金陵中学2013-2014学年度第一学期高三数学期中试卷
- 格式:doc
- 大小:1.34 MB
- 文档页数:16
一.基础题组1. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知4cos()65πα-=,则sin()3πα+= .2. 【江苏省兴化市安丰高级中学2014届高三】已知)0,2(πα-∈,53cos =α,则=+)4tan(πα .3.【江苏省兴化市安丰高级中学2014届高三】在ABC ∆中,若2,60,a B b =∠=︒=则c = .4. 【江苏省兴化市2013~2014学年度第一学期期中考试高三】在ABC ∆中,已知0sin sin sin sin sin 222=---C B C B A ,则A ∠的大小为 .5. 【江苏省扬州中学2013—2014期中考试模拟】设向量(cos ,sin )a αα=,(cos ,sin )b ββ= ,其中πβα<<<0,若|2||a b a b +=- ,则βα-= .6. 【盐城市2014届高三年级第一学期期中考试】函数2cos y x =的最小正周期为 .7. 【金陵中学2013-2014学年度第一学期高三期中试卷数学】已知f (x )=3sin(2x -π6),若存在α∈(0,π),使f (α+x )= f (α-x )对一切实数x 恒成立,则α= .8. 【江苏省徐州市2013-2014第一学期高三期中试题】已知△ABC 中,c b a ,,分别是角A ,B ,C 的对边,2=a ,A = 45°,B = 60°,那么△ABC 的面积=∆ABC S .9.【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知ABC ∆的周长为1,且sin sin A B C +=(1)求边AB 的长;(2)若ABC ∆的面积为1sin 6C ,求角C .10.【江苏省兴化市安丰高级中学2014届高三】已知(cos ,sin ),(cos ,sin )a b ααββ==. (1)若67πβα=-,求a b ⋅ 的值; (2)若4,58a b πα⋅== ,且⎪⎭⎫⎝⎛-∈-0,2πβα,求tan()αβ+的值.【答案】(1)2-;(2)7. 【解析】11.【江苏省扬州中学2013—2014期中考试模拟】已知函数2()2sin cos 1f x x x x =-++ ⑴求()f x 的最小正周期及对称中心; ⑵若[,]63x ππ∈-,求()f x 的最大值和最小值.12.【盐城市2014届高三年级第一学期期中考试】已知函数()2sin(2)f x x ϕ=+,其中角ϕ的终边经过点P ,且0ϕπ<<. (1)求ϕ的值;(2)求()f x 在[0,]π上的单调减区间.考点:三角函数的定义、()sin()f x A x ωϕ=+的单调性.二.能力题组1.【江苏启东中学2014届上学期期中模拟高三数学】将函数()2sin()3f x x πω=-(0ω>)的图象向左平移3πω个单位,得到函数()y g x =的图象,若()y g x =在[0,]4π上为增函数,则ω的最大值为2. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】求值:002cos10sin 20cos 20-= .3. 【江苏省徐州市2013-2014第一学期高三期中试题】方程0cos 3sin =++a x x 在)2,0(π内有相异两解βα,,则=+βα .【答案】3π或37π【解析】4. 【盐城市2014届高三年级第一学期期中考试】在ABC ∆中,若22()||5C A C B A B A B+⋅= ,则tan tan AB= .5. 【江苏省兴化市安丰高级中学2014届高三】在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且 .3tan )(222bc A a c b =-+(1)求角A ;(2)若2a =,求ABC ∆面积S 的最大值.6. 【江苏省兴化市2013~2014学年度第一学期期中考试高三】在△ABC 中,内角,,A B C所对的边分别为,,a b c ,已知m ()A A sin 3,cos 2=,n ()A A cos 2,cos -=,m·n 1-=.(1)求A ∠的大小;(2)若32=a ,2=c ,求△ABC 的面积.7. 【江苏省徐州市2013-2014第一学期高三期中试题】设向量)sin ,2(θ=,)cos ,1(θ= ,θ为锐角.(1)若136a b ⋅= ,求θθcos sin +的值;(2)若a b ,求)32sin(πθ+的值.8.【江苏省通州高级中学2013-2014学年度秋学期期中考试高三数学试卷】在△ABC中,内角A,B,C所对边长分别为a,b,c, =8,∠BAC=θ,a=4,(1)求b·c的最大值及θ的取值范围;(2)求函数f(θ)=23sin2(π4+θ)+2cos2θ-3的最值.9. 【盐城市2014届高三年级第一学期期中考试】在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,设(1,1)m = ,(cos ,sin )n A A =- ,记()f A m n =⋅.(1)求()f A 的取值范围;(2)若m 与n 的夹角为3π,3C π=,c =,求b 的值.10. 【金陵中学2013-2014学年度第一学期高三期中试卷数学】 已知向量a =(2cos x ,2sin x ) ,b =(3cos x , cos x ),设函数f (x )=a •b -3, 求: (1) f (x )的最小正周期和单调递增区间;(2)若()()26212f f απαπ--+=, 且α∈(π2,π). 求α. 【答案】(1) 22T ππ== , 函数()f x 的单调递增区间为5[,]()1212k k k Z ππππ-+∈ ;(2) 712πα=或1112π.【解析】三.拔高题组1. 【江苏启东中学2014届上学期期中模拟高三数学】已知)2sin ,2(),sin ,1(2x b x a ==,其中()0,x π∈,若a b a b ⋅=⋅,则tan x =2. 【江苏省通州高级中学2013-2014学年度秋学期期中考试高三数学试卷】 已知ααcos 21s in +=,且)2,0(πα∈,则)4sin(2cos παα-的值为__ ____.3. 【江苏启东中学2014届上学期期中模拟高三数学】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin sin tan cos cos A B C A B+=+.