相似存在两种情况.满分解答(1)将A (-3,0)、C (0,-3)分别代入y =ax 2+2ax +c ,得960,3.a a c c -+=⎧⎨=-⎩解得a =1,c =-3.(2)由y =x 2+2x -3=(x +1)2-4,得顶点M 的坐标为(-1,-4). 如图2,作MN ⊥y 轴于N .由A (-3,0)、C (0,-3)、M (-1,-4),可得OA =OC =3,NC =NM =1.所以∠ACO =∠MCN =45°,AC =MC . 所以∠ACM =90°.因此tan ∠MAC =MC AC=13. (3)由y =x 2+2x -3=(x +3)(x -1),得B (1, 0).所以AB =4.如图3,在△COP 与△ABC 中,∠OCP =∠BAC =45°,分两种情况讨论它们相似:当CP ABCO AC =时,3CP =CP =P 的坐标为(-2,-1).当CP AC CO AB =时,3CP =CP =.此时点P 的坐标为93(,)44--.图2 图3如图1,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与A 、D 不重合),∠EBM =45°,BE 交对角线AC 于点F ,BM 交对角线于点G ,交CD 于点M .(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DECG的值; (2)如图2,联结EG ,设AE =x ,EG =y ,求y 关于x 的函数解析式,并写出函数的定义域;(3)当M 为边DC 的三等分点时,求S △EGF 的面积.图1 图2动感体验请打开几何画板文件名“16浦东一模25”,拖动点E 在AD 边上运动,可以体验到, △EBD 与△GBC 保持相似,△EBG 保持等腰直角三角形.满分解答(1)如图3,因为∠EBM =∠DBC =45°,所以∠1=∠2. 又因为∠EDB =∠GCB =45°,所以△DEB ∽△CGB .因此DE DBCG CB==图3 图4(2)如图3,由△DEB ∽△CGB ,得EB DBGB CB=. 又因为∠EBM =∠DBC =45°,所以△EBG ∽△DBC (如图4). 所以△EBG 是等腰直角三角形.如图4,在Rt △ABE 中,AB =6,AE =x ,所以BE所以y =EG =2BE . 定义域是0<x <6.(3)如图5,由于S △EGB =12EG 2=2364x +,EGF EGB S EF S EB =△△, 所以2364EGFEF x S EB +=⨯△. 由(1)知,DE,所以 x =AE =AD -DE=6.①如图6,当13CM CD =时,13CG CM AG AB ==.所以1144CG CA ==⨯此时x =AE=6-=3.所以3162EF AE BF CB ===.所以13EF EB =.所以2364EGF EF x S EB +=⨯△=2133634+⨯=154. ②如图7,当23CM CD =时,23CG CM AG AB ==.所以2255CG CA ==⨯=此时x =AE=6-=65.所以61655EF AE BF CB ==÷=.所以16EF EB =.所以2364EGFEF x S EB +=⨯△=26()361564+⨯=3925.图5 图6 图7第(2)题也可以这样证明等腰直角三角形EBG : 如图8,作GH ⊥EB 于H ,那么△GBH 是等腰直角三角形.一方面2GB CB EB DB ==,另一方面cos 452HB GB =︒=,所以GB HBEB GB=. 于是可得△EBG ∽△GBH .所以△EBG 是等腰直角三角形. 如图9,第(2)题也可以构造Rt △EGN 来求斜边EG =y : 在Rt △AEN 中,AE =x ,所以AN =ENx . 又因为CG)x -,所以GN =AC -AN -CG=所以y=EG.如图10,第(2)题如果构造Rt△EGQ和Rt△CGP,也可以求斜边EG=y:由于CG)x-,所以CP=GP=1(6)2x-=132x-.所以GQ=PD=16(3)2x--=132x+,EQ=16(3)2x x---=132x-.所以y=EG.图8 图9 图10如图1,已知二次函数273y ax x c =-+的图像经过A (0, 8)、B (6, 2)、C (9, m )三点,延长AC 交x 轴于点D .(1)求这个二次函数的解析式及m 的值; (2)求∠ADO 的余切值;(3)过点B 的直线分别与y 轴的正半轴、x 轴、线段AD 交于点P (点A 的上方)、M 、Q ,使以点P 、A 、Q 为顶点的三角形与△MDQ 相似,求此时点P的坐标. 图1动感体验请打开几何画板文件名“16普陀一模24”,拖动点Q 在线段AD 上运动,可以体验到,△APQ 与△MDQ 相似只存在一种情况.满分解答(1)将A (0, 8)、B (6, 2)分别代入273y ax x c =-+,得8,3614 2.c a c =⎧⎨-+=⎩ 解得29a =,c =8.所以二次函数的解析式为227893y x x =-+. 所以227(9)818218593m f x x ==-+=-+=.(2)由A (0, 8)、C (9, 5),可得直线AC 的解析式为183y x =-+.所以D (24, 0).因此cot ∠ADO =OD OA =248=3.(3)如图2,如果△APQ 与△MDQ 相似,由于∠AQP =∠MQD ,∠P AQ 与∠DMQ 是钝角,因此只存在一种情况,△APQ ∽△MDQ .因此∠APQ =∠D .作BN ⊥y 轴于N ,那么∠BPN =∠D .因此cot ∠BPN =cot ∠D =3.所以PN =3BN =18.此时点P 的坐标为(0, 20).图2如图1,已知锐角∠MBN 的正切值等于3,△PBD 中,∠BDP =90°,点D 在∠MBN 的边BN 上,点P 在∠MBN 内,PD =3,BD =9.直线l 经过点P ,并绕点P 旋转,交射线BM 于点A ,交射线DN 于点C ,设CAx CP=. (1)求x =2时,点A 到BN 的距离;(2)设△ABC 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当△ABC 因l 的旋转成为等腰三角形时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16普陀一模25”,拖动点C 运动,可以体验到,AH 与BH 的比值=tan ∠B =3为定值,AH 与PD 的比值=CA ∶CP =x .满分解答(1)如图2,作AH ⊥BC 于H ,那么PD //AH . 因此2AH CAx PD CP===. 所以AH =2PD =6,即点A 到BN 的距离为6.图2 图3(2)如图3,由AH CAx PD CP ==,得AH =xPD =3x . 又因为tan ∠MBN =AHBH =3,所以BH =x .设BC =m .由CH CA x CD CP ==,得9m xx m -=-.整理,得81xm x =-.所以y =S △ABC =12BC AH ⋅=18321xx x ⨯⨯-=2121x x -. 定义域是0<x ≤9.x =9的几何意义是点C 与点H 重合,此时CA =27,CP =3.(3)在△ABC 中,BA ,cos ∠ABC BC =81x x -.①如图4,当BA =BC 81x x =-,得1x = ②如图5,当AB =AC 时,BC =2BH .解方程821xx x =-,得x =5.③如图6,当CA =CB 时,由cos ∠ABC ,得12AB =.解方程1821x x =-,得135x =.图4 图5 图6如图1,已知抛物线y =ax 2+bx -3与x 轴交于A 、B 两点,与y 轴交于点C ,O 是坐标原点,已知点B 的坐标是(3, 0),tan ∠OAC =3.(1)求该抛物线的函数表达式;(2)点P 在x 轴上方的抛物线上,且∠P AB =∠CAB ,求点P 的坐标;(3)点D 是y 轴上的一动点,若以D 、C 、B 为顶点的三角形与△ABC 相似,求出符合条件的点D 的坐标.图1动感体验请打开几何画板文件名“16松江一模24”,拖动点D 在y 轴正半轴上运动,可以体验到,△BCD 与△ABC 相似存在两种情况.满分解答(1)由y =ax 2+bx -3,得C (0,-3),OC =3. 由tan ∠OAC =3,得OA =1,A (-1, 0).因为抛物线与x 轴交于A (-1, 0)、B (3, 0)两点,设y =a (x +1)(x -3). 代入点C (0,-3),得a =1.所以y =(x +1)(x -3)=x 2-2x -3. (2)如图2,作PH ⊥x 轴于H .设P (x , (x +1)(x -3)). 由tan ∠P AB =tan ∠CAB ,得3PH CO AH AO ==.所以(1)(3)31x x x +-=+. 解得x =6.所以点P 的坐标为(6, 21).(3)由A (-1, 0)、B (3, 0)、C (0,-3),得BA =4,BC =ABC =∠BCO =45°. 当点D 在点C 上方时,∠ABC =∠BCD =45°.