竞赛讲座 整数的整除性和同余
- 格式:doc
- 大小:90.50 KB
- 文档页数:4
初中数学竞赛教程《同余3》同余是数论中一个重要的概念,也是初中数学竞赛中常考的知识点之一、同余关系可以帮助我们解决一些整数求余的问题,同时也有一些重要的应用,如模运算、同余方程等。
本文将介绍同余的基本概念、性质以及应用。
一、同余的基本概念同余的定义:设a、b为任意两个整数,m为一个正整数,如果m整除(a-b),则称a与b对于模m同余,记作a≡b(mod m),读作a与b模m 同余。
二、同余的性质1. 自反性:对于任意整数a,有a≡a(mod m)。
证明:因为m整除(a-a),所以a与a对于模m同余。
2. 对称性:若a≡b(mod m),则b≡a(mod m)。
证明:由a≡b(mod m),得m整除a-b,又由整除的性质,得m整除-(a-b),即m整除b-a,所以b≡a(mod m)。
3. 传递性:若a≡b(mod m),b≡c(mod m),则a≡c(mod m)。
证明:由a≡b(mod m)和b≡c(mod m),得m整除a-b和b-c所以m整除(a-b)+(b-c),即m整除a-c,所以a≡c(mod m)。
三、同余的应用1. 求余数:当m=10时,对一个正整数n,n≡a(mod 10)的意义就是n的个位数是a。
比如,1234≡4(mod 10)。
2. 模运算:同余关系可以推广到任意的四则运算和乘幂运算中。
比如,对于任意整数a、b,若a≡b(mod m),那么对于任意整数c,有(a+c)≡(b+c)(mod m)和(a-c)≡(b-c)(mod m)。
另外,如果a≡b(mod m),则a^k≡b^k(mod m)。
3. 同余方程:同余方程是指形如ax≡b(mod m)的方程,其中a、b、m是已知的整数,x是未知的整数。
同余方程在密码学、计算机算法等领域有广泛的应用。
解同余方程的方法一般有试错法、中国剩余定理等。
在解同余方程时,我们要先求出模m意义下的倒数,一般记作b^-1,满足b*b^-1≡1(mod m)。
同余理论及其应用基础知识一. 定义定义1. 设m 为正整数,整数a 和b 之差可被m 整除时,称为a 和b 关于模m 同余,记作 ).(mod m b a ≡ 定义2. 被正整数m 除余数相等的所有整数的集合称为模m 的剩余类。
模m 的剩余类共有m 个。
定义3. 在模m 的m 个剩余类中各取一个整数作为代表,这些代表的集合称为模m 的完全剩余系。
定义4. 绝对值不超过]2[m 的模m 的完全剩余系称为模m 的绝对最小剩余系。
定义5. 当模m 的某一剩余类的所有整数均与m 互素时,则称此剩余类是模m 的简化类。
模m 的简化类共有)(m φ个。
定义6. 在模m 的)(m φ个简化类中各取一个整数作为代表,这些代表的集合称为模m 的简化剩余系。
定义7. 欧拉函数:设n 为正整数,从1到n 的整数中与n 互素的整数的个数用)(n φ表示,称)(n φ为欧拉函数。
当1212s s np p p ααα=时,有)11)...(11)(11()(21s p p p n n ---=φ 二. 定理定理1. ).(mod m b a ≡ 的必要充分条件是a 和b 被m 除的余数相等。
定理 2. I .);(mod m a a ≡II .若),(mod m b a ≡则);(mod m a b ≡III .若),(mod m b a ≡),(mod m c b ≡则).(mod m c a ≡定理3. 若)(m od 11m b a ≡,)(m od 22m b a ≡,则I .)(m od 2121m b b a a +≡+;II .(mod 2121m b b a a -≡-2 )(m od 212m b b a -≡-;III .)(m od 2121m b b a a ≡.定理4. 如果),...,2,1)((m od n i m b a i i =≡,则I .)(m od ......2121m b b b a a a n n +++≡+++;II . ).(m od ......2121m b b b a a a n n ≡推论. 如果).(mod m b a ≡n 为任意正整数,则).(mod m b a nn ≡ 定理5. 如果).(mod m cb ca ≡则).),((modm c m b a ≡ 推论. 如果1),(=m c ,).(mod m cb ca ≡则).(mod m b a ≡ 定理6. 如果).(mod m b a ≡则).,(),(m b m a =定理7. a 和b 属于模m 的同一剩余类的充要条件是).(mod m b a ≡定理8. m 个整数m a a a ,...,,21是模m 的完全剩余系的充要条件是m a a a ,...,,21关于模m 两两互不同余。
初中数学竞赛讲座-数论部分2(整数的整除性)第二讲整数的整除性一、基础知识:1.整除的基本概念与性质所谓整除,就是一个整数被另一个整数除尽,其数学定义如下.定义:设a,b是整数,b≠0.如果有一个整数q,使得a=bq,那么称a能被b整除,或称b整除a,并记作b|a.也称b是a的约数,a是b的倍数。
如果不存在这样的整数q,使得a=bq,则称a不能被b整除,或称b不整除a,记作b|a.关于整数的整除,有如下一些基本性质:性质1若a|b,b|c,则a|c证明:∵a|b,b|c,∴bap,cbq(p,q是整数),∴c(ap)q(pq)a,∴a|c性质2若a|b,b|a,则|a|=|b|.性质3若c|a,c|b,则c|(a±b),且对任意整数m,n,有c|(ma±nb).证明:∵a|b,a|c,∴bap,caq(b,q是整数),∴bcapaqa(pq),∴a|(bc)性质4若b|a,d|c,则bd|ac.特别地,对于任意的非零整数m,有bm|am性质5若a=b+c,且m|a,m|b,则m|c.性质6若b|a,c|a,则[b,c]|a.特别地,当(b,c)=1时,bc|a【此处[b,c]为b,c的最小公倍数;(b,c)为b,c的最大公约数】.性质7若c|ab,且(c,a)=1,则c|b.特别地,若p是质数,且p|ab,则p|a或p|b.性质8n个连续整数中,必有一个能被n整除.【特别地:两个连续整数必有一偶数;三个连续整数必有一个被3整除,如11,12,13中有3|12;41,42,43,44中有4|44;77,78,79,80,81中5|80.】二.证明整除的基本方法证明整除常用下列几种方法:(1)利用基本性质法;(2)分解因式法;(3)按模分类法;(4)反证法等.下面举例说明.例1若a|n,b|n,且存在整数某,y,使得a某+by=1,证明:ab|n.