(1)求角C 的大小;(2)若△ABC 的外接圆直径为1,求22a b +的取值范围. 【答案】(1)3C π=;(2)223342a b <+≤;【解析】试题分析:(1)sin sin tan cos cos A B C A B +=+中有正切和正弦、余弦,这样的问题一般是“切化弦”,统一为同名三角函数后再利用三角函数的相关公式进行变形解答;(2)利用正弦定理,22a b +可化为角,A B 的三角函数,再利用3C π=,可消去一元,问题于是就转化为三角函数的值域问题.试题解析:(1)因为sin sin tan cos cos A B C A B +=+,即sin sin sin cos cos cos C A B C A B+=+,所以sin cos sin cos cos sin cos sin C A C B C A C B +=+, 即 sin cos cos sin cos sin sin cos C A C A C B C B -=-,得 sin()sin()C A B C -=-. …………………………………………………4分 所以C A B C -=-,或()C A B C π-=--(不成立). 即 2C A B =+, 得 3C π=. ………………………………7分(2)由3C π=,设,33A B ππαα=+=-,2πππ0,,333A B α<<<<知-.因2sin sin ,2sin sin a R A A b R B B ====, ………………………………………8分 故22221cos 21cos 2sin sin 22A B a b A B --+=+=+=12π2π11cos(2)cos(2)1cos 22332⎡⎤-++-=+⎢⎥⎣⎦ααα. …………………12分ππ2π2π,2,3333αα<<<<由-知-1cos 212α-<≤,故223342a b <+≤.…………14分考点:两角和与差的三角函数、正弦定理.4. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】如图,两座建筑物AB ,CD 的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m 和15m ,从建筑物AB 的顶部A 看建筑物CD 的张角045CAD ∠=. (1)求BC 的长度;(2)在线段BC 上取一点P (点P 与点B ,C 不重合),从点P 看这两座建筑物的张角分别为APB α∠=,DPC β∠=,问点P 在何处时,tan()αβ+最小?BC的长度是18 m.………………………7分。
江苏省南京市金陵中学2007—2008学年度第一学期期中考试高一数学2007.11.16一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.将答案填在答案卷的表格内)1. 已知集合P ={x ∈N |1≤x ≤10},集合Q ={x ∈R |x 2+x -6=0},则P ∩Q 等于 (A ){1,2,3} (B ){2,3} (C ){1,2} (D ){2}2. 函数f (x )=3x 21-x +lg(3x +1)的定义域是(A )(-13,+∞)(B )(-13,1)(C )(-13,13)(D )(-∞,-13)3. 已知log 12b <log 12a <log 12c ,则 (A )2b >2a >2c(B )2a >2b >2c(C )2c >2b >2a(D )2c >2a >2b4. 函数f (x )=9-x 2x的图象关于(A )x 轴对称 (B )y 轴对称 (C )原点对称 (D )直线x -y =0对称5. 函数y =f (x )是R 上的偶函数,且在(-∞,0]上是增函数,若f (a )≤f (2),则实数a 的 取值范围是 (A )a ≤2 (B )a ≥-2 (C )-2≤a ≤2 (D )a ≤-2或a ≥26. 设f (x )=3x +3x -8,用二分法求方程3x +3x -8=0在x ∈(1,2)内近似解的过程中,计算得到f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根落在区间 (A )(1,1.25) (B )(1.25,1.5) (C )(1.5,2) (D )不能确定二、填空题(本大题共8小题,每小题4分,共32分,请将答案填在答卷纸上) 7. 函数y =2x的值域为____▲____.8. 已知f (x )=|log a x |,其中0<a <1,则f (2),f (13),f (14)由大到小排列为_____▲_____.9. 若函数y =mx 2-6x +2的图像与x 轴只有一个公共点,则m 的取值集合为______▲___. 10. 若log a 23<1(a >0且a ≠1),则实数a 的取值范围是_____▲_____.11. 已知函数f (x )=ax 7+bx -2,若f (2008)=10,则f (-2008)的值为_____▲_____.12. 函数f (x )=⎩⎨⎧-2x , x ≤0,x 2+1,x >0,若f (x )=10,则x =_____▲_____.13.填写后面表格,其三个数依次为:____▲____.14.关于函数y=log2(x2-2x+3)有以下四个结论:①定义域为(-∞,-3]∪(1,+∞);②递增区间为[1,+∞);③最小值为1;④图象恒在x轴的上方.其中正确结论的序号是_______▲_______.三、解答题(本大题共5小题,共50分,解答应写出文字说明,证明过程或演算步骤)15.(本题满分8分)(1)化简:0.25-1×(32)12×(274)14;(2)已知2lg(x-2y)=lg x+lg y,求log2xy的值.16.(本题满分10分)设函数f(x)=|x2-4x-5|,x∈R.(1)在区间[-2,6]上画出函数f(x)的图像;(2)写出该函数在.R.上.的单调区间.17.(本题满分10分)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时可全部租出;当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月效益最大?最大效益是多少?18.(本题满分10分)已知幂函数f(x)=x(2-k)(1+k)(k∈Z)满足f(2)<f(3).