分两种情况讨论△BCD 与△ABC 相似: 如图3,当CD BACB BC=时,CD =BA =4.此时D (0, 1).如图4,当CD BCCB BA =4=92CD =.此时D 3(0,)2.图2 图3 图4已知等腰梯形ABCD 中,AD //BC ,∠B =∠BCD =45°,AD =3,BC =9,点P 是对角线AC 上的一个动点,且∠APE =∠B ,PE 分别交射线AD 和射线CD 于点E 和点G .(1)如图1,当点E 、D 重合时,求AP 的长;(2)如图2,当点E 在AD 的延长线上时,设AP =x ,DE =y ,求y 关于x 的函数解析式,并写出它的定义域;(3)当线段DG 时,求AE 的长.图1 图2动感体验请打开几何画板文件名“16松江一模25”,拖动点P 在AC 上运动,可以体验到,DGDE 也存在两种情况.满分解答(1)如图3,作AM ⊥BC ,DN ⊥BC ,垂足分别为M 、N ,那么MN =AD =3.在Rt △ABM 中,BM =3,∠B =45°,所以AM =3,AB =在Rt △AMC 中,AM =3,MC =6,所以CA = 如图4,由AD //BC ,得∠1=∠2.又因为∠APE =∠B ,当E 、D 重合时,△APD ∽△CBA .所以AP CBAD CA =.因此3AP =AP =5. (2)如图5,设(1)中E 、D 重合时点P 的对应点为F . 因为∠AFD =∠APE =45°,所以FD //PE .所以AF AD AP AE =33y=+.因此33y x =-.定义域是5<x ≤.图3 图4 图5(3)如图6,因为CA =AF =,所以FC =.由DF //PE ,得13FP DG FC DC ===.所以FP =.由DF //PE ,9552AD AF DE FP ==÷=.所以2293DE AD ==. ①如图6,当P 在AF 的延长线上时,233AE AD DE =+=. ②如图7,当P 在AF 上时,123AE AD DE =-=.图6 图7例 2016年上海市徐汇区中考一模第24题如图1,在Rt △AOB 中,∠AOB =90°,已知点A (-1,-1),点B 在第二象限,OB=抛物线235y x bx c =++经过点A 和B . (1)求点B 的坐标; (2)求抛物线235y x bx c =++的对称轴; (3)如果该抛物线的对称轴分别和边AO 、BO 的延长线交于点C 、D ,设点E 在直线AB 上,当△BOE 和△BCD 相似时,直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16徐汇一模24”,拖动点E 在射线BA 上运动,可以体验到,△BOE 和△BCD 相似存在两种情况.满分解答(1)由A (-1,-1),得OA 与x 轴负半轴的夹角为45°.又因为∠AOB =90°,所以OB 与x 轴负半轴的夹角也为45°. 当OB=B 到x 轴、y 轴的距离都为2. 所以点B 的坐标为(-2,2).(2)将A (-1,-1)、B (-2,2)分别代入235y x bx c =++,得31,5122 2.5b c b c ⎧-+=-⎪⎪⎨⎪-+=⎪⎩解得65b =-,145c =-.所以23614555y x x =--.抛物线的对称轴是直线x =1.(3)如图2,由A (-1,-1)、B (-2,2)、C (1, 1)、D (1,-1),以及∠AOB =90°,可得BO 垂直平分AC ,BO=,BA =BCBD=如图3,过点A 、E 作y 轴的平行线,过点B 作y 轴的垂线,构造Rt △ABM 和Rt △EBN ,那么BA BM MA BE BN NE==. 设点E 的坐标为(x , y )1322x y==+-.图2 图3当点E 在射线BA 上时,∠EBO =∠DBC .分两种情况讨论相似:①当BE BCBO BD ==BE =1322x y==+-.解得x =43-,y =0.所以E 4(,0)3-(如图4).②当BE BDBO BC ==BE =1322x y==+-.解得x =45-,y =85-.所以E 48(,)55--(如图5).图4 图5例 2016年上海市徐汇区中考一模第25题如图1,四边形ABCD 中,∠C =60°,AB =AD =5,CB =CD =8,点P 、Q 分别是边AD 、BC 上的动点,AQ 与BP 交于点E ,且∠BEQ =90°-12∠BAD .设A 、P 两点间的距离为x .(1)求∠BEQ 的正切值; (2)设AEPE=y ,求y 关于x 的函数解析式及定义域; (3)当△AEP 是等腰三角形时,求B 、Q 两点间的距离.图1动感体验请打开几何画板文件名“16徐汇一模25”,拖动点P 在AD 边上运动,可以体验到, ∠AEP =∠BEQ =∠ABH =∠ADH ,△ABF ∽△BEF ∽△BDP ,△AEP ∽△ADF .满分解答(1)如图2,联结BD 、AC 交于点H .因为AB =AD ,CB =CD ,所以A 、C 在BD 的垂直平分线上. 所以AC 垂直平分BD .因此∠BAH =12∠BAD . 因为∠BEQ =90°-12∠BAD , 所以∠BEQ =90°-∠BAH =∠ABH .在Rt △ABH 中,AB =5,BH =4,所以AH =3. 所以tan ∠BEQ =tan ∠ABH =34. 图2 (2)如图3,由于∠BEQ =∠ABH ,∠BEQ =∠AEP ,∠ABH =∠ADH , 所以∠AEP =∠BEQ =∠ABH =∠ADH .图3 图4 图5如图3,因为∠BF A 是公共角,所以△BEF ∽△ABF . 如图4,因为∠DBP 是公共角,所以△BEF ∽△BDP .所以△ABF ∽△BDP .所以AB BD BF DP =.因此585BF x=-. 所以5(5)8BF x =-.所以518(5)(539)88FD BD BF x x =-=--=+.如图5,因为∠DAF 是公共角,所以△AEP ∽△ADF . 所以5401539(539)8AE AD y PE FD x x ====++.定义域是0≤x ≤5. (3)分三种情况讨论等腰△AEP :①当EP =EA 时,由于△AEP ∽△ADF ,所以DF =DA =5(如图6). 此时BF =3,HF =1. 作QM ⊥BD 于M .在Rt △BMQ 中,∠QBM =60°,设BQ =m ,那么12BM m =,QM =. 在Rt △FMQ 中,132FM m =-,tan ∠MFQ =tan ∠HF A =3,所以QM =3FM .13(3)2m =-,得BQ =m=9- ②如图7,当AE =AP 时,E 与B 重合,P 与D 重合,此时Q 与B 重合,BQ =0. ③不存在PE =P A 的情况,因为∠P AE >∠P AH >∠AEP .图6 图7如图1,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于A 、B 两点,与y轴交于点C ,直线y =x +4经过A 、C 两点.(1)求抛物线的表达式;(2)如果点P 、Q 在抛物线上(点P 在对称轴左边),且PQ //AO ,PQ =2AO ,求点P 、Q 的坐标;(3)动点M 在直线y =x +4上,且△ABC 与△COM相似,求点M 的坐标. 图1动感体验请打开几何画板文件名“16杨浦一模24”,拖动点M 在射线CA 上运动,可以体验到,△ABC 与△COM 相似存在两种情况.满分解答(1)由y =x +4,得A (-4, 0),C (0, 4). 将A (-4, 0)、C (0, 4)分别代入212y x bx c =-++,得840,4.b c c --+=⎧⎨=⎩ 解得b =-1,c =4.所以抛物线的表达式为2142y x x =--+. (2)如图2,因为PQ //AO ,所以P 、Q 关于抛物线的对称轴对称. 因为抛物线的对称轴是直线x =-1,PQ =2AO =8,所以x P =-5,x Q =3.当x =3时,2142y x x =--+=72-.所以P 7(5,)2--,Q 7(3,)2-. (3)由2114(4)(2)22y x x x x =--+=-+-,得B (2, 0).由A (-4, 0)、B (2, 0)、C (0, 4),得AB =6,AC =,CO =4.当点M 在射线CA 上时,由于∠MCO =∠BAC =45°,所以分两种情况讨论相似:①当CM ABCO AC =时,4CM =CM =M (-3, 1)(如图3).②当CM AC CO AB =时,46CM =CM =M 84(,)33-(如图4).图2 图3 图4如图1,已知菱形ABCD的边长为5,对角线AC的长为6,点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图,并求BM的长;(3)当点M在AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.图1 备用图动感体验请打开几何画板文件名“16杨浦一模25”,拖动点E在AB上慢慢运动,可以体验到,∠1=∠2=∠3,△MCE与△MBC保持相似.满分解答(1)如图2,作AN⊥BC于N,联结BD交AC于O,那么BO垂直平分AC.在Rt△ABO中,AB=5,AO=3,所以BO=4.