初中数学兴趣班系列讲座——数论部分唐一良数学工作室证明:由条件,可设n=au,n=bv,u,v为整数,于是n=n(a某+by)=na某+nby=abv某+abuy=ab(v某+uy)所以n|ab例2证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除.分析要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即可.证明:设三个连续的奇数分别为2n-1,2n+1,2n+3(其中n是整数),于是(2n-1)2+(2n+1)2+(2n+3)2+1=12(n2+n+1).所以12|[(2n-1)2+(2n+1)2+(2n+3)2].又n2+n+1=n(n+1)+1,而n,n+1是相邻的两个整数,必定一奇一偶,所以n(n+1)是偶数,从而n2+n+1是奇数,故24|[(2n-1)2+(2n+1)2+(2n+3)2].例3若整数a不被2和3整除,求证:24|(a2-1).分析因为a既不能被2整除,也不能被3整除,所以,按模2分类与按模3分类都是不合适的.较好的想法是按模6分类,把整数分成6k,6k+1,6k+2,6k+3,6k+4,6k+5这六类.由于6k,6k+2,6k+4是2的倍数,6k+3是3的倍数,所以a只能具有6k+1或6k+5的形式,有时候为了方便起见,也常把6k+5写成6k-1(它们除以6余数均为5).证明因为a不被2和3整除,故a具有6k±1的形式,其中k是自然数,所以a2-1=(6k±1)2-1=36k2±12k=12k(3k±1).由于k与3k±1为一奇一偶(若k为奇数,则3k±1为偶数,若k为偶数,则3k±1为奇数),所以2|k(3k±1),于是便有24|(a2-1).例4若某,y为整数,且2某+3y,9某+5y之一能被17整除,那么另一个也能被17整除.证明:设u=2某+3y,v=9某+5y.若17|u,从上面两式中消去y,得3v-5u=17某.①所以17|3v.因为(17,3)=1,所以17|v,即17|9某+5y.若17|v,同样从①式可知17|5u.因为(17,5)=1,所以17|u,即17|2某+3y.例5已知a,b是自然数,13a+8b能被7整除,求证:9a+5b都能被7整除.分析:考虑13a+8b的若干倍与9a+5b的若干倍的和能被7整除,证明13a+8b+4(9a+5b)=7(7a+4b)是7的倍数,又已知13a+8b是7的倍数,所以4(9a+5b)是7的倍数,因为4与7互质,由性质7|(9a+5b)例6已知a,b是整数,a2+b2能被3整除,求证:a和b都能被3整除.初中数学兴趣班系列讲座——数论部分唐一良数学工作室证明用反证法.如果a,b不都能被3整除,那么有如下两种情况:(1)a,b两数中恰有一个能被3整除,不妨设3|a,3b.令a=3m,b=3n±1(m,n都是整数),于是a2+b2=9m2+9n2±6n+1=3(3m2+3n2±2n)+1,不是3的倍数,矛盾.(2)a,b两数都不能被3整除.令a=3m±1,b=3n±1,则a2+b2=(3m±1)2+(3n±1)2=9m2±6m+1+9n2±6n+1=3(3m2+3n2±2m±2n)+2,不能被3整除,矛盾.由此可知,a,b都是3的倍数.例7已知a,b是正整数,并且a2+b2能被ab整除,求证:a=b.先考虑a,b互质的情况,再考虑一般情况。
同余的概念与应用概念与性质1. 定义:若整数a,b 被整数m(m≥1)除的余数相同,则称a 同余于b 模m,或a,b 对模m 同余.记为a≡b(modm).余数r:0≤r<1.2. 性质:(ⅰ)a≡b(modm)⇔m|a-b,即a=b+mk,k ∈Z.(ⅱ)若a≡b(modm),b≡c(modm),则a≡c(modm).(ⅲ)若a 1≡b 1(modm),a 2≡b 2(modm),则a 1±a 2≡b 1±b 2(modm),a 1a 2≡b 1b 2(modm);(ⅳ)设f(x)=a n x n +a n-1x n-1+…+a 1x+a 0,g(x)=b n x n +b n-1x n-1+…+b 1x+b 0是两个整系数多项式,满足a i ≡ b i (modm)(0≤i≤n).若a≡b(modm),则f(a)≡f(b)(modm).(ⅴ)ac≡bc(modm)⇔a≡b(mod ),(m c m ), (ⅵ)若m≥1,(a,m)=1,则存在整数c 使得ac≡1(modm).称c 为a 对模m 的逆或倒数,记为c=a -1(modm);(ⅶ)⎩⎨⎧≡≡)(mod )(mod 21m b a m b a 同时成立⇔≡a b (mod[m 1,m 2]);(ⅷ)若a≡b(modm 1),a≡b(modm 2),且(m 1,m 2)= 1,则a≡b(modm 1m 2).3. 剩余类:设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r≤m -1}称为模m 的一个剩余类。
性质:(ⅰ)i m i K Z 10-≤≤= 且K i ∩K j =φ(i≠j).(ⅱ)每一整数仅在K 0,K 1,…,K m-1一个里.(ⅲ)对任意a 、b ∈Z ,则a 、b ∈K r ⇔a≡b(modm).4. 完全剩余系:设K 0,K 1,…,K m-1为模m 的全部剩余类,从每个K r 里任取一个a r ,得m 个数a 0,a 1,…,a m-1组成的数组,叫做模m 的一个完全剩余系。
第二十六讲整数整除的概念和性质对于整数和不为零的整数b,总存在整数m,n使得a=bm+n(0≤n<b),其中m称为商,n称为余数,特别地,n=0时,即a=bm,便称a被被b整除(也称a是b的倍数或的约数),记为b|a.整除有以下基本性质:1.若a|b,a|c,则a|(b c);2.若a|b,b|c,则a|c;3.若a| b c,且(a,c)=1,则a|b,特别地,若质数p|b c,则必有p|b或p|c;4.若b|a,c|a,且(b,c) =1,则b c|a.解整除有关问题常用到数的整除性常见特征:1.被2整除的数:个位数字是偶数;2.被5整除的数:个位数字是0或5;3.被4整除的数:末两位组成的数被4整除;被25整除的数,末两位组成的数被25整除;4.被8整除的数:末三位组成的数被8整除;被125整除的数,末三位组成的数被125整除;5.被3整除的数:数字和被3整除;6.被9整除的数:数字和被9整除;7.被11整除的数:奇数位数字和与偶数位数字和的差被11整除.【例1】一个自然数与13的和是5的倍数,与13的差是6的倍数,则满足条件的最小自然数是.思路点拨略(重庆市竞赛题)注:确定已知条件来确定自然数,是数学活动中常见的一类问题,解这类问题时往往用到下列知识方法:(1)运用整除性质;(2)确定首位数字;(3)利用末位数字;(4)代数化;(5)不等式估算;(6)分类讨论求解等.