(1)求实数k的值,并写出相应的函数f(x)的解析式;(2)对于(1)中的函数f(x),试判断是否存在正数m,使函数g(x)=1-mf(x)+(2m-1)x,在区间[0,1]上的最大值为5.若存在,求出m的值;若不存在,请说明理由.19. (本题满分12分)已知二次函数f (x )=ax 2+bx +c .(1) 若a >b >c ,且f (1)=0,证明f (x )的图象与x 轴有2个交点;(2) 在(1)的条件下,是否存在m ∈R ,使得f (m )=-a 成立时,f (m +3)为正数,若存在,证明你的结论,若不存在,请说明理由;(3) 若对x 1,x 2∈R ,且x 1<x 2,f (x 1)≠f (x 2),方程f (x )=12[f (x 1)+f (x 2)]有两个不等实根,证明必有一个根属于(x 1,x 2).江苏省南京市金陵中学2007—2008学年度第一学期期中考试高一数学答案一、选择题:本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共8小题,每小题4分,共32分.将答案填在相应的横线上.7.[1,+∞) 8.f (14),f (13),f (2)9.{0,92}10.(0,23)∪(0,+∞)11. -14 12.3或-5 13.3,2,1 14.②③④三、解答题:本大题共5小题,共50分,解答应写出文字说明,证明过程或演算步骤. 15.(本题满分8分) (1)解:原式=4×2-12×314×2714×4-14=4×2-12×314×334×2-12=4×2-1×3=6.(2)解:根据题意,得⎩⎨⎧x >0,y >0,x -2y >0,( x -2y )2=xy ,解得⎩⎨⎧x >2y >0,x =y ,或x =4y ,因此x =4y .所以log 2 xy=log 24=4.16.(本题满分10分)22(2) 函数在(-∞,-1]上单调递减;函数在[-1,2]上单调递增; 函数在[2,5]上单调递减; 函数在[5,+∞)上单调递增.17.(本题满分10分) 解:(1)3600-3000=600(元) 600÷50=12(辆) 100-12=88(辆)答:当每辆车的月租金为3600元时,能租出88辆.(2)设每辆车的月租金定为(3000+50x )元时,租赁公司的月效益为y 元,则y =(100-x )(3000+50x -150)-50x ,其中x ∈N , 对于y =(100-x )(3000+50x -150)-50x=-50(x -21)2+307050,当x =21时,此时月租金为3000+50×21=4050(元),y max =307050(元). 答:当每辆车的月租金定为4050元时,租赁公司的月效益最大,为307050元. 18.(本题满分10分) 解:(1)对于幂函数f (x )=x (2-k )(1+k )满足f (2)<f (3), 因此(2-k )(1+k )>0, 解得-1<k <2, 因为k ∈Z , 所以k =0,或k =1, 当k =0时,f (x )=x 2,当k =1时,f (x )=x 2,综上所述,k 的值为0或1,f (x )=x 2.(2)函数g (x )=1-mf (x )+(2m -1)x=-mx 2+(2m -1)x +1,因为要求m >0,因此抛物线开口向下, 对称轴x =2m -12m,当m >0时,2m -12m =1-12m <1,因为在区间[0,1]上的最大值为5,所以⎩⎨⎧1-12m >0,g (1-12m )=5,或⎩⎪⎨⎪⎧1-12m ≤0,g (0)=5,解得m =52+6满足题意.19. (本题满分12分) 解:(1)因为f (1)=0, 所以a +b +c =0, 又因为a >b >c , 所以a >0,且c <0, 因此ac <0, 所以Δ=b 2-4ac >0, 因此f (x )的图象与x 轴有2个交点.(2)由(1)可知方程f (x )=0有两个不等的实数根, 不妨设为x 1和x 2, 因为f (1)=0, 所以f (x )=0的一根为x 1=1, 因为x 1+x 2=-b a ,x 1x 2=ca ,所以x 2=-b a -1=ca,因为a >b >c ,a >0,且c <0,所以-2<x 2<0.因为要求f (m )=-a <0, 所以m ∈(x 1,x 2), 因此m ∈(-2,1), 则m +3>1,因为函数y =f (x )在[1,+∞)上单调递增; 所以f (m +3)>f (1)=0成立.(3)构造函数g (x )=f (x )-12[f (x 1)+f (x 2)],则g (x 1)=f (x 1)-12[f (x 1)+f (x 2)]=12[f (x 1)-f (x 2)],g (x 2)=f (x 2)-12[f (x 1)+f (x 2)]=12[f (x 2)-f (x 1)],于是g (x 1)g (x 2)=14[f (x 1)-f (x 2)][f (x 2)-f (x 1)]=-14[f (x 1)-f (x 2)]2,因为f (x 1)≠f (x 2), 所以g (x 1)g (x 2)=-14[f (x 1)-f (x 2)]2<0,所以方程g (x )=0在(x 1,x 2)内有一根, 即方程f (x )=12[f (x 1)+f (x 2)]必有一根属于(x 1,x 2).。
江苏金陵中学2008—2009学年度高三第一学期期中试卷数 学 试 题1.计算=︒-)330sin( 。
2.已知=⋂∈==∈==B A R x x y y B R x x y y A 则},,|{},,sin |{2。
3.椭圆124322=+y x 的 离心率为 。
4.若i b i i a -=-)2(,其中i R b a ,,∈是虚数单位,则=+b a。
5.右图是某算法的流程图,则执行该算法输出的结果是=S 。
6.函数)12lg()(xa x f ++=为奇函数,则实数=a 。
7.“0<c ”是“实系数一元二次方程02=++c x x 有两异号实根”的 条件(填“充分不必要”、“必要不充分”、“充要”或者“既不充分又不必要”) 8.函数],0[,sin cos )(π∈+=x x x x f 的最大值是 。
9.直线250154322=+=-+y x y x 被圆截得的弦AB 的长为 。
10.在公差为正数的等差数列}{n a 中,n S a a a a ,0,011101110<<+且是其前n 项和,则使n S 取最小值的n 是 。
11.已知向量a 和b 的夹角是60°,=-⊥==m b ma b b a 则实数且),(,2,1 。