因为S菱形ABCD=12AC BD⋅=BC AN⋅,所以64=5AN⨯⨯.解得AN=245.在Rt△ABN中,AB=5,AN=245,所以BN=75.因此cos∠B=BNAB=725.(2)如图3,当点E与点A重合时,由于∠ECF=∠B,∠FEC=∠1,所以△ECF∽△ABC.所以EF ACEC AB=,即665EF=.解得365EF=.由BC//AF,得AM AFBM BC=,即53625BMBM+=.解得12511BM=.图2 图3(3)如图4,因为∠ECF =∠ABC ,根据等角的邻补角相等,得∠MCE =∠MBC . 如图5,因为∠M 是公共角,所以△MCE ∽△MBC . 所以MC MBME MC=.因此22()MC MB ME y x y xy y =⋅=+=+. 作MH ⊥BC ,垂足为H .在Rt △MBH 中,MB =y ,cos ∠MBH =725,所以BH =725y ,MH =2425y .在Rt △MCH 中,根据勾股定理,得MC 2=MH 2+CH 2.因此222247()(5)2525xy y y y +=++. 整理,得125514y x =-.定义域是145<x ≤5.定义域中x =145的几何意义如图6所示,此时D 、F 重合,AB //CF .由CF =CE ,CF =CB ,得CE =CB . 所以1cos 2BE BC B =⋅.解得BE =72525⨯⨯=145.图4 图5 图6例 2016年上海市闸北区中考一模第24题如图1,在平面直角坐标系中,已知抛物线与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0, 2),对称轴为直线x =1,对称轴交x 轴于点E .(1)求该抛物线的表达式,并写出顶点D 的坐标;(2)设点F 在抛物线上,如果四边形AEFD 是梯形,求点F 的坐标;(3)联结BD ,设点P 在线段BD 上,若△EBP 与△ABD 相似,求点P 的坐标.图1动感体验请打开几何画板文件名“16闸北一模24”,梯形AEFD 只存在一种情况.拖动点P 在BD 边上运动,可以体验到,△EBP 与△ABD 相似存在两种情况.满分解答(1)点A (-1,0)关于直线x =1的对称点B 的坐标为(3, 0).设抛物线的解析式为y =a (x +1)(x -3),代入点C (0, 2),得2=-3a . 解得23a =-.所以2222428(1)(3)2(1)33333y x x x x x =-+-=-++=--+. 顶点D 的坐标为8(1,)3. (2)过△ADE 的三个顶点分别画对边的平行线,只有经过点E 的直线与抛物线有另外的交点,在第一象限内的交点就是梯形AEFD 的顶点F .设F 224(,2)33x x x -++. 作FH ⊥x 轴于H ,那么∠FEH =∠DAE . 由tan ∠FEH =tan ∠DAE ,得43FH DE EH AE ==.所以43FH EH =.解方程22442(1)333x x x -++=-,得x =F .图2 图3 图4。
2024北京东城高三一模数 学2024.4本试卷共6页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.如图所示,U 是全集,,A B 是U 的子集,则阴影部分所表示的集合是( )A .AB B .A BC .()UA B D .()UA B2.已知,,0a b ab ∈≠R ,且a b <,则( ) A .11a b> B .2ab b < C .33a b < D .lg lg a b < 3.已知双曲线221x my −=的离心率为2,则m =( ) A .3B .13 C .3− D .13− 4.设函数()11ln f x x=+,则( ) A .()12f x f x ⎛⎫+= ⎪⎝⎭ B .()12f x f x ⎛⎫−=⎪⎝⎭C .()12f x f x ⎛⎫=⎪⎝⎭ D .()12f x f x ⎛⎫= ⎪⎝⎭5.已知函数()sin cos (0,0)f x t x x t ωωω=+>>的最小正周期为π,最大值为,则函数()f x 的图象( )A .关于直线4x π=−对称B .关于点,04π⎛⎫−⎪⎝⎭对称C .关于直线8x π=对称D .关于点,08π⎛⎫⎪⎝⎭对称 6.已知443243210()x m a x a x a x a x a +=++++,若0123481a a a a a ++++=,则m 的取值可以为( ) A .2B .1C .1−D .2−7.《天工开物》是我国明代科学家宋应星所著的一部综合性科学技术著作,书中记载了一种制造瓦片的方法.某校高一年级计划实践这种方法,为同学们准备了制瓦用的粘土和圆柱形的木质圆桶,圆桶底面外圆的直径为20cm ,高为20cm .首先,在圆桶的外侧面均匀包上一层厚度为2cm 的粘土,然后,沿圆桶母线方向将粘土层分割成四等份(如图),等粘土干后,即可得到大小相同的四片瓦.每位同学制作四片瓦,全年级共500人,需要准备的粘土量(不计损耗)与下列哪个数字最接近.(参考数据: 3.14π≈)( )A .30.8mB .31.4mC .31.8mD .32.2m8.设等差数列{}n a 的公差为d ,则“10a d <<”是“n a n ⎧⎫⎨⎬⎩⎭为递增数列”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.如图1,正三角形ABD 与以BD 为直径的半圆拼在一起,C 是BD 的中点,O 为ABD △的中心.现将ABD △沿BD 翻折为1A BD △,记1A BD △的中心为1O ,如图2.设直线1CO 与平面BCD 所成的角为θ,则sin θ的最大值为( )A .13 B .12 C D 10.已知()f x 是定义在R 上的函数,其图像是一条连续不断的曲线,设函数()()()()a f x f a g x a x a−=∈−R ,下列说法正确的是( )A .若()f x 在R 上单调递增,则存在实数a ,使得()a g x 在(),a +∞上单调递增B .对于任意实数a ,若()a g x 在(),a +∞上单调递增,则()f x 在R 上单调递增C .对于任意实数a ,若存在实数10M >,使得()1f x M <,则存在实数20M >,使得()2a g x M <D .若函数()a g x 满足:当(),x a ∈+∞时,()0a g x ≥,当(),x a ∈−∞时,()0a g x ≤,则()f a 为()f x 的最小值第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分。
市东城区2015-2016学年度第二学期高三综合练习(一)数学 (理科)学校_____________班级_____________________________考号___________本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知复数(1+)i a i ⋅为纯虚数,那么实数a 的值为(A )1- (B )0 (C ) 1 (D )2(2)集合2{},{50}A x x a B x x x =≤=-< | | ,若AB B =,则a 的取值围是(A )5a ≥ (B ) 4a ≥ (C ) 5a < (D )4a < (3)某单位共有职工150名,其中高级职称45人, 中级职称90人,初级职称15人.现采用分层 抽样方法从中抽取容量为30的样本,则各职称 人数分别为(A )9,18,3 (B ) 10,15,5 (C )10,17,3 (D )9,16,5 (4)执行如图所示的程序框图,输出的S 值为 (A )21(B )1 (C ) 2 (D )4(5)在极坐标系中,直线1cos sin =-θρθρ被曲线1=ρ截得的线段长为 (A )21 (B )1 (C )22 (D何体的最长棱长为 (A )2 (B)(C )3 (D(7)已知三点P (5,2)、1F (-6,0)、2F (6,0)那么以1F 、2F 为焦点且过点 P 的椭圆的短轴长为 (A )3(B )6(C )9(D )12(8)已知12e ,e 为平面上的单位向量,1e 与2e 的起点均为坐标原点O ,1e 与2e 夹角为3π. 平面区域D 由所有满足OP λμ=+12e e 的点P 组成,其中1,0,0λμλμ+≤⎧⎪≤⎨⎪≤⎩,那么平面区域D 的面积为(A )12(B(C)2 (D)4第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。