【例2】有三个正整数a、b、c其中a与b互质且b与c也互质,给出下面四个判断:①(a+c)2不能被b整除,②a2+c2不能被b整除:③(a+b)2不能被c整除;④a2+b2不能被c整除,其中,不正确的判断有( ).A.4个B.3个 C 2个D.1个思路点拨举例验证.(“希望杯”邀请赛试题)1287xy是72的倍数,求出所有的符合条件的7位数.【例3】已知7位数6(江苏省竞赛题)1287xy能被8,9整除,运用整数能被8、9整除的性质求出x,y的思路点拨7位数6值.【例4】(1)若a、b、c、d是互不相等的整数,且整数x满足等式(x一a)(x一b)(x一c)(x一d)一9=0,求证;4︳(a+b+c+d).(2)已知两个三位数abc与def的和abc+def能被37整除,证明:六位数abcdef也能被37整除.思路点拨 (1)x 一a ,x 一b ,x 一c ,x 一d 是互不相等的整数,且它们的乘积等于9,于是必须把9分解为4个互不相等的因数的积;(2)因已知条件的数是三位数,故应设法把六位数abcdef 用三位数的形式表示,以沟通已知与求证结论的联系.注:运用整除的概念与性质,建立关于数字谜中字母的方程、方程组,是解数学谜问题的重要技巧.华罗庚曾说:“善于‘退’,足够地,‘退’,‘退’到最原始而不失去重要性的地方,是学好数学的一个诀窍.”从一般退到特殊,从多维退到低维,从空间退到平面,从抽象退到具体……只要不影响问题的求解,对于许多复杂的问题,以退求进是一种重要的解题思想.【例5】 (1)一个自然数N 被10除余9,被9除余8,被8除余7,被7除余6,被6除余5,被5除余4,被3除余2,被2除余1,则N 的最小值是 .(北京市竞赛题)(2)若1059、1417、2312分别被自然数x 除时,所得的余数都是y ,则x —y 的值等于( ).A .15B .1C .164D .174(“五羊杯”竞赛题)(3)设N=个1990111,试问N 被7除余几?并证明你的结论. (安徽省竞赛题) 思路点拨 运用余数公式,余数性质,化不整除问题为整除问题.(1)N+1能分别被2,3,4,5,6,7,8,9,10整除,(2)建立关于x ,y 的方程组,通过解方程组求解,(3)从考察11,111,…111111被7除的余数人手.【例6】盒中原有7个球,一位魔术师从中任取几个球,把每一个小球都变成了7个小球,将其放回盒中,他又从盒中任取一些小球,把每一个小球又都变成了7个小球后放回盒中,如此进行,到某一时刻魔术师停止取球变魔术时,盒中球的总数可能是( )A .1990个B .1991个C 1992个D .1993个思路点拨 无论魔术师如何变,盒中球的总数为6k+7个,其中k 为自然数,经验证,1993=331×6+7符合要求.故选D .【例7】在100以内同时被2、3、5整除的正整数有多少个?思路点拨 由于2与3互质,3与5互质,5与2互质(这种特性我们也称为2、3、5两两互质),所以同时被2、3、5整除的整数必然被2×3×5=30整除;另—方面,被30整除的正整数必然可同时被2、3、5整除,因此,在100以内同时被2、3、5整除的正整数就是在100以内被30整除的正整数,显然只有30、60、90三个.【例8】某商场向顾客发放9999张购物券,每张购物券上印有一个四位数的号码,从0001到9999号,如果号码的前两位数字之和等于后两位数字之和,则称这张购物券为“幸运券”.证明:这个商场所发放的购物券中,所有的幸运券的号码之和能被101整除. 思路点拨 显然,号码为9999是幸运券,除这张外,如果某个号码n 是幸运券,那么号m=9999—n 也是幸运券,由于9是奇数,所以m ≠n .由于m+n=9999相加时不出现进位,这就是说,除去号码9999这张幸运券外,其余所有幸运券可全部两两配对,而每一对两个号码之和均为9999,即所有幸运券号码之和是9999的整倍数,而101│9999,故知所有幸运券号码之和也能被101整除思考:“如果某个号码n 是幸运券,那么号m=9999—n 也是幸运券”,这是解决问题的关键,请你考虑这句话合理性. 若六位数9381ab 是99的倍数,求整数a 、b 的值.81ab能被9整除,∴8+1+a+b+9+3=21+a+b能被9整除,得3+a+b=9k l(k1为整∵93数).①81ab能被11整除,∴8—1+a—b+9—3=13+a—b能被11整除,得2+a—b=11k2(k2又93为整数).②∵0≤a,b≤9 ∴0≤a+b≤18,-9≤a-b≤9.由①、②两式,得3≤<9k1≤21,-7≤11k2≤1l,知k1=1,或k1=2;k2=0,或,而3+a+b与2+a—b的奇偶性相异,而k1=2,k2=1不符合题意.故把k1=1,k2=0代人①、②两式,解方程组可求得a=2,b=4.【例9】写出都是合数的13个连续自然数.思路点拨方法一:直接寻找从2开始,在自然数2,3,4,5,6,…中把质数全部划去,若划去的两个质数之间的自然数个数不小于13个,则从中取13个连续的自然数,就是符合要求的一组解,例如:自然数114,115,116,…,126就是符合题意的一组解.方法二:构造法我们知道,若一个自然数a是2的倍数,则a+2也是2的倍数,若是3的倍数,则a+3也是3的倍数,…,若a是14的倍数,则a+14也母14的倍数,所以只要取a为2,3,…,14的倍数,则a+2,a+3,…a+14分别为2,3,…,14的倍数,从而它们是13个连续的自然.所以,取a=2×3×4×…×14,则a+2,a+3,…,a+14必为13个都是合数的连续的自然数.【例10】已知定由“若大于3的三个质数a、b、c满足关系式20+5b=c,则a+b+c是整数n的倍数”.试问:这个定理中的整数n的最大可能值是多少?请证明你的结论.思路点拨先将a+b+c化为3(a+2b)的形式,说明a+b+c是3的倍数,然后利用整除的性质对a、b被3整除后的余数加以讨论得出a+2b也为3的倍数.∵=a+b+2a+5b=3(a+2b),显然,3│a+b+c若设a、b被3整除后的余数分别为r a、r b,则r a≠0,r b≠0.若r a≠r b,则r a=2,r b=1或r a=1,r b=2,则2a+5b =2(3m+2)+5(3n+1)=3(2m+5n+3),或者2a+5b=2(3p+1)+5(3q+2);3(2P+59+4),即2a+5b为合数与已知c为质数矛盾.∴只有r a=r b,则r a=r b=1或r a=r b=2.于是a+2b必是3的倍数,从而a+b+c是9的倍数.又2a+5b=2×11十5×5=47时,=a+b+c=11+5+47=63,2a+5b =2×13十5×7=61时,a+b+c =13+7+61=81,而(63,81)=9,故9为最大可能值.注:由余数切入进行讨论,是解决整除问题的重要方法.