12.函数)2sin 2lg(cos)(22xx x f -=的定义域是 。
13.在ABC ∆中,若=+=C B C B A tan tan ,cos cos 2sin 则 。
14.设函数0)(),()(3=+-=x f b bx x x f 若方程为常数的根都在区间[-2,2]内,且函数)(x f 在区间(0,1)上单调递增,则b 的取值范围是 。
15.(14分)已知.02cos 22sin=-xx (I )求x tan 的值; (II )求xx x sin )4cos(22cos +π的值16.(14分)在直角坐标系中,O 为坐标原点,设直线l 经过点)2,3(P ,且与x 轴交于点F (2,0)。
南京市金陵中学2014届高三第四次模拟考试数学试题一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.函数)2cos(3π-=x y 的最小正周期为 .2==T ππ.2.已知复数的模为 .【答案解数z 满足(2)1z i i -=+(i 为虚数单位),∴()()211223i i iz i i i-++=+=+=--=【思路点拨】先解出复数z 的式子,再利用两个复数代数形式的乘除法,虚数单位i 的幂运算性质,进行运算.【典型总结】本题考查复数的模的定义,两个复数代数形式的乘除法,虚数单位i 的幂运算性质,两个复数相除,分子和分母同时除以分母的共轭复数. 3.抛物线241x y =的准线方程是 . 【知识点】抛物线的简单性质.【答案解析】1y =-解析 :解:由题得24x y =,所以:2 4.p p ==1=,故准线方程为:1y =-.故答案为1y =-.【思路点拨】先把其转化为标准形式,求出p 即可得到其准线方程. 4.集合{3,2},{,},{2},aA B a b A B A B ====若则 .【知识点】集合的交集与并集.【答案解析】{}1,2,3解析 :解:因为{}2A B =,所以22a =,1a =,则2b =.所以{}1,2,3AB =,故答案为{}1,2,3.【思路点拨】由已知可确定两个集合中必有2这个元素,所以由22a=可确定a ,然后就可以确定b 的值.5.根据如图所示的伪代码,当输入a 的值为3时,最后输出的S 的值 为 ▲ .【知识点】根据伪代码求输出结果.【答案解析】21解析 :解:分析程序中各变量、各语句的作用, 再根据流程图所示的顺序,可知:该程序的作用是累加,当不满足条件i ≤3时推出循环. 此时S=3+6+12=21,故输出的S 值为21. 故答案为:21.【思路点拨】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加,当不满足条件i ≤3时推出循环,得到S 的值即可.6.为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图所示,则该组数据的方差()()()()()()222222141817181818181820182118⎡⎤-+-+-+-+-+-+⎣⎦2人, 16=,∴A ,B 两人中至少有1人被录用的概率2224151166C P C =-=-=.第5题8.已知点P (x ,y ) 满足条件3),(02,,0+=⎪⎩⎪⎨⎧≤++≤≥x z k k y x x y x 若为常数y 的最大值为8,则k = .【知识点】简单线性规划.【答案解析】-6解析 :解:画出可行域将3z x y =+变形为画出直线13y x =-最大,联立方程20y x x y k ì=ïí++=ïî得x y ì=-ïïíï=-ïî9.在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点.若·1AC BE =, 则AB 的长为 .数量积运算法;一元二次方程的解法. 1,,AC AB AD BE BC CE AD AB =+=+=- ∴()221111222AC BEAB AD AD AB AD ADAB AB 骣琪?+-=+?=琪桫, 20AB AD AB -?,AB >0,AB =【思路点拨】利用向量的运算法则和数量积运算法则即可得出. 10.已知正四面体的棱长为2,则它的外接球的表面积的值为 .【知识点】球内接多面体.【答案解析】3p 解析 :解:正四面体扩展为正方体,它们的外接球是同一个球,所以外接球的表面积为243p p =桫,故答案为3p .【思路点拨】正四面体扩展为正方体,它们的外接球是同一个球,正方体的对角线长就是球的直径,求出直径即可求出外接球半径,可求外接球的表面积.11.已知函数()f x 是定义在R 上的奇函数,当0x >时,()12,xf x -=-则不等式()12f x <-的解集是__________.【知识点】函数奇偶性的性质.【答案解析】(),1-∞-解析 :解:当x >0时,112102xx--=->与题意不符, 当0x <时,()012xx fx ->\-=-,,又∵()f x 是定义在R 上的奇函数, ∴()()()()1221xxf x f x f x f x -=-\-=-\=-,,,∴()1121<222xxf x =--\,<, ∴1x <-,∴不等式()12f x <-的解集是(),1-?.故答案为(),1-?.【思路点拨】()f x 是指定义在R 上的函数,而题目中只给出了0x >的表达式,故先求出当0x <时,()f x 的解析式,后再可解此不等式.12.如图,在平面直角坐标系x O y 中,点A 为椭圆E :22221(0)x y a b a b+=>>的左顶点,B 、C 在椭圆E 上,若四边形OABC 为平行四边形,且∠OAB =30°,则椭圆E 的离心率等于 .(第12题)∴B 、C 两点是关于Y 轴对称的.由题知:OA=a 四边形OABC 为平行四边形,所以BC=OA=a 可设B ,2a y 骣琪-琪桫,C ,2ay 骣琪琪桫,设D 为椭圆的右顶点,因【思路点拨】首先利用椭圆的对称性和OABC 为平行四边形,可以得出B 、C 两点是关于Y 轴对称,进而得到BC=OA=a ;设B ,2ay 骣琪-琪桫,C ,2ay 骣琪琪桫,从而求出|y|,然=13.已知实数,x y满足x y =,则x y +的最大值为 .【知识点】基本不等式的应用.【答案解析】4解析 :解:∵x y -,∴x y +,则()()224x y x y +?+解得:24x y -? ∴x y +的最大值为4,故答案为:4£y +的范围,即可求出所求.14.数列{}n a 满足()112,2n n n a a pa n +==+∈*N ,其中p 为常数.