东城区2010-2011学年度综合练习(一)高三数学 (理科)学校_____________班级_______________姓名______________考号___________ 本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)“2x >”是“24x >”的(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既不充分也不必要条件(2)已知数列{}n a 为等差数列,且12a =,2313a a +=,那么则456a a a ++等于(A )40 (B )42 (C )43 (D )45(3)已知函数()f x 对任意的x ∈R 有()()0f x f x +-=,且当0x >时,()ln(1)f x x =+,则函数()f x 的大致图像为(C ) (D ) (4)已知平面上不重合的四点P ,A ,B ,C 满足0PA PB PC ++= ,且AB AC mAP +=,那么实数m 的值为(A )2 (B )3(C )4 (D )5(5)若右边的程序框图输出的S 是126,则条件①可为 A .5n ≤ B .6n ≤ C .7n ≤ D .8n ≤(6)已知(,)2απ∈π,1tan()47απ+=,那么ααcos sin +的值为 (A )51- (B )57(C )57-(D )43 (7)已知函数31)21()(x x f x-=,那么在下列区间中含有函数)(x f 零点的是(A ))31,0( (B ))21,31( (C ))32,21( (D ))1,32((8)空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面α,β,γ两两互相垂直,点A ∈α,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离是到P 到点A 距离的2倍,则点P 的轨迹上的点到γ的距离的最小值是(A ) 33- (B )323- (C )36- (D )340 50 60 70 80 90 体重(kg) 频率A第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。
2016年广州市一模试题及答案(文科数学) 2016年广州市普通高中毕业班综合测试(一)文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一。
选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合$A=\{x|-1\leq x\leq 1\}$,$B=\{x|x(x-2)\leq 0\}$,则$A\cap B=$A) $\{-1,0,1\}$ (B) $\{-1,0,1,2\}$ (C) $\{1,2\}$ (D)$\{x|x\leq 0\text{或}1\leq x\leq 2\}$2.已知复数$z=\dfrac{3+i}{1+i}$,其中$i$为虚数单位,则复数$z$所对应的点在A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限3.已知函数$f(x)=\begin{cases}x^2-x。
& x\leq 1\\ 1.&x>1\end{cases}$,则$f(-2)=$A) $1$ (B) $-1$ (C) $-2$ (D) $-5$4.设$P$是$\triangle ABC$所在平面内的一点,且$CP=2PA$,则$\triangle PAB$与$\triangle PBC$的面积之比是A) $1:1$ (B) $1:2$ (C) $2:1$ (D) $2:3$5.如果函数$f(x)=\cos\left(\dfrac{\omegax+\pi}{64}\right)$在$[0,2\pi]$上有两个相邻的零点,且它们之间的距离为$\dfrac{1}{4}$,则$\omega$的值为A) $3$ (B) $6$ (C) $12$ (D) $24$6.执行如图所示的程序框图,如果输入$x=3$,则输出$k$的值为图略)A) $6$ (B) $8$ (C) $10$ (D) $12$7.在平面区域$\{(x,y)|-1\leq x\leq 1.1\leq y\leq 2\}$内随机投入一点$P$,则点$P$的坐标$(x,y)$满足$y\leq 2x$的概率为A) $\dfrac{1}{6}$ (B) $\dfrac{1}{3}$ (C)$\dfrac{1}{2}$ (D) $\dfrac{2}{3}$8.已知$f(x)=\sin\left(x+\dfrac{3\pi}{5}\right)$,若$\sin\alpha=\dfrac{\sqrt{2}}{2}$,且$\dfrac{\pi}{2}<\alpha<\pi$,则$f(\alpha+\pi)=\underline{\hspace{1cm}}$A) $-\dfrac{\sqrt{2}}{2}$ (B) $-\dfrac{1}{2}$ (C) $-\dfrac{\sqrt{10}}{10}$ (D) $\dfrac{\sqrt{10}}{10}$二。
2016年辽宁省沈阳市高考数学一模试卷(理科)一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i为虚数单位,则复数所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.设全集U=R,集合A={x|y=lgx},B={﹣1,1},则下列结论正确的是()A.A∩B={﹣1} B.(C R A)∪B=(﹣∞,0)C.A∪B=(0,+∞)D.(C R A)∩B={﹣1} 3.下列函数中,在其定义域内是增函数而且又是奇函数的是()A.y=2x B.y=2|x |C. y=2x﹣2﹣x D.y=2x+2﹣x4.已知两个非零向量,满足•(﹣)=0,且2||=||,则<,>=()A.30°B.60°C.120°D.150°5.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完全相同时,它的俯视图可能是()A.B.C.D.6.设等差数列{a n}满足a2=7,a4=3,S n是数列{a n}的前n项和,则使得S n>0最大的自然数n是()A.9 B.10 C.11 D.127.某函数部分图象如图所示,它的函数解析式可能是()A.B.C.D.8.阅读如图所示的程序框图,运行相应的程序,则输出的结果是()A.﹣B.0 C.D.9.实数x,y满足,则z=|x﹣y|的最大值是()A.2 B.4 C.6 D.810.已知P是双曲线﹣y2=1上任意一点,过点P分别作曲线的两条渐近线的垂线,垂足分别为A、B,则•的值是()A.﹣B.C.﹣D.不能确定11.将3本相同的小说,2本相同的诗集全部分给4名同学,每名同学至少1本,则不同的分法有()A.24种B.28种C.32种D.36种12.已知函数y=x2的图象在点(x0,x02)处的切线为l,若l也与函数y=lnx,x∈(0,1)的图象相切,则x0必满足()A.0<x<B.<x0<1 C.<x0<D.<x0二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.已知sinα﹣cosα=﹣,则sin2α= .14.已知抛物线x2=4y的集点为F,准线为l,P为抛物线上一点,过P作PA⊥l于点A,当∠AFO=30°(O 为坐标原点)时,|PF|= .15.设数列{a n}的前n项和为S n,且a1=1,a n+1=2S n+3,则S4= .16.已知函数,若方程f(x)=ax+1恰有一个解时,则实数a的取值范围.三.解答题:(本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.在△ABC中,角A、B、C对应的边分别是a、b、c,C=,且sinB=2sinA•cos(A+B).(1)证明:b2=2a2;(2)若△ABC的面积是1,求边c.18.已知长方体AC1中,AD=AB=2,AA1=1,E为D1C1的中点,如图所示.(Ⅰ)在所给图中画出平面ABD1与平面B1EC的交线(不必说明理由);(Ⅱ)证明:BD1∥平面B1EC;(Ⅲ)求平面ABD1与平面B1EC所成锐二面角的大小.19.某中学根据2002﹣2014年期间学生的兴趣爱好,分别创建了“摄影”、“棋类”、“国学”三个社团,据资料统计新生通过考核远拔进入这三个社团成功与否相互独立,2015年某新生入学,假设他通过考核选拔进入该校的“摄影”、“棋类”、“国学”三个社团的概率依次为m,,n,已知三个社团他都能进入的概率为,至少进入一个社团的概率为,且m>n.(1)求m与n的值;(2)该校根据三个社团活动安排情况,对进入“摄影”社的同学增加校本选修字分1分,对进入“棋类”社的同学增加校本选修学分2分,对进入“国学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课字分分数的分布列及期望.20.已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A 到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示.(Ⅰ)求椭圆E的方程;(Ⅱ)判断▱ABCD能否为菱形,并说明理由.(Ⅲ)当▱ABCD的面积取到最大值时,判断▱ABCD的形状,并求出其最大值.21.已知函数(a∈R)在其定义域内有两个不同的极值点.(Ⅰ)求a的取值范围;(Ⅱ)记两个极值点分别为x1,x2,且x1<x2.已知λ>0,若不等式恒成立,求λ的范围.