【例11】一个正整数N的各位数字不全相等,如果将N的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N,则称N为“新生数”,试求所有的三位“新生数”.思路点拨将所有的三位“新生数”写出来,然后设出最大数、最小数,求差后分析求出所有三位“新生数”的可能值,再进行筛选确定.【例12】设N 是所求的三位“新生数”,它的各位数字分别为a 、b 、c (a 、b 、c 不全相等),将其各位数字重新排列后,连同原数共得6个三位数:cba cab bca bac acb abc ,,,,,,不妨设其中的最大数为abc ,则最小数为cba .由“新生数”的定义,得N=abc —cba =(100a+l0b+c)一(100c+l0b+d)=99(a —c).由上式知N 为99的整数倍,这样的三位数可能为:198,297,396,495,594,693,792,891,990.这九个数中,只有954-459=495符合条件,故495是唯一的三位‘新生数”. 注:本题主要应用“新生数”的定义和整数性质,先将三位“新生数”进行预选,然后再从中筛选出符合题意的数。
- 1 -数学奥赛辅导----数论(2) 同余知识、方法、技能同余是数论中的重要概念,同余理论是研究整数问题的重要工作之一.本讲介绍同余的基本概念,基本性质. 1.设m 是一个给定的正整数,如果两个整数a 与b 用m 除所得的余数相同,则称a 与b 对模m 同余,记作)(mod m b a ≡,否则,就说a 与b 对模m 不同余,记作)(mod m b a ≡,显然,)(|)(,)(mod b a m Z k b km a m b a -⇔∈+=⇔≡;每一个整数a 恰与1,2,……,m ,这m 个数中的某一个同余; 2.同余的性质:1).反身性:)(mod m a a ≡;2).对称性:)(mod )(mod m a b m b a ≡⇔≡; 3).若)(mod m b a ≡,)(mod m c b ≡则)(mod m c a ≡;4).若)(mod 11m b a ≡,)(mod 22m b a ≡,则)(mod 2121m b b a a ±≡± 特别是)(mod )(mod m k b k a m b a ±≡±⇔≡;5).若)(mod 11m b a ≡,)(mod 22m b a ≡,则)(mod 2121m b b a a ≡; 特别是)(mod ),(mod m bk ak Z k m b a ≡⇔∈≡则 )(mod ),(mod m b a N n m b a nn≡⇔∈≡则; 6).)(mod )(m ac ab c b a +≡+;7).若)(mod 1),(),(mod m b a m c m bc ac ≡=≡时,则当 )(m o d )(m o d ).(mod ),(m b a mc bc ac dmb a d mc ≡⇔≡≡=特别地,时,当; 8).若)(mod 1m b a ≡,)(mod 2m b a ≡ )(mod 3m b a ≡……………… )(m o d n m b a ≡,且)(mod ],,[21M b a m m m M n ≡⋯⋯=,则3.完全剩余系:一组数y 1,y 2,…,y s 满足:对任意整数a 有且仅有一个y j 是a 对模m 的剩余,即a ≡y j (mod m ),则y 1,y 2,…,y s 称为模m 的完全剩余系。
第十七章 整数问题一、常用定义定理1.整除:设a,b ∈Z,a ≠0,如果存在q ∈Z 使得b=aq ,那么称b 可被a 整除,记作a|b ,且称b 是a 的倍数,a 是b 的约数。
b 不能被a 整除,记作a b.2.带余数除法:设a,b 是两个给定的整数,a ≠0,那么,一定存在唯一一对整数q 与r ,满足b=aq+r,0≤r<|a|,当r=0时a|b 。
3.辗转相除法:设u 0,u 1是给定的两个整数,u 1≠0,u 1 u 0,由2可得下面k+1个等式:u 0=q 0u 1+u 2,0<u 2<|u 1|; u 1=q 1u 2+u 3,0<u 3<u 2; u 2=q 2u 3+u 4,0<u 4<u 3; …u k-2=q k-2u 1+u k-1+u k ,0<u k <u k-1; u k-1=q k-1u k+1,0<u k+1<u k ; u k =q k u k+1.4.由3可得:(1)u k+1=(u 0,u 1);(2)d|u 0且d|u 1的充要条件是d|u k+1;(3)存在整数x 0,x 1,使u k+1=x 0u 0+x 1u 1.5.算术基本定理:若n>1且n 为整数,则k ak aap p p n 2121=,其中p j (j=1,2,…,k)是质数(或称素数),且在不计次序的意义下,表示是唯一的。
6.同余:设m ≠0,若m|(a-b),即a-b=km ,则称a 与b 模同m 同余,记为a ≡b(modm),也称b 是a 对模m 的剩余。
7.完全剩余系:一组数y 1,y 2,…,y s 满足:对任意整数a 有且仅有一个y j 是a 对模m 的剩余,即a ≡y j (modm),则y 1,y 2,…,y s 称为模m 的完全剩余系。
8.Fermat 小定理:若p 为素数,p>a,(a,p)=1,则a p-1≡1(modp),且对任意整数a,有a p≡a(modp).9.若(a,m)=1,则)(m aϕ≡1(modm),ϕ(m)称欧拉函数。
初中数学竞赛:数的整除(同余)【内容提要】一. 同余的概念同余的概念两个整数a 和b 被同一个正整数m 除,所得的余数相同时,称a, b 关于模m 同余.记作a ≡b(mod m).如:8和15除以7同余1,记作8≡15(mod 7), 读作8和15关于模7同余. ∵2003=7×286+1,∴2003≡1 (mod 7);∵-7和6对于模13同余6(余数是非负数)(余数是非负数)∴-7≡6(mod 13);∵35和0除以5,余数都是0(即都能整除)(即都能整除)∴35≡0(mod 5).二. 用同余式判定数的整除用同余式判定数的整除若a ≡b(mod m), 则m|(a -b).即a -b ≡0(mod m)Ûm|(a -b).例如:11≡25(mod 7)Û7|(25-11); 或7|(11-25). ∵25+35≡2+3≡0 (mod 5),∴5|25+35.三. 同余的性质同余的性质(注意同余式与等式在变形中的异同点) 1. 传递性:传递性:)(m o d )(m o d )(m o d mc a m c b m b a ºÞþýüºº. 2. 可加可乘性:îíìº+º+Þþýüºº).(mod )(mod ).(mod )(mod m bd ac m d b c a m d c m b a ;, 推论推论可移性:a ≡b+c (mod m)Þ(a -b)≡c(mod m). 