若实数p 使得数列{}n a 为等差数列或等比数列,数列{}n a 的前n 项和为n s ,则满足的值为的最小正整数n s n 2014> .【知识点】数列的判定;等比数列的前n 项和.【答案解析】10解析 :解:21232a 2a 22a a 4224p p p p ==+=+=++,,①若数列{}n a 为等差数列,则得210p p -+=由△=12-4=-3<0知方程无实根,故不存在实数p ,(3分)②若数列{}n a 为等比数列得22222224p p p +=++()(),解得p =1 则n n 1n a a 2+=+,由累加法得:2n 1n n 1a a 22222--=++?=-解得n n a 2n 2=(),显然,当n=1时也适合,故nn a 2n N *= (). 故存在实数p =1,使得数列{}n a 为等比数列,其通项公式为n n a 2=,故()121222201412n n n S +-==->-,解得9n >,则满足的值为的最小正整数n s n 2014>10,故答案为10.【思路点拨】21232a 2a 22a a 4224p p p p ==+=+=++,,进行分类考虑:①若数列{}n a 为等差数列,则得210p p -+=由△=12-4=-3<0知方程无实根,故不存在实数p ,(3分)②若数列{}n a 为等比数列得22222224p p p +=++()(),解得p =1 则其通项公式为n n a 2=,再由故2014n S >,解得9n >,可得结论.二、解答题:(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤) 15.(本题满分14分)如图所示,已知α的终边所在直线上的一点P 的坐标为(3,4)-,β的终边在第一象限且与⑴求 ⑵若2π弦函数.【答案解析】⑴16173⑵34p解析 :解:⑴由三角函数的定义知43tan α=-ABCFED∴42()24341(73tan 2α⨯--==.又由三角函数线知10sin β=,b 为第一象限角,1tan 7b \=,()24116177tan 224173177a b -\+==+. (2) cos a =0a p b <<,<<2p, a b+<<∵()sin sin cos cos sin a b a b a b ++==435105102??. a b +<<b +=【思路点拨】(Ⅰ)直接根据三角函数的定义,求出sinb ,然后再求tan b ; (Ⅱ)由cos a ,求出a b +0a p b <<,<<2p,求出a b +.16. (本题满分14分)如图, ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD , AB =4a ,BC = CF =2a , P 为AB 的中点. (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积.【知识点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积.【答案解析】(1)见解析(2)83a 3解析 :解:(1)因为ABCD 为矩形,AB =2BC , P 为AB 的中点,所以三角形PBC 为等腰直角三角形,∠BPC =45°. …………………………2分 同理可证∠APD =45°.所以∠DPC =90°,即PC ⊥PD . …………………………3分 又DE ⊥平面ABCD ,PC 在平面ABCD 内,所以PC ⊥DE. ………………………4分 因为DE ∩PD =D ,所以PC ⊥PDE . …………………………5分 又因为PC 在平面PCF 内,所以平面PCF ⊥平面PDE . …………………………7分 (2)因为CF ⊥平面ABCD ,DE ⊥平面ABCD , 所以DE ∥CF .又DC ⊥CF ,所以S △C EF =12DC •CF =12×4a ×2a =4a 2. 在平面ABCD 内,过P 作PQ ⊥CD 于Q ,则 PQ ∥BC ,PQ=BC=2a . 因为BC ⊥CD ,BC ⊥CF ,所以BC ⊥平面CEF ,即PQ ⊥平面CEF , 亦即P 到平面CEF 的距离为PQ=2a V PC EF =V P −C EF =13PQ •S △CEF =13•4a 2•2a =83a 3. (注:本题亦可利用V P −C EF =V B −C EF =V E −BC F =V D −BC F =16DC •BC •CF =83a 3求得)恰好是椭圆C 的一个焦点,且椭圆C 上的点到点F 的最大距离为8. (1)求椭圆C 的标准方程;(2)已知圆22:1O x y +=,直线:1l mx ny +=.试证明当点(,)Pm n 在椭圆C 上运动时,直线l 与圆O 恒相交;并求直线l 被圆O 所截得的弦长的取值范围.【知识点】直线与圆锥曲线的综合问题;恒过定点的直线;椭圆的标准方程.【答案解析】(1)2212516x y +=(2)L ∈ 解析 :解:解: (1)由(14)(23)(312)0()k x k y k k R +---+=∈, 得(23)(4312)0x y k x y --++-=,则由23043120x y x y --=⎧⎨+-=⎩, 解得F (3,0) (2)分设椭圆C 的方程为22221(0)x y a b a b +=>>, 则22238c a c a b c =⎧⎪+=⎨⎪=+⎩,解得543a b c =⎧⎪=⎨⎪=⎩所以椭圆C的方程为2212516x y +=.…………… 6分 (2)因为点(,)P m n 在椭圆C 上运动,所以222212516m n m n =+<+,…………… 8分 从而圆心O 到直线:1l mx ny +=的距离1d r =<=.所以直线l 与圆O 恒相交, …………… 10分MB 又直线l 被圆O 截得的弦长为L ===分由于2025m ≤≤,所以2916162525m ≤+≤,则L∈, 即直线l 被圆O 截得的弦长的取值范围是L ∈…………… 14分【思路点拨】(1)可将直线(14)(23)(312)0()k x k y k k R +---+=∈改写为(23)(4312)0x y k x y --++-=由于k ∈R 故23043120x y x y --=⎧⎨+-=⎩即F (3,0)然后再根据题中条件即可求出椭圆C 的标准方程.(2)要证明当点(,)P m n 在椭圆C 上运动时,直线l 与圆O 恒相交只需证明圆心O 到直线:1l mx ny +=的距离1d r =<=.