请考生在22,23题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.【选修4-1:几何证明选讲】【选修4-4:坐标系与参数方程】22.在以直角坐标原点O为极点,x轴的非负半轴为极轴的极坐标系下,曲线C1的方程是ρ=1,将C1向上平移1个单位得到曲线C2.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)若曲线C1的切线交曲线C2于不同两点M,N,切点为T,求|TM|•|TN|的取值范围.【选修4-5:不等式选讲】23.已知命题“∀a>b>c,”是真命题,记t的最大值为m,命题“∀n∈R,”是假命题,其中.(Ⅰ)求m的值;(Ⅱ)求n的取值范围.2016年辽宁省沈阳市高考数学一模试卷(理科)参考答案与试题解析一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1A.2D.3C. 4B.5B 6A.7C.8B.9B.10A.11B.12 D解:函数y=x2的导数为y′=2x,在点(x0,x02)处的切线的斜率为k=2x0,切线方程为y﹣x02=2x0(x﹣x0),设切线与y=lnx相切的切点为(m,lnm),0<m<1,即有y=lnx的导数为y′=,可得2x0=,切线方程为y﹣lnm=(x﹣m),令x=0,可得y=lnm﹣1=﹣x02,由0<m<1,可得x0>,且x02>1,解得x0>1,由m=,可得x02﹣ln(2x0)﹣1=0,令f(x)=x2﹣ln(2x)﹣1,x>1,f′(x)=2x﹣>0,f(x)在x>1递增,且f()=2﹣ln2﹣1<0,f()=3﹣ln2﹣1>0,则有x02﹣ln(2x0)﹣1=0的根x0∈(,).二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.. 14 . 15 66. 16.三.解答题:(本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(1)证明:∵sinB=2sinA•cos(A+B),∴b=2a(﹣cosC),∴b=﹣2a×,∴b2=2a2.(2)解:∵S==ab=1,化为ab=2.联立,解得a=,b=2.∴=10,解得c=.18解:(Ⅰ)连接BC1交B1C于M,则直线ME即为平面ABD1与平面B1EC的交线,如图所示;…(Ⅱ)由(Ⅰ)因为在长方体AC1中,所以M为BC1的中点,又E为D1C1的中点所以在△D1C1B中EM是中位线,所以EM∥BD1,…又EM⊂平面B1EC,BD1⊄平面B1EC,所以BD1∥平面B1EC;…(Ⅲ)由(Ⅱ)知,,令平面ABD1的一个法向量为,所以,,从而有,,即,不妨令x=1,得到平面ABD1的一个法向量为,…因为=.…所以平面ABD1与平面B1EC所成锐二面角的大小为.…19解:(1)由题意,,m>n∴m=,n=;(2)学分X的取值分别为0,1,2,3,4,5,6,则P(X=0)=,P(X=1)=×=,P(X=2)=×=,P(X=3)=+×=,P(X=4)=×=,P(X=5)==,P(X=6)=.X的分布列期望EX=0×+1×+2×+3×+4×+5×+6×=.20解:(I)由题意可得:,解得c=1,a=2,b2=3.∴椭圆E的方程为=1.(II)假设▱ABCD能为菱形,则OA⊥OB,k OA•k OB=﹣1.①当AB⊥x轴时,把x=﹣1代入椭圆方程可得: =1,解得y=,取A,则|AD|=2,|AB|=3,此时▱ABCD不能为菱形.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k 2)x 2+8k 2x+4k 2﹣12=0,∴x 1+x 2=﹣,x 1x 2=.∴k OA •k OB =====,假设=﹣1,化为k 2=﹣,因此平行四边形ABCD 不可能是菱形. 综上可得:平行四边形ABCD 不可能是菱形.(III )①当AB⊥x 轴时,由(II )可得:|AD|=2,|AB|=3,此时▱ABCD 为矩形,S 矩形ABCD =6.②当AB 与x 轴不垂直时,设直线AB 的方程为:y=k (x+1),A (x 1,y 1),B (x 2,y 2).联立,化为:(3+4k 2)x 2+8k 2x+4k 2﹣12=0,∴x 1+x 2=﹣,x 1x 2=.|AB|==.点O 到直线AB 的距离d=.∴S 平行四边形ABCD =4×S △OAB ==2××=.则S 2==<36,∴S<6.因此当平行四边形ABCD 为矩形面积取得最大值6.21解:(Ⅰ)由题意知,函数f (x )的定义域为(0,+∞),方程f′(x )=0在(0,+∞)有两个不同根;即方程lnx ﹣ax=0在(0,+∞)有两个不同根;(解法一)转化为函数y=lnx 与函数y=ax 的图象在(0,+∞)上有两个不同交点,如右图.可见,若令过原点且切于函数y=lnx 图象的直线斜率为k ,只须0<a <k .令切点A (x 0,lnx 0),故,又,故,解得,x0=e,故,故.(解法二)转化为函数与函数y=a的图象在(0,+∞)上有两个不同交点.又,即0<x<e时,g′(x)>0,x>e时,g′(x)<0,故g(x)在(0,e)上单调增,在(e,+∞)上单调减.故g(x)极大=g(e)=;又g(x)有且只有一个零点是1,且在x→0时,g(x)→﹣∞,在在x→+∞时,g(x)→0,故g(x)的草图如右图,可见,要想函数与函数y=a的图象在(0,+∞)上有两个不同交点,只须.(解法三)令g(x)=lnx﹣ax,从而转化为函数g(x)有两个不同零点,而(x>0),若a≤0,可见g′(x)>0在(0,+∞)上恒成立,所以g(x)在(0,+∞)单调增,此时g(x)不可能有两个不同零点.若a>0,在时,g′(x)>0,在时,g′(x)<0,所以g(x)在上单调增,在上单调减,从而=,又因为在x→0时,g(x)→﹣∞,在在x→+∞时,g(x)→﹣∞,于是只须:g(x)极大>0,即,所以.综上所述,.(Ⅱ)因为等价于1+λ<lnx1+λlnx2.由(Ⅰ)可知x1,x2分别是方程lnx﹣ax=0的两个根,即lnx1=ax1,lnx2=ax2所以原式等价于1+λ<ax1+λax2=a(x1+λx2),因为λ>0,0<x1<x2,所以原式等价于.又由lnx1=ax1,lnx2=ax2作差得,,即.所以原式等价于,因为0<x1<x2,原式恒成立,即恒成立.令,t∈(0,1),则不等式在t∈(0,1)上恒成立.令,又=,当λ2≥1时,可见t∈(0,1)时,h′(t)>0,所以h(t)在t∈(0,1)上单调增,又h(1)=0,h(t)<0在t∈(0,1)恒成立,符合题意.当λ2<1时,可见t∈(0,λ2)时,h′(t)>0,t∈(λ2,1)时h′(t)<0,所以h(t)在t∈(0,λ2)时单调增,在t∈(λ2,1)时单调减,又h(1)=0,所以h(t)在t∈(0,1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式恒成立,只须λ2≥1,又λ>0,所以λ≥1.请考生在22,23题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.22解:(I)曲线C1的方程是ρ=1,即ρ2=1,化为x2+y2=1,将C1向上平移1个单位得到曲线C2:x2+(y ﹣1)2=1,展开为x2+y2﹣2y=0.则曲线C2的极坐标方程为ρ2﹣2ρsinθ=0,即ρ=2sinθ.(II)设T(cosθ,sinθ),θ∈[0,π].切线的参数方程为:(t为参数),代入C2的方程化为:t2+2t[cos(θ﹣α)﹣sinα]+1﹣2sinθ=0,∴t1t2=1﹣2sinθ,∴|TM|•|TN|=|t1t2|=|1﹣2sinθ|∈[0,1],∴|TM|•|TN|的取值范围是[0,1].23解:(Ⅰ)因为“∀a>b>c,”是真命题,所以∀a>b>c,恒成立,又a>b>c,所以恒成立,所以,.…又因为=,“=”成立当且仅当b﹣c=a﹣b时.因此,t≤4,于是m=4.…(Ⅱ)由(Ⅰ)得,因为“∀n∈R,”是假命题,所以“∃n∈R,”是真命题.…因为|n+sinγ|﹣|n﹣cosγ|=|n+sinγ|﹣|cosγ﹣n|≤|sinγ+cosγ|(),因此,,此时,即时.…∴,由绝对值的意义可知,.…11。