可倍性:a ≡b(mod m)Þka ≡kb(mod m)(k 为正整数). 可乘方:a ≡b(mod m)Þ a n ≡b n (mod m)(n 为正整数). 3. 当d 是a, b, m 的正公因数时,的正公因数时, a ≡b(mod m)Þd b d a º(mod dm ). 如:2是20,26,6的正公因数,的正公因数, 20≡26(mod 6)1310ºÞ(mod 3). 四. 根据抽屉原则:任给m+1个整数,其中至少有两个数对于模m 同余.即至少有两个,其差能被m 整除.例如:任给5个数a, b, c, d, e.其中至少有两个,它们的差能被4整除.∵除以4的余数只有0,1,2,3四种.∴5个数除以4至少有两个同余.【例题】例1. 已知:69,90,125除以正整数n 有相同的余数.求:n 的值的值解:∵69≡90(mod n),90≡125(mod n). ∴ n|(90-69),n|(125-90). 而21,35的最大公约数是7, 记作(21,35)=7(7是质数). ∴n=7例2. 求388除以5的余数.解:∵38≡3 (mod 5),∴388≡38≡(32)4≡(-1)4≡1 (mod 5).(注意注意9除以5余4,-1除以5也是余4,∴32≡-1 (mod 5)例3. 求997的个位数字.解:解: ∵74k+n 与7n 的个位数字相同,的个位数字相同,且9≡1 ( mod 4), ∴99≡19 ≡1(mod 4). ∴997与71的个位数字相同都是7.例4. 求证:7|(22225555+55552222).证明:∵22225555+55552222=(22225)1111+(55552)1111∵2222=7×317+3 ,5555=7×793+4. ∴2222≡3 ( mod 7);5555≡4 (mod 7). ∴22225≡35≡5(mod 7);55552≡42≡2 (mod 7). ∴22225+55552≡5+2≡0 ( mod 7).即22225≡-55552(mod 7). ∴(22225)1111≡(-55552)1111≡-(55552)1111 (mod 7).∴22225555+55552222≡0 (mod 7).∴7|(22225555+55552222).例5. 求使32n -1能被5整除的一切自然数n.解:∵32≡-1 (mod 5) ,∴(32)n ≡(-1)n (mod 5). 32n -1≡(-1) n -1(mod 5) ∵当且仅当n 为偶数时,(-1) n -1=0.∴使32n -1能被5整除的一切自然数n 是非负偶数是非负偶数例6. 已知:a, b, c 是三个互不相等的正整数.求证:a 3b -ab 3, b 3c -bc 3, c 3a -ca 3三个数中,至少有一个数能被10整除.证明:用同余式判定整除法证明证明:用同余式判定整除法证明当正整数n 的个位数是0,1,4,5,6,9时,n 3的个位数也是0,1,4,5,6,9.∴这时n 3≡n (mod 10); 当正整数n 的未位数为2,3,7,8时,n 3 的个位数分别是8,7,3,2.∵8与-2,7与-3,3与-7,2与-8,除以10是同余数,是同余数,∴这时n 3≡-n (mod 10);把三个正整数a, b, c 按个位数的情况,按个位数的情况,分为上述两类时,分为上述两类时,则至少有两个属于同一类.设a, b 的末位数是同一类,那么的末位数是同一类,那么a 3b -ab 3≡ab -ab ≡0(mod 10);或a 3b -ab 3≡(-a)b -a(-b)≡0 (mod 10). ∴10| (a 3b -ab 3)【练习】1. 三个数33,45,69除以正整数N 有相同余数,但余数不是0,那么N=_______.2. 求777的个位数字.3. 求379245除以19的余数;的余数;41989除以9的余数. 4. 求19891990÷1990的余数.5. 四个数2836,4582,5164,6522都被同一个正整数除,所得的余数都相同且不是都被同一个正整数除,所得的余数都相同且不是 0,求除数和余数.6. 求证:7|(33334444+44443333).7. 已知:正整数n>2 . 求证:31111º 个n (mod 4).8. 任给8个整数,其中必有两个,它们的差能被7整除,试证之.9. 求使2n +1能被3整除的一切自然数n.10. 已知已知 69,90,125除以N (N>1) 有同余数,有同余数,那么对于同样的那么对于同样的N ,81同余于() (A )3. (B )4. (C )5. (D )7. (E )8.【答案】1. N=12,6,2.(舍去3,∵余数是0).解法仿例1.2. 个位数字是3.∵7≡-1(mod 4), ∴ 777≡(-1)77(mod 4)……仿例33. 余数是18和1. ∵37≡-1 (mod 19) ∴原式≡-1 ≡18 (mod 19);41989=(43)663 64≡1(mod 9) 64663≡1663 ≡1.4. 余数是1. ∵1989≡-1 (mod 1990) ∴19891990≡(-1)1990≡1 (mod 1990).5. 根据题意根据题意 2836≡4582≡5164≡6522≡r (mod m)而且4582-2836=1746, 6522-5164=1358.∴ m| 1746, 且m|1358, (1746,1358)=2×97∴m=194, 97, 2 (2不合题意.舍去)答:除数为194, 余数是120或除数为97, 余数是236. ∵ 33334444+44443333≡14444+(-1)3333≡0 (mod 7).7. 个个211111111-=n n 00+11≡11≡3 (mod 4).8. 8个正整数分别除以7,必有两个或两个以上是同余数,必有两个或两个以上是同余数9. ∵2≡-1 (mod 3) ∴2n ≡(-1)n (mod 3)2n +1≡(-1)n+1 (mod 3)当且仅当n 奇数时, (-1)n +1≡0 ∴能被3整除的一切正整数n 是奇数是奇数 10. (B).。