而要求直线l 被圆O 所截得的弦长的取值范围,可利用圆中的弦长公式求出弦长的表达式,再结合参数的取值范围即可得解.18.(本题满分16分)如图,直角三角形ABC 中,∠B =90,AB =1,BC M ,N 分别在边AB 和AC 上(M 点和B 点不重合),将△AMN 沿MN 翻折,△AMN 变为△A 'MN ,使顶点A '落 在边BC 上(A '点和B 点不重合).设∠AMN =θ.(1) 用θ表示线段AM 的长度,并写出θ的取值范围;(2) 求线段A N '长度的最小值.【知识点】解三角形的实际应用. 【答案解析】(1) 212sin MA q =, 4590<θ< (2) 23解析 :解:解:(1)设MA MA x '==,则1MB x =-.…………2分 在Rt △MB A '中,1cos(1802)xx--θ=,…………4分 ∴2111cos22sin MA x ===-θθ.…………5分 ∵点M 在线段AB 上,M 点和B 点不重合,A '点和B 点不重合,∴4590<θ<…7分(2) 在△AMN 中,由∠AMN=θ,可得∠ANM=23pq -,∴根据正弦定理得:sin ANq122sin sin 3AN p q q =骣-琪琪桫令212sin sin 2sin sin 32t p q q q q q 骣骣琪琪=-=琪琪桫桫()01sin 2302q =+-,19.设函数22()f x a x =(0a >),()ln g x b x =.(1) 若函数()y f x =图象上的点到直线30x y --=距离的最小值为a 的值; (2) 关于x 的不等式2(1)()x f x ->的解集中的整数恰有3个,求实数a 的取值范围; (3) 对于函数()f x 与()g x 定义域上的任意实数x ,若存在常数,k m ,使得()f x kx m ≥+和()g x kx m ≤+都成立,则称直线y kx m =+为函数()f x 与()g x 的“分界线”.设2a =,b e =,试探究()f x 与()g x 是否存在 “分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.【知识点】导数在最大值、最小值问题中的应用;根的存在性及根的个数判断. 【答案解析】(1)14a =(2)4332a £<(3)y 2e =-解析 :解:(1)因为22()f x a x =,所以2'()2f x a x =,令2'()21f x a x ==得:212x a =,此时214y a =,…………2分 则点2211(,)24a a到直线30x y --=的距离为即=,解之得a =.…………4分(2)解法一 不等式(x-1)2>f (x )的解集中的整数恰有3个,(3)设21()()()l n 2Fxf x gx x e x =-=-,则2'(()e x e x x F x x x x x -+=-==.所以当0x <<'()0F x >;当x >'()0F x <.因此x =()F x 取得最小值0,则()f x 与()g x 的图象在x =)2e . …………12分设()f x 与()g x 存在 “分界线”,方程为(e y k x -=,由e f x kx 2?-()则2x 2kx e 0--+在x ∈R 恒成立.所以24(k )=-下面证明2g x e x 0?()(>)恒成立.设G x elnx =-()x ?()所以当 时,G ′(x )<0.因此 x= 时,G (x )取得最大值0,则2g x e x 0?()(>)成立.故所求“分界线”方程为:y x =-【思路点拨】(1)利用点到直线的距离公式解决即可(2)关于由不等式解集整数的个数,然后求未知量取值范围的题目,可利用恒等变换,把它转化为求函数零点的问题,即可求解;2g x e x 0?()(>)成立,从而得到所求“分界线”方程. 20.(本小题满分16分)设等比数列{}n a 的首项为12a =,公比为q (q 为正整数),且满足33a 是18a 与5a 的等差中项;数列{}n b 满足232()02n n n t b n b -++=(*,t R n N ∈∈). (1)求数列{}n a 的通项公式;(2)试确定t 的值,使得数列{}n b 为等差数列; (3)当{}n b 为等差数列时,对每个正整数k ,在k a 与1k a +之间插入k b 个2,得到一个新数列{}n c . 设n T 是数列{}n c 的前n 项和,试求满足12m m T c +=的所有正整数m .【知识点】等比数列的通项公式;数列的应用.【答案解析】(1)n n a 2=(2)3=t (3) 满足题意的正整数仅有2=m .解析 :解:(1)nn a 2=………………………………………………………4分 (2)023)(22=++-n n b n b t n 得2322--=n tn n b n ,所以,212,416,42321t b t b t b -=-=-= 则由2312b b b =+,得3=t ……………………………………………………7分 当3=t 时,n b n 2=,由21=--n n b b ,所以数列{}n b 为等差数列………9分(3)因为2321===c c c ,可得1=m 不合题意,2=m 合题意…………11分 当3≥m 时,若后添入的数12+=m c ,则一定不符合题意,从而1+m c 必是数列{}n a 中的一项1+k a ,则(2+22+…………+2k )+(++21b b …………n b )=122+⨯k 即02221=+--+k k k ………………………………………………………………13分记22)(21+--=+k k k f k 则k k f k 212)2(ln 2)('--=,1+2+22+…………+21-k =)3(1212≥--k k , 所以当3≥k 时,k 2=1+2+22+…………+21-k +1>1+2k ,又,14ln 2ln 2>=.3)(,0)(')递增,在(故∞+>k f k f则由都不合题意无解,即在知3),3[0)(06)3([≥+∞=>=m k f f …………15分 综上可知,满足题意的正整数仅有2=m .…………………………………………16分【思路点拨】(1)由33a 是18a 与5a 的等差中项得到6a 3=8a 1+a 5,根据首项2和公比(3)显然2321===c c c ,可得1=m 不合题意,2=m 合题意,然后说明即可.。