2016 届高三数学一模理科答案一.选择题:A 卷答案: 1-5 BCBDA 6-10 CCCBB 11-12 BA B 卷答案: 1-5ACADB6-10 CCCAA11-12 AB二.填空题:13..514.116315.616.32三、解答题:2a 2 a 3 a 5 =4a 1 +8d=2017. 解:( I )由已知得, -------------------------------2 分10a 1 + 10 9d=10a 1 +45d =1002解得a 1 1 -------------------------------4分d,2所以 { a n } 的通项公式为 a n 5 2( n 3) 2n1 , --------------------------------5 分(II )由( I )可知 ab (2n 1) 22 n 1 ,n n所以 S n1 21 3 23 5 25(2n 3) 22n 3 (2n 1) 22 n 1 ,① 4S n 1 23 3 25 527(2n 3)22 n 1(2n 1) 22n 1 ,②--------------------- 7 分①- ②得:3S n2 2 (23 2522 n 1 )(2 n 1)22n 1S n22(23 2522 n 1) (2 n 1) 22 n 139 分2 2 (8(1 4n1)(2n 1) 2 2n 11 4)362 8(1 4n1)(6 n 3)22n 111 分9---------------------10 (6 n 5)22n1--------------------------12 分918. 1ABOCO,DORT ACB, RT ADBAB 2COD1 OC D 2C O 2 DO 2 CD 2COOD2C O AB AB ODO AB,ODABDC O ABD 4COABC C ABDAB 52OABOCy, zA(0,1,0), B(0,1,0), C (0,0,1), D (3,1,0)2 2AC(0,1,1), BC(0, 1,1),C D(3,1, 1)62 2AC Dn( x , y , z )n 1ACn 1 AC1 1 1 1 n 1C Dn 1 C Dy 1 z 13 x 1 y zz 1 1y 11 x312121 1n 1 (3, 1,1)8BC D n 2n 2BC n 2 BC0 (x 2 , y 2 , z 2 )n 2 C Dn 2C D 0y 2z 2 0331 z2 1y 2 1 x 2x 2z 22 y 2 032n 2(3,1,1)1033 3 ( 1) 1 1 13 105 cos n1 , n2 11 7 353 1 1 1 5133A C D B- 10512.3519.I x0.20? 1 (0.40+0.20)? 1 0. 6x ? [4,5] 2 0.40?(5 x) + 0. 20 ? 1 0. 5x = 4. 254. 25 42 4P 36 5-4 -2,0,2,4 82 416P X 45 6253P X 2 e1 4 2 3 965 5 6252 2P X 0 e2 4 2 3 2165 5 6251 3P X 2 e14 2 3 2165 5 6253 4 81P X 45 625X -4 -2 0 2 4P 16 96 216 216 81 625 625 625 625 62510EX 4 16( 2)96216 216481 4 625 625 6252625 562512 分20. 解:( 1)抛物线 C 的准线方程为: x p,2|MF |mp 2 ,又 4 2pm ,即 42 p(2p) --------------------2 分22p 2 4 p 4 0, p2抛物线 C 的方程为 y 2 4x .-------------------4 分(2)设点 E (0, t )(t0) ,由已知切线不为 y 轴,设 EA : y kx ty kx t(2kt 4) x t 2联立y24x ,消去 y ,可得 k 2x 2直线 EA 与抛物线 C 相切,(2kt 4)2 4k 2 t 2 0 ,即 kt1代入 12x 22x t 2 0 , xt 2 ,即 A(t 2 ,2t ) --------------------------------------6分t设切点 B(x 0 , y 0 ) ,则由几何性质可以判断点 O, B 关于直线 EF : ytx t 对称,则y 0 t 01x 02t22t 2x 0 0 1t 2 12t-------------------------------,解得:,8 分,即 B()y 0 tx 0ty 02tt 21 t 2122 t 21思路 1:直线 AB 的斜率为 k AB2t(t 1)2tt 2 1直线 AB 的方程为 y(x t 2 ) 2t , --------------------------------------10分2tt 2 1整理 y(x 1)t 21直线 AB 过定点恒过定点 F (1,0) --------------------------------------11 分当 t1 时, A(1, 2), B(1, 1) ,此时直线 AB 为 x 1 ,过点 F (1,0) .综上,直线 AB 过定点恒过定点F (1,0) --------------------------------------12分思路 2:直线AF的斜率为k AF 2t (t1) ,t 2 12t0 2t直线 BF 的斜率为 k BFt 2 11),2t 2t 2(t1 1t21kAFk BF ,即 A, B, F 三点共线--------------------------------------10 分当 t 1 时, A(1, 2), B(1, 1) ,此时 A, B,F 共线 .--------------------------------------11分直线 AB 过定点 F . --------------------------------------12 分21. 解:(Ⅰ)证明:令g(x) f ( x)e x 2ax 2 ,则 g (x) e x 2a因为 a,令 g ( x 0 ) 0 , x 0ln 2a所以当 x ( ,ln 2a) 时, g ( x) 0 , g( x) 单调递减;当 x(ln 2a,) 时, g ( x) 0 , g (x) 单调递增 --------------------2 分 则 f ( x) min g( x)min g (ln 2a)e ln2a2a ln 2a 2=2a 2aln 2a 2 --------------------3分令 G( x)x x ln x 2 , ( x 0)G ( x) 1(ln x 1) ln x当 x(0,1)时, G (x) 0 , G( x) 单调递增当 x (1, ) 时, G( x)0 , G( x) 单调递减所以 G(x)maxG (1)1 0 ,所以 f ( x)min 0 成立 . --------------------5 分(Ⅱ)证明: f ( x) 0 恒成立,等价于 f ( x)min 0 恒成立令 ()( ) x2 2 ,则xf eg ( x) e 2ag xx ax 因为 a 0 ,所以 g (x) 0,所以 g (x) 单调递增,又g (0) 1 0, g(1) e2a 2 0 , 所 以 存 在 x 0(0,1) , 使 得g( x 0 ) ---------------------0 6 分则 x (, x 0 ) 时, g( x) f (x) 0, f ( x) 单调递减;x (x 0 ,) 时, g( x)f (x) 0, f (x) 单调递增;所以f ( x)minf ( x 0 )e xax 02 2 x 0 b 0 恒成立 (1)且 e x 02ax 2 0 (2)由( 1)( 2) ,x 02x 0exx 0x 0beax 0 2x 0ex 0 ( 21) 2x 0( 2 1)ex 0 即可-----------------8 分又由( 2) aex20 ,所以x 0(0,ln 2) ---------------------9 分2x 0令 ( ) (x1) xx , x (0,ln 2)m x2 e1( x 1)e xn( x) m (x)11 xe x2n (x) 0 ,2所以 n ( x )n (0)1 0 所以 m( x) 单调递增,2,m( x ) m (0) ( 1)e 01,m ( x )m (ln 2)( ln 21)e ln 2 ln 2 2 ln 2 2 ---------------------11分2所以 b1 ,所以符合条件的b=0 ---------------------12 分法 2:令 x 0, f (0) 1 b 0,b1 ,故符合条件的最小整数 b 0. ------------------- 6 分现证明 b0 时, f( x)求f (x)e x ax 2 2x 的最小值即可令()( ) x2 2 ,则 xg xf x eaxg ( x) e 2a因为 a 0 ,所以 g (x) 0,所以 g (x) 单调递增,又 g(0)1 0 , g(1) e 2a2 0 ,所以存在 x 0(0,1) ,使得 g( x 0 )则 x( , x 0 ) 时, g( x) f (x) 0, f ( x) 单调递减;x (x 0 ,) 时, g( x)f (x) 0, f (x) 单调递增;所以 f ( x)minf ( x 0 )e xax 02 2x 0 .(1)且e x0 2ax0 2 0 (2)f ( x) min f (x0 ) e x0 x0 (e x0 2) 2 x0 (1x0 )e x0x0---------------8分2 2e x0 20 ,所以x0 (0,ln 2) ---------------9又由( 2)a 分2x0现在求函数( ) (1 x ) x , (0,ln 2) 的范围p x e x x2q( x0) p ( x) 1(1 x)e x 1 , q (x0 ) 1 xe x 0 ,212所以 q(x ) q (0) 0 ,所以p( x) 单调递减,2p (x ) p (0) ( 1)e 0 1p (x ) p (ln 2) (1 ln 2 )e ln 2 ln 2 2 ln 2 0 -------------11分2所以 b=0 是符合条件的. -------------12 分选做题:22.