数论定理一. 知识要点1. 欧拉定理和费尔马小定理缩系的定义:设m 为正整数,一个模m 的剩余类称为与模m 互素的余类,如果它中的数与m 互素.在与模m 互素的各个剩余类中分别取一个代表所构成的集合称为模m 的一组缩系.很显然,缩系具有以下性质:(1)模m 的缩系中含有ϕ(m )个数(ϕ(m )是小于m 的正整数中且与m 互素的个数).(2)设()m r r ϕ ,1是ϕ(m )个与m 互素的整数,则()m r r ϕ ,1模m 两两不同余.(3)设()1,=m a ,且()m r r ϕ ,1是模m 的一组缩系,则()m ar ar ar ϕ,,,21 是模m 的一组缩系.欧拉(Euler )定理:设m 是大于1的整数,a 为整数,且()1,=m a ,则()()m a m mod 1≡ϕ.For personal use only in study and research; not for commercial use解:设()m x x x ϕ,,,21 是模m 的缩系.因为()1,=m a ,所以()m ax ax ax ϕ,,,21 也是模m 的缩系.这两个缩系分别乘起来得()()()m x x x ax ax ax m m mod ·2121ϕϕ ≡,且()()1,21=m x x x m ϕ .从而()()m a m mod 1≡ϕ )()m a m mod 1≡ϕ.特别地,取m 为质数p ,有费尔马(Fermat )小定理:设p 为质数,a 为整数,p a ,则()p a p mod 11≡-.它也常常写成()p a a p mod ≡.这里不需假定p a ,但p 应为素数.For personal use only in study and research; not for commercial use2. 中国剩余定理(孙子定理)中国剩余定理:设k m m m ,,21是两两互质的正整数,k a a a ,,,21 是任意整数,则同余方程组()()()⎪⎪⎩⎪⎪⎨⎧≡=≡.mod ,mod ,mod 2211k k m a x m a x m a x 对模k m m m 21有唯一解. 解:设()k i m m m m M iki ,,2,121 ==.依题设,有()1,=i i m M ,由裴蜀定理知,存在整数i b ,使得()i i i m b M mod 1≡,k i ,2,1=.对k k k M b a M b a M b a x +++= 222111,其中i i i M b a 能被k i i m m m m ,,,,111+-整除,而被i m 除的余数恰为i a .从而∑==ki i i i M b a x 1是同余方程组的解.又设x ,y 均为同余方程组的解,则有y x m -1,y x m -2,…,y x m k -,即y x m m m k - 21,亦即()k m m m y x 21mod ≡.所以同余方程组对模k m m m 21有唯一解.3. 威尔逊(wilson )定理威尔逊(wilson )定理:设p 为质数,则()()p p mod 1!1-≡-.解:对于任意整数a ,且1≤a ≤p -1,由裴蜀定理知,存在整数a ’,使得()p aa mod 1'≡.称a ’为a 的数论倒数,且不妨设1≤a ’≤p -1.若有整数b ,满足()p ba mod 1'≡,则将此式两边同乘以a ,有()p a b mod ≡.这说明对于不同整数a ,1≤a ≤p -1,对应着不同的数论倒数a ’.又若整数a 的数论倒数是它自身,则()p a a mod 1≡⋅,亦即()()()p a a mod 011≡-+,故1≡a 或()p mod 1-.当2=p 时,显然有()()p p mod 1!1-≡-.当p >2时,有2,3,…,p -2这p -3个数恰好配成互为数论倒数的23-p 对数,故它们的积()()p p p mod 1123223≡≡-⨯⨯⨯- .于是()()()p p p mod 1111!1-≡-⨯⨯≡-.4. 拉格朗日定理设p 为质数,n 是非负整数,多项式()01a x a x a x f n n +++= 是一个模p 为n 次的整系数多项式(即p a n ),则同余方程()()p x f mod 0≡ (※),至多有n 个解(在模p 的意义下).证明:我们对n 用归纳法.当0=n 时,()0a x f =,因为p a 0,故同余方程(※)无解,命题成立.设当l n =时命题成立,则当1+=l n 时,若命题不成立,即同余方程(※)至少有2+l 个解,设为()p c c c x l mod ,,,221+≡ ①,我们考虑多项式()()()()()11111111c x a c x a c x a c f x f l l l l l l -++-+-=-+++ )()111c x a c l l-++- ()()()()x h c x x a c x l l 111-=+-=+ ②,其中()x h 是l 次多项式并且首项系数1+l a ,满足1+l a p ,从而由归纳假设知l 次同余方程()()p x h mod 0≡ ③,至多有个l 个解,但由①,②可知同余方程③至少有l +1个解.()p c c c x l mod ,,,232+≡ ,矛盾!故当1+=l n 时命题成立.综上所述,命题得证.二. 典型例题例1. 已知正整数k ≥2,k p p p ,,,21 为奇质数,且()1,21=k p p p a .证明:()()()111121----k p p p a 有不同于k p p p ,,21的奇质因数.证明:由()1,21=k p p p a ,有()1,1=p a .由费尔马小定理,()11mod 11p ap ≡-.又k ≥2,p p p ,,,32 k p p p ,,,32 为奇质数,则()()()211121---k p p p 为正整数,从而()()()()12111mod 121p ak p p p ≡--- ,即()()()12111121----k p p p ap .同理,()()()1211121--⋯--k p p p a能被P 2,P 3,…P k 整除,从而()()()1211121+-⋯--k p p p a不能被k p p p p ,,,,321 整除.注意到()()()211121---k p p p 是一个偶数,则()()()0211121≡---k p p p a或1(mod4),因此4不整除()()()1211121+---k p p p a,故()()()1211121+---k p p p a异于k p p p ,,,21 的奇质因数.所以()()()()()()⎪⎪⎭⎫ ⎝⎛-=-------1121111112121k k p p p p p p a a()()()⎪⎪⎭⎫⎝⎛+---1211121k p pp a有异于k p p p ,,,21 的奇质因数.例2. 对于自然数n ,如果对于任何整数a ,只要1-n a n ,就有12-na n ,则称n 具有性质P .(34届IMO预)(1)求证:每个素数n 都具有性质P . (2)求证:有无穷多个合数也都具有性质P .证:(1)设p n =为素数且1-p a p ,于是()1,=p a .由费尔马小定理知11--p a p ,而()()1111-+-=--a a a a p p .