2024/2025学年度第一学期高一期中模拟试卷数 学考生注意:1.本试卷满分150分,考试时间120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色.墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,集合,则( )A. B. C.D. 2.若,则( )A .3B .4C .9D .163.设函数,其中,则是偶函数的充要条件是( )A .B .C .D .4设,,,则( )A .B .C .D .5.已知集合,则的非空真子集的个数为( )A.2B.3C.4D.66.已知,则( )A. B. C. D.2{}2450A x x x =--<∣{}2,0,2,4,10B =-A B = {}2,0,2,4-{}2,10-{}0,2,4{}2,424log log 2m n +=2m n =()()cos f x x ωϕ=+0ω>()f x ()01f =()00f =()01f '=()00f '=0.1e 1=-a 111b =ln1.1c =b c a <<c b a <<a b c <<a c b <<{}{}4,3,0,6,3A B x x =--=∈≤Z A B ⋂3212log 61a a +=+-a =39log 2323log 47.已知a ,b 为正数,若,有函数,则的最小值为( )A.B.C.9D.8设集合,若,则的取值范围为( )A B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数的两个零点分别为,且,则( )A. B. C. D.10. 设是非空的实数集,若,则( )A. 函数的定义域为B. 函数的值域为C. 函数值域为D. 函数无极值11. 若平面点集满足:任意点,存在,都有,则称该点集是阶聚合点集.下列命题为真命题的是( )A. 若,则是3阶聚合点集B. 存在对任意正数,使不是阶聚合点集C. 若,则不是阶聚合点集D. “”是“是阶聚合点集”的充要条件第二部分(非选择题 共92分)三、填空题:本题共3小题,每小题5分,共15分..x b ∀>-()()1x a f x x b -=+≥18a b +9+9+{}{}25,(1)0A x x B x x a x a =>=-++<A B =∅ a (,5]-∞[5,)+∞(,5)-∞(5,)+∞()e x f x a bx c =++1,1-()00f <1e e 2c a -+=-⋅0a >2e 0b a +<0a b c ++<,A B :f A B →()f x A()f x B ()3f x ax bx =+R ()3233f x x x x =-+M (,)x y M ∈()0,t ∞∈+(,)tx ty M ∈M t {}(,)M x y x y =≥M M t M t 22(,)14x M x y y ⎧⎫⎪⎪=+=⎨⎬⎪⎪⎩⎭M 13[1,+t ∞∈){}2(,)M x y y x =≥t12.已知集合A ,B ,C 均是集合的非空真子集,则以集合A ,B ,C 为元素所构成的集合的个数为 .13. 关于不等式的解集为,则实数的取值范围为_________.14.出入相补是指一个平面(或立体)图形被分割成若干部分后面积(或体积)的总和保持不变,我国汉代数学家构造弦图,利用出入相补原理证明了勾股定理,我国清代的梅文鼎、李锐、华蘅芳、何梦瑶等都通过出入相补原理创造了不同的面积证法证明了勾股定理.在下面两个图中,若AC =b ,BC =a (b ≥a ),AB =c ,图中两个阴影三角形的周长分别为l 1,l 2,则l 1+l 2a +b 的最小值为 .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步棸.15.已知命题,命题.(1)若命题为真命题,求实数的取值范围;(2)若命题和均为真命题,求实数的取值范围.16.已知集合.(1)当时,求;(2)若“”是“”的充分不必要条件,求a 的取值范围.17. 已知函数.{}1,3,5,7,9{},,A B C x ()()222240a x a x -+--<R a 2: 12,0p x x a ∀≤≤-≥22:, 220q x x ax a a ∃∈+++=R p ⌝a p q ⌝a {}(){}21,lg 310A x a x aB x y x x =≤≤+==--1a =()B A ⋂R ðx A ∈x B ∈R ð()()211R y m x mx m m =+-+-∈(1)若不等式的解集为,求的取值范围;(2)当时,解不等式;(3)对任意的,不等式恒成立,求的取值范围.18(1)设命题:实数满足,其中;命题:实数满足,且是的必要不充分条件,求实数的取值范围.(2)已知不等式的解集是,求不等式的解集.19.高斯,著名的数学家、物理学家、天文学家、是近代数学奠基者之一,享有“数学王子”之称.函数成为高斯函数,其中表示不超过实数的最大整数,如,.(1)求的解集和的解集.(2)若,恒成立,求取值范围.(3)若的解集为,求的范围.0y <∅m 2m >-y m ≥[]1,1x ∈-21y x x ≥-+m p x 22430x ax a -+<0a <q x 23100x x +->q p a 210ax bx -->1123x x ⎧⎫-<<-⎨⎬⎩⎭20x bx a --≥[]y x =[]x x []1.21=[]1.22-=-[]5522x -≤≤[][]2211150x x -+≤712x ∀≤≤[][]240x m x -+>m [][]22210x x a --+≤{}|03x x ≤<a参考答案选择题答案1-5 C D DA A 6-8 A B A多项选择题答案9 ABD 10.AD 11 ACD填空题答案12.4060 13. 14. 1+2215. 解:(1)根据题意,知当时,.,为真命题,.实数的取值范围是.(2)由(1)知命题为真命题时,.命题为真命题时,,解得为真命题时,.,解得,即实数的取值范围为.16.解:(1)由题意,即,解得或,所以,或当时,,且,故.(2)“”是“”的充分不必要条件,故是的真子集.则满足两边等号不能同时成立,解得,综上所述,的取值范围为.17. (1)当时,由,得到,所以,不合题意,当时,由,得到,解得,{}22a a -<≤12x ≤≤214x ≤≤2: 12,0p x x a ⌝∃≤≤-<1a ∴>∴a {}|1a a >p 1a ≤q ()224420a a a ∆=-+≥0,a q ≤∴⌝0a >10a a ≤⎧∴⎨>⎩01a <≤a {}|01a a <≤23100x x -->()()250x x +->2x <-5x >{2B xx =<-∣5},x >1a ={}12A xx =∣……{}25B x x =-R ∣ð……(){}R 12B A xx ⋂=∣ð……x A ∈x B ∈R ðA B R ð2,15,a a -⎧⎨+⎩……24a -……a []2,4-1m =-0y <20x -<2x <1m ≠-0y <210Δ4(1)(1)0m m m m +>⎧⎨=-+-≤⎩m ≥所以实数的取值范围为.