解:( I)连接 AB,P、 B、 F、 A 四点共圆,PAB PFB ..................2 分又PA 与圆 O 切于点 A, PAB AEB ,.............4分PFB AEBAE //CD ..............5分(II )因为 PA、PB 是圆 O 的切线,所以P、B 、 O、 A 四点共圆,由PAB 外接圆的唯一性可得P、B、F、A、O 共圆,四边形 PBFA 的外接圆就是四边形PBOA 的外接圆,OP 是该外接圆的直径 . ............. 7 分由切割线定理可得PA2 PC PD 3 9 27 .............9分OP PA2 OA2 27 25 2 13.四边形PBFA 的外接圆的半径为13 . ............ 10 分23 解:( I)C1的直角坐标方程为x 1 221,y............ 2 分C2的直角坐标方程为x 3;............4分(II )设曲线C1与 x 轴异于原点的交点为A,PQ OP , PQ 过点 A (2,0) ,设直线 PQ 的参数方程为x 2 t cost 为参数 ,y t sin代入 C 1 可得 t 22t cos 0, 解得 t 1 0或 t 22cos ,可知 | AP | | t 2 | | 2cos |............ 6 分代入 C 2可得 2 t cos3, 解得 t /1 ,1cos可知 | AQ | | t / | | | ............ 8 分cos所以 PQ= | AP | | AQ | | 2cos| | 1 | 2 2, 当且仅当 | 2cos | | 1 cos | 时取等号,cos所以线段 PQ 长度的最小值为2 2 ............. 10 分1 2x, x 024.解:( I )由已知可得 f ( x)1,0 x 1,2x 1, x 1所以 f min (x) 1,............ 3 分所以只需 | m 1| 1 ,解得 1 m 1 1 ,0 m 2 ,所以实数 m 的最大值 M 2 . ............ 5 分(II )法一:综合法a 2b 2 2abab 1ab 1,当且仅当 ab 时取等号,①. ........... 7 分又aba b2ab 1a b 2ab abb 时取等号,②. ........... 9 分a b,当且仅当 a2由①②得,ab1,所以 a b2ab .............10 分a b22016届石家庄市高三数学一模理科答案剖析法二:分析法因为 a 0, b 0 ,所以要证 a b 2ab ,只需证 (ab)2 4a 2b 2 ,即证 a 2 b 2 2ab 4a 2 b 2 , a 2 b 2 M ,所以只要证 2 2ab 4a 2b 2 ,............7 分 即证2(ab) 2 ab 1 0 ,即证 (2ab 1)(ab 1) 0 ,因为 2ab 1 0 ,所以只需证 ab 1, 下证 ab 1,因为 2 a 2 b 2 2ab ,所以 ab 1成立,所以 a b 2ab ............ 10 分。
北京市东城区2015-2016学年度第二学期高三综合练习(一)数学 (理科)学校_____________班级_______________姓名______________考号___________ 本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知复数(1+)i ai ⋅为纯虚数,那么实数a 的值为(A )1- (B )0 (C ) 1 (D )2(2)集合2{},{50}A x x a B x x x =≤=-< | | ,若A B B =I ,则a 的取值范围是(A )5a ≥ (B ) 4a ≥ (C ) 5a < (D )4a < (3)某单位共有职工150名,其中高级职称45人, 中级职称90人,初级职称15人.现采用分层 抽样方法从中抽取容量为30的样本,则各职称 人数分别为(A )9,18,3 (B ) 10,15,5 (C )10,17,3 (D )9,16,5 (4)执行如图所示的程序框图,输出的S 值为 (A )21(B )1 (C ) 2 (D )4(5)在极坐标系中,直线1cos sin =-θρθρ被曲线1=ρ截得的线段长为(A )21 (B )1 (C )22 (D(6)一个几何体的三视图如图所示,那么该几 何体的最长棱长为 (A )2 (B)(C )3(D(7)已知三点P (5,2)、1F (-6,0)、 2F (6,0)那么以1F 、2F 为焦点且过点 P 的椭圆的短轴长为 (A )3(B )6(C )9 (D )12(8)已知12e ,e 为平面上的单位向量,1e 与2e 的起点均为坐标原点O ,1e 与2e 夹角为3π. 平面区域D 由所有满足OP λμ=+12e e u u u v 的点P 组成,其中1,0,0λμλμ+≤⎧⎪≤⎨⎪≤⎩,那么平面区域D的面积为 (A )12 (B(C)2 (D)4第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。
(9)在5)412(xx +的展开式中,3x 的系数值为__.(用数字作答) (10)已知等比数列{}n a 中, 2342,32a a a ==g ,那么8a 的值为 . (11)如图,圆O 的半径为1,A,B,C 是圆周上的三点,过点A 作圆O 的切线与OC 的延长线交于点P ,若AC CP =, 则COA ∠=__;AP = . (12)若3sin(),45πα-=且)4,0(πα∈,则sin 2α的值为 . (13)某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可获利润以及运输限制如P在最合理的安排下,获得的最大利润的值为__.(14)已知函数()ln f x x =,关于x 的不等式00()()()f x f x c x x -≥-的解集为(0,)+∞,其中0(0,)x ∈+∞,c 为常数. 当01x =时,c 的取值范围是___;当012x =时,c 的值是___;三、解答题:本大题共6小题,共80分。
解答应写出文字说明,演算步骤或证明过程。
(15)(本小题共13分)在△ABC 中,BC =2AC =,且()cos A B += (Ⅰ)求AB 的长度;(Ⅱ)若()sin(2)f x x C =+,求()y f x =与直线2y =相邻交点间的最小距离.(16)(本小题共14分)已知三棱柱111C B A ABC -中,1A A ⊥底面ABC ,90=∠BAC ,1A A 1=,3=AB ,2=AC ,E 、F 分别为棱C C 1、BC 的中点. (Ⅰ)求证 1AC A B ⊥;(Ⅱ)求直线EF 与B A 1所成的角;(Ⅲ)若G 为线段A A 1的中点,1A 在平面EFG 内的射影为H ,求A HA 1∠.(17)(本小题共13分)现有两个班级,每班各出4名选手进行羽毛球的男单、女单、男女混合双打(混双)比赛(注:每名选手打只打一场比赛).根据以往的比赛经验,各项目平均完成比赛所需时间如图表所示,现只有一块比赛场地,各场比赛的出场顺序等可能.(II )求第三场比赛平均需要等待多久才能开始进行;(III )若要使所有参加比赛的人等待的总时间最少,应该怎样安排比赛顺序(写出结论即可).(18)(本小题共14分)设函数1)(--=x ae x f x ,R ∈a . (Ⅰ)当1a =时,求()f x 的单调区间;(Ⅱ)当),0(+∞∈x 时,0)(>x f 恒成立,求a 的取值范围;(Ⅲ)求证:当),0(+∞∈x 时,21ln xx e x >-.(19)(本小题共13分)已知抛物线2:2(0)C y px p =>,焦点F ,O 为坐标原点,直线AB (不垂直x 轴)过点F 且与抛物线C 交于,A B 两点,直线OA 与OB 的斜率之积为p -. (Ⅰ)求抛物线C 的方程;(Ⅱ)若M 为线段AB 的中点,射线OM 交抛物线C 于点D ,求证:2ODOM>.(20)(本小题共13分)数列{}n a 中,给定正整数m (1)m >,-111()m i i i V m aa +==-∑.定义:数列{}n a 满足1(1,2,,1)i i a a i m +≤=-L L ,称数列{}n a 的前m 项单调不增. (Ⅰ)若数列{}n a 通项公式为:*(1)()n n a n N =-∈,,求(5)V .(Ⅱ)若数列{}n a 满足:*1,,(m 1,,)m a a a b m N a b ==>∈>,求证()V m a b =-的充分必要条件是数列{}n a 的前m 项单调不增.(Ⅲ)给定正整数m (1)m >,若数列{}n a 满足:0,(1,2,,)n a n m ≥=L L ,且数列{}n a 的前m 项和2m ,求()V m 的最大值与最小值.