故1-a p ,即()p a m o d 1≡.因此,()p a i mod 1≡,1,,2,1,0-=p i .上述p 个同余式累和,得()p p a a a p p mod 0121≡≡++++-- .故()()11212++++---a a a a p p p ,即12-pa p .(2)设n 是具有性质P 的合数.若1-na n ,则()1,=a n .由欧拉定理,有()()n a n mod 1≡ϕ,又因()n a n mod 1≡,由阶的性质知,()()()n a n n mod 1,≡ϕ.如果()()1,=n n ϕ,则()n a mod 1≡,于是利用(1)中证明可得12-na n .因此,问题化为求无穷多个合数n ,使()()1,=n n ϕ.对任何素数p ≥5,取p -2的素因数q ,并令pq n =.这时()()()11--=q p n ϕ.因为()2-p q ,所以q (p -1).又因q ≤p -2<p ,故p (q -1).因此,有()()1,=n n ϕ.对于每个这样的合数n ,若()1-na n ,则()1-a n ,因而()n a k mod 1≡,,2,1,0=k .故()12-n a n .因为对于每个素数p ≥5都可按上述程序得到具有性质P 的相应合数()p n ,且p <()p n <p 2,所以,有无穷多个合数n 具有性质P .例3. 求所有整数n ≥2,满足:对所有的整数a ,b ,且()()1,,==n b n a ,()n b a mod ≡的充分必要条件是()n ab mod 1≡.(第41届IMO 预选题)解:若n 有奇素因子p ,设n p a||,记1n p n a⋅=,N a ∈.由中国剩余定理知,存在Z x ∈,使()n x mod 1≡,()a p x mod 2≡,则()1,=n x .取x b a ==,即知()n x mod 12≡,从而()a p mod 14≡,故3=p ,且1=a .因此()1,5=n .取5==b a ,即知()n mod 125≡,从而24n ,故,12,8,6,4,3,2=n 24,12,8,6,4,3,2.下证:当n 取上述值时,满足条件.注意到,当2 a 时,有()8mod 12≡a ;当3 a 时,有()3mod 12≡a ,又24n ,32243⨯=,故必有()n a mo d 12≡(因为()1,=n a ).对Z b a ∈,,且()()1,,==n b n a ,()n b a mod ≡,则()n ab mod 1≡.对Z b a ∈,,且()()1,,==n b n a , ()n ab mod 1≡,则()n ab a mod 12≡≡.从而()a b a n -又()1,=n a ,有()b a n -,即()n b a mod ≡.综上,所求n 的值为2,3,4,6,8,12,24.例4. 求所有正整数n ,满足对所有的正整数n ,存在一个整数m ,使12-n是92+m 的因子.(第39届IMO 预选题)解:引理1:若p 为4k -1(k ≥2)型质数,则不存在Z m ∈,使()p m mod 92-≡.证明:设)p m m mod 31≡()p m m mod 31≡(∵()13,=p ,∴m 1存在),N m ∈1.又∵()p m mod 912-≡, ∴)(mod 121p m -≡.由费马小定理知,()()()p m m p p p mod 11121212111-=-≡=≡---,矛盾.引理2:当1≤i <j 时,有()112,1222=++ji )112,12=++j,且()13,122=+i .证明:∵()()()()12mod 211121222222+≡+-≡+=+--i i j ij ij ,∴()()12,1212,12222=+=++ij i )()12,1212,122=+=++i j.又∵()()3mod 2111222≡+-≡+i i ,∴()()13,23,122==+i.对于原题,若()()9122+-m n,n ≥2.设t n S ⋅=2,2 t .若t ≥3,则()()1212-+n t ,从而()()9122+-m t .又必存在4k -1型素数p ,且3≠p ,()12-tp (否则,()4mod 1111121≡⨯⨯⨯≡-≡- t ,矛盾).此时()92+m p ,与引理1矛盾.故t =1,从而S n 2=,且()()()1212123121212222+++⋅=--S S.由引理2及中国剩余定理知,存在N m ∈1,使()()12m o d 22211+≡-ii m ,i =1,2,…,s -1.故()((2m o d0121222211≡+≡+-i m )()()12mod 0122221+≡+≡-ii .令13m m =,有()()()12mod 013922122-≡+=+Sm m .因此,()()9122+-m n .综上,所求正整数n 为2的幂次2i (i =1,2,…).数论中存在性问题是最常见的,除了运用数论存在性定理来解决外,还需要有直接构造的能力.例5. 证明:每个正有理数能被表示成3333d c b a ++的形式,且其中a ,b ,c ,d 是正整数.(40届IMO 预选题)证明:设该正有理数为p .(1)当⎪⎭⎫⎝⎛∈2,21p 时,()()()()333321121p p p p p -++-++=,其中2p -1,2-p ,p +1+∈Q .(2)当p ≥2时,由于⎪⎭⎫ ⎝⎛∈⎪⎭⎫ ⎝⎛1,41323,故有N n ∈,使⎪⎭⎫ ⎝⎛∈⋅⎪⎭⎫ ⎝⎛2,21323p n,由(1)有333333333322132132213223⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=p p p p p n n n n n .(3)当⎥⎦⎤ ⎝⎛∈21,0p 时,由于()4,1233∈⎪⎭⎫ ⎝⎛,故有N n ∈,使⎪⎭⎫ ⎝⎛∈⋅⎪⎭⎫ ⎝⎛2,21233p n ,由(1)有333333333232123123212332⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=p p p p p n n n n n .综上,总有+∈Q d c b a m 1111,,,,,使()()31313131313131313d c mb ma d c b a m p ++=++⋅=,设ma 1,mb 1,c 1,d 1的分母公倍数为n ,则取N mna a ∈=1,N mnb b ∈=,N nc c ∈=1,N nd d ∈=1,且3333dc b a p ++=.结论成立. 说明:这里是直接构造证明,首先发现恒等式()()()()333321121p p p p p -++-++=,进一步对p ≥2,或0<p ≤21构造.