(写出答案即可)北京市东城区2015-2016学年度第二学期高三综合练习(一)数学参考答案及评分标准 (理科)一、选择题(本大题共8小题,每小题5分,共40分)(1)B (2)A (3)A (4)C (5)D (6)C (7)B (8)D 二、填空题(本大题共6小题,每小题5分,共30分)(9)20 (10)128 (11)3π(12)725(13) 62 (14) []1,0-,2-.注:两个空的填空题第一个空填对得3分,第二个空填对得2分. 三、解答题(本大题共6小题,共80分) (15)(本小题共13分)解:(Ⅰ)Q ()()cos cos cos 2C A B A B π=-+=-+=⎡⎤⎣⎦ ∴ 045C = ……3分Q BC =2AC =,0222222cos 2AB AC BC AC BC C ∴=+-∙=+- 4= 2AB ∴= ……7分(Ⅱ)由()sin(242f x x π=+=, 解得 2243x k ππ+=π+或22243x k ππ+=π+,k Z ∈ , 解得1124x k π=π+或22524x k π=π+,12,k k Z ∈. 因为 1212()66x x k k ππ-=-π+≥,当12k k =时取等号,所以 当()f x =6π. (13)分(16)(共14分)(Ⅰ)证明 因为三棱柱111C B A ABC -,1AA ⊥底面ABC所以 1AC AA ⊥.因为 90=∠BAC , 所以 AC AB ⊥. 因为 1A A AB A =I , 所以 11AC A ABB ⊥平面.因为 111A B A ABB ⊂平面,所以 1AC A B ⊥. ……4分 (Ⅱ)解如图建立空间直角坐标系xyz A —, 则()1,0,0A 1,()0,03B ,,⎪⎭⎫ ⎝⎛2120,,E ,⎪⎪⎭⎫ ⎝⎛0,123F ,. 所以 ()10,31-=,B A ,⎪⎪⎭⎫⎝⎛--=211,23,. 所以22==. 因为 010,90A B EF <<uuu r uu u r ,所以 直线EF 与B A 1所成的角为45°. ……9分 (Ⅲ)解 设⎪⎭⎫ ⎝⎛2100,,G则 ()020,,=GE , ⎪⎪⎭⎫⎝⎛-=211,23,. AH 所在直线的向量与平面GEF 的法向量平行.设平面GEF 的法向量为,(,,)n x y z =v,因为 ⎪⎩⎪⎨⎧⊥⊥,所以 ⎪⎩⎪⎨⎧=-+=.02123,02z y x y 令3=z ,则()3,0,1=.所以 AH 所在直线的单位向量为⎪⎪⎭⎫⎝⎛=23,0,21. 因为 1(0,0,1)AA =uuu v, 所以23=. 因为 10,AA e π<<uuu r r,所以 16HA A π∠=. .…14分(17)(本小题共13分)解:(I )三场比赛共有336A =种方式,其中按按女单、混双、男单的顺序进行比赛只有1种,所以按女单、混双、男单的顺序进行比赛的概率为16. …3分 (II )令A 表示女单比赛、B 表示男单比赛、C 表示混双比赛. 按ABC 顺序进行比赛,第三场比赛等待的时间是:1202545t =+=(分钟). 按ACB 顺序进行比赛,第三场比赛等待的时间是:2203555t =+=(分钟). 按BAC 顺序进行比赛,第三场比赛等待的时间是:3202545t =+=(分钟). 按BCA 顺序进行比赛,第三场比赛等待的时间是:4352560t =+=(分钟). 按CAB 顺序进行比赛,第三场比赛等待的时间是:5352055t =+=(分钟). 按CBA 顺序进行比赛,第三场比赛等待的时间是:6352560t =+=(分钟).且上述六个事件是等可能事件,每个事件发生概率为16,所以平均等待时间为 . 45455555606016063+++++=…11分 (III )按照比赛时间从长到短的顺序参加比赛,可使等待的总时间最少---------------------------------------------------------13分(18)(共14分)解:(Ⅰ)当1a =时,则()1x f x e x =--,则'()1x f x e =-. 令'()0,f x =得0.x =所以 当0x <时,'()0f x <,()f x 在(),0-∞上单调递减;当0x >时,'()0f x >,()h x 在(0,)+∞上单调递增;当0x =时,min ()(0)0f x f ==. ……4分 (Ⅱ)因为0>xe ,所以01)(>--=x ae x f x恒成立,等价于x ex a 1+>恒成立. 设xe x x g 1)(+=,),0[+∞∈x , 得x x x x exe e x e x g -=+-=2)1()(', 当),0[+∞∈x 时,0)('≤x g , 所以 )(x g 在),0[+∞上单调递减, 所以 ),0(+∞∈x 时,1)0()(=<g x g . 因为x ex a 1+>恒成立, 所以),1[+∞∈a . ……11分(Ⅲ)当),0(+∞∈x 时,21ln xx e x >-,等价于012>--xx xe e . 设1)(2--=xxxe e x h ,),0[+∞∈x .求导,得)12(2)('2222--=--=xe e e x e e x h xxxx x.由(Ⅰ)可知,),0(+∞∈x 时, e 10xx -->恒成立.所以),0(+∞∈x 时,(0,)2x∈+∞,有2e 102xx -->.所以 '()0h x >.所以)(x h 在(0,)+∞上单调递增,当),0(+∞∈x 时,0)0()(=>h x h .因此当),0(+∞∈x 时,21ln xx e x >-. ……14分(19)(共13分) 解:(Ⅰ)因为直线AB 过点F 且与抛物线C 交于,A B 两点,(,0)2PF , 设11(,)A x y ,22(,)B x y ,直线AB (不垂直x 轴)的方程可设为()(0)2py k x k =-≠. 所以2112(0)y px p =>,2222y px =. 因为直线OA 与OB 的斜率之积为p -, 所以1212y y p x x =-. 所以221212()y y p x x =,得 124x x =. ……4分 由2(),22,p y k x y px ⎧=-⎪⎨⎪=⎩消y 得22222(2)04k p k x k p p x -++= 其中 22222(2)0k p p k p k =+->V所以2124p x x =, 21222k P P x x k ++=. 所以4p =,抛物线2:8C y x =. ……8分 (Ⅱ)设0033(,),(,)M x y P x y ,因为M 为线段AB 的中点,所以2201222122(2)()22k P P k x x x k k++=+==,004(2)y k x k =-=. 所以直线OD 的斜率为02022op y kk x k ==+. 直线OD 的方程为222op k y k x x k ==+代入抛物线2:8C y x =的方程, 得22322(2)k x k+=. 所以23(2)x k x =+. 因为 20k >, 所以23(2)2OD x k OMx ==+>. ……13分(20)(共13分)解(Ⅰ) (5)=8V . ……2分 (Ⅱ)充分性:若数列{}n a 的前m 项单调不增,即21m a a a ≤≤≤L L 此时有:-111223111()()()().m i i m m i m V m a a a a a a a a a a a b +-==-=-+-++-=-=-∑L L必要性:反证法,若数列{}n a 的前m 项不是单调不增,则存在(11)i i m ≤≤-使得1i i a a +>,那么:-111-11111111111111()()()().m i ii i mi i i i i it t i i i i m i m i i i i i i i i V m a a a a a a aa a a a a a a a a a a a a ab a a a a +=+++==+++++++=-=-+-+-=-+-+-≥-+-+-=-+-+-∑∑∑由于1,i i a a a b +>>,.11 / 11 11 11()a b i i i i a b a a a a ++∴-+-+->-.与已知矛盾. ……9分 (III )最小值为0.此时{}n a 为常数列. ……10分最大值为242,2 2.m m m =⎧⎨>⎩ 当2m =时的最大值:此时12124,(,0)a a a a +=≥, ……11分 12404a a -≤-=.当2m >时的最大值:此时21212,(,,,0)n a a m a a a ++=≥L L L L . 由x y x y -≤+易证,{}n a 的值的只有是大小交替出现时,才能让()V m 取最大值.不妨设:1i i a a +≤,i 为奇数,1i i a a +≥,i 为偶数. 当m 为奇数时有: -111123234541(1)/221121()222.m i ii m m m m i ii i m i i V m a a a a a a a a a a a a a a a m +=--====-=-+-+-+-++-=-≤=∑∑∑∑L L 当m 为偶数时同理可证. ……13分。