例6. 证明:不存在非负整数k 和m ,使得()mk k !14848+=+.证明:注意到0=k 或0=m 时,上述不定方程无解,于是,可设满足上述方程的k ,m 为正整数.(1)若1+k 为合数,设pq k =+1,2≤p ≤q ,注意到,应有48 | k !.故k≥6,于是1<2p ≤k ,故(1+k )| k !,进而(1+k )| 48,结合1+k ≥7,可知1+k =8,12,24或48,分别代入,两边约去48后,可得矛盾.(2)若1+k 为质数,由威尔逊定理,可知k !()1mod 1+-≡k ,于是,1+k | 47,进而1+k =47,这要求46!+48=48×47m ①,从而m >1,两边除以48可知m 47148!46=+,两边模4,可知()()4mod 11≡-m ,故m 为偶数.设m =2k ,则由①可知2()()14714748!46+-=k k ,由232 |48!46,而()23mod 2147≡+k,故232 | 147-k,利用二项式定理()()223mod 146123247+≡+⨯=k k,从而23 | k ,进而m ≥46,这时,①式右边比左边大.矛盾.注:一般地,若n >4,且n 为合数,则n |(n -1)!,依此可以证明威尔逊定理的逆定理也成立. 例7. 设p 是质数,证明:存在一个质数q ,使得对任意整数n ,数p n p-不是q 的倍数.(第44届IMO 试题)证明:由于()212mod 1111p p p p p p p p p +≡++++=--- .则11--p p p 中至少有一个质因子q ,满足q 对2p 的模不等于1。
竞赛讲座-整数的整除性和同余
一、整数的整除性
1.整数的整除性的有关概念、性质
(1)整除的定义:对于两个整数a、d(d≠0),若存在一个整数p,使得
成立,则称d整除a,或a被d整除,记作d|a。
若d不能整除a,则记作d a,如2|6,4 6。
(2)性质
1)若b|a,则b|(-a),且对任意的非零整数m有bm|am
2)若a|b,b|a,则|a|=|b|;
3)若b|a,c|b,则c|a
4)若b|ac,而(a,b)=1((a,b)=1表示a、b互质,则b|c;
5)若b|ac,而b为质数,则b|a,或b|c;
6)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)
7) 任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2
整除。
8) 任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。
这个性质可以推广到任意个整数连续之积。
2.整除性问题的证明方法
例1证明:对任何整数n都为整数,且用3除时余2。
证明
∵为连续二整数的积,必可被2整除.
∴对任何整数n均为整数,
∵为整数,即原式为整数.
又∵
,
2n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质,
∴是能被3整除的整数.
故被3除时余2.
例2 一整数a若不能被2和3整除,则a2+23必能被24整除.
证明∵a2+23=(a2-1)+24,只需证a2-1可以被24整除即可.
∵2 .∴a为奇数.设a=2k+1(k为整数),
则a2-1=(2k+1)2-1=4k2+4k=4k(k+1).
∵k、k+1为二个连续整数,故k(k+1)必能被2整除,
∴8|4k(k+1),即8|(a2-1).
又∵(a-1),a,(a+1)为三个连续整数,其积必被3整除,即3|a(a-1)(a+1)=a(a2-1),
∵3 a,∴3|(a2-1).3与8互质, ∴24|(a2-1),即a2+23能被24整除.
例3 设有n个实数x1,x2,…,x n,其中每一个不是+1就是-1,
且试证n是4的倍数.
证明设(i=1,2,…,n-1),
则y i不是+1就是-1,但y1+y2+…+y n=0,故其中+1与-1的个数相同,设为k,于是n=2k.又y1y2y3…y n=1,即(-1)k=1,故k为偶数,
∴n是4的倍数.
其他方法:
整数a整除整数b,即b含有因子a.这样,要证明a整除b,采用各种公式和变形手段从b中分解出因子a就成了一条极自然的思路.
例4 使n3+100能被n+10整除的正整数n的最大值是多少?
解n3+100=(n+10)(n2-10n+100)-900.
若n+100能被n+10整除,则900也能被n+10整除.而且,当n+10的值为最大时,相应地n的值为最大.因为900的最大因子是900.所以,n+10=900,n=890.
例5 设a、b、c为满足不等式1<a<b<c的整数,且(ab-1)(bc-1)(ca-1)能被abc整除,求所有可能数组(a,b,c).
解∵(ab-1)(bc-1)(ca-1)
=a2b2c2-abc(a+b+c)+ab+ac+bc-1,①
∵abc|(ab-1)(bc-1)(ca-1).
∴存在正整数k,使
ab+ac+bc-1=kabc, ②
k=-<<<∴k=1.
若a≥3,此时 1=-<矛盾. 已知a>1. ∴只有a=2.
当a=2时,代入②中得2b+2c-1=bc,
即 1=<
∴0<b<4,知b=3,从而易得c=5.
说明:在此例中通过对因数k的范围讨论,从而逐步确定a、b、c是一项重要解题技巧.
二、同余
1. 同余式及其应用
定义:设a、b、m为整数(m>0),若a和b被m除得的余数相同,则称a和b
对模m同余.记为或
一切整数n可以按照某个自然数m作为除数的余数进行分类,即n=pm+r(r=0,1,…,m-1),恰好m个数类.于是同余的概念可理解为,若对n1、n2,有n1=q1m+r,n2=q2m+r,那么n1、n2
对模m的同余,即它们用m除所得的余数相等.
利用整数的剩余类表示,可以证明同余式的下述简单性质:
(1) 若,则m|(b-a).反过来,若m|(b-a),则;
(2) 如果a=km+b(k为整数),则;
(3) 每个整数恰与0,1,…,m-1,这m个整数中的某一个对模m同余;
(4) 同余关系是一种等价关系:
①反身性;
②对称性,则,反之亦然.
③传递性,,则;
(5)如果,,则
①;
②特别地
应用同余式的上述性质,可以解决许多有关整数的问题.
例1求使2n+1能被3整除的一切自然数n.
解∵∴
则2n+1
∴当n为奇数时,2n+1能被3整除;当n为偶数时,2n+1不能被3整除. 例2 求2999最后两位数码.
解考虑用100除2999所得的余数. ∵
∴
又
∴
∴
∴2999的最后两位数字为88.
例3 求证31980+41981能被5整除.
证明∵
∴
∴
∴。