(2)当时,,即,可得,因为,①当时,即,不等式的解集为②当时,,因为,所以不等式的解集为③当时,.又,所以不等式的解集为,综上:,不等式的解集为,当时,不等式的解集为,当时,不等式的解集为.(3)由题对任意,不等式恒成立.即,因为时,恒成立.可得,设,则,所以,可得因为,当且仅当所以故得m 的取值范围18. 【解】(1)命题,m ∞⎫+⎪⎪⎭2m >-y m ≥2(1)1m x mx m m +-+-≥[(1)1](1)0m x x ++-≥2m >-10m +=1m =-{|1}x x ≥21m -<<-1(1)01x x m ⎛⎫+-≤ ⎪+⎝⎭111m ->+1|11x x m ⎧⎫-≥≥⎨⎬+⎩⎭1m >-1(1)01x x m ⎛⎫+-≥ ⎪+⎝⎭1011m -<<+1{|1}1x x x m ≤-≥+或1m =-{|1}x x ≥21m -<<-1|11x x m ⎧⎫-≥≥⎨⎬+⎩⎭1m >-1{|1}1x x x m ≤-≥+或[1,1]x ∈-22(1)11m x mx m x x +-+-≥-+()212m x x x -+≥-[1,1]x ∈-()210x x -+>221x m x x -≥-+2t x =-13t ≤≤2x t =-222131(2)(2)13x t x x t t tt -==-+---++-3t t+≥t =221x x x -≤=-+2x =∞⎫+⎪⎪⎭22:{|430,(0)}{|3,(0)}p A x x ax a a x a x a a =-+<<=<<<命题或,是的必要不充分条件,∴ ,或,又,故实数的取值范围是.(2)依题意有和是方程的两根,且,则有,解得,即,解得或,即不等式的解集为或.19. 【1】由题意得,且,由,即,所以,故的解集为;由,即,,则,所以.所以的解集为.【2】,[x ]2−m [x ]+4>0恒成立,即,恒成立,2:{|3100}{|5q B x x x x x =+->=<-2}x >q p A B 32a ∴≥5a ≤-0a <a (,5]-∞-12-13-210ax bx --=0a <0112311123a b a a ⎧⎪<⎪⎪⎛⎫-+-=⎨ ⎪⎝⎭⎪⎪⎛⎫-⨯-=-⎪ ⎪⎝⎭⎩65a b =-⎧⎨=⎩20x bx a --≥2560x x -+≥2x ≤3x ≥{2x x ≤}3x ≥[][]1x x x ≤<+[]x ∈Z []5522x -≤≤[]22x -≤≤23x -≤<[]5522x -≤≤{}|23x x -≤<[][]2211150x x -+≤[]()[]()3250x x --≤[]532x ∴≤≤[]3x =34x ≤<[][]2211150x x -+≤{}|34x x ≤<712x ∀≤≤[]13x ≤≤此时712x ∀≤≤[][]4m x x <+又,当且仅当时,即时等号成立.故的最小值为,所以要使[x ]+4[x ]>m 恒成立,则.故的取值范围为.【3】不等式,即,由方程可得或.①若,不等式为,即,所以,显然不符合题意;②若,,由,解得,因为不等式的解集为,所以,解得③若,,由,解得,因为不等式解集为,所以,解得.综上所述, 或.故的范围为.[][]44x x +≥[]2x =23x ≤<[][]4x x +44m <m (),4∞-[][]22210x x a --+≤[]()[]()110x a x a +---≤[]()[]()110x a x a +---=[]1x a =-1a +0a =[][]2210x x -+≤[]1x =01x ≤<0a >11a a -<+[]()[]()110x a x a +---≤[]11a x a -≤≤+[]{}{}{}|11|03|1[]3x a x a x x x x -≤≤+=≤<=-<<110213a a -<-≤⎧⎨≤+<⎩12a ≤<0a <11a a +<-[]()[]()110x a x a +---≤[]11a x a +≤≤-{}{}{}|1[]1|03|1[]3x a x a x x x x +≤≤-=≤<=-<<110213a a -<+≤⎧⎨≤-<⎩21a -<≤-21a -<≤-12a ≤<a (][)2,11,2--⋃。
2013届南师附中、金陵中学 高三数学调研试卷 2013年3月一、填空题:本大题共14题,每小题5分,共70 分。
1.若集合2{|90}A x x x =-<,⎭⎬⎫⎩⎨⎧∈∈=*Z y Z y y B 4|且,则集合A B 的元素个数为 2.已知a b ∈R 、,i 是虚数单位,若(2)a i i b i +=+,则a +b 的值是 3.式子22log sinlog cos1212ππ+的值为4.正方体的内切球与其外接球的体积之比为____________.5.在等比数列{n a }中,若271086=a a a ,则=8a _____. 6.如果实数x ,y 满足x 2+y 2=1,则(1+xy )(1-xy )的最小值为7.已知8)(35-++=bx ax x x f 且10)2(=-f ,那么=)2(f ____________8.泰州实验中学有学生3000人,其中高三学生600人.为了解学生的身体素质情况, 采用按年级分层抽样的方法,从学生中抽取一个300人的样本. 则样本中高三学生的人数为 .9.函数x x x f ln )(-=的单调减区间为____________________.10.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别是 . 11.在平面直角坐标系中,点A B C ,,的坐标分别为(01)(42)(26),,,,,. 如果()P x y ,是ABC △围成的区域(含边界)上的点,那么当w xy =取到最大值时, 点P 的坐标是 .12.如图所示,在△OAB 中,OA >OB ,OC =OB ,设OA →=a ,OB →=b ,若AC →=λ·AB →,则实数λ的值为 (用向量a ,b 表示 )注意事项:考生答题前请认真阅读本注意事项及各题答题要求1、 本试卷共4页,包含填空题(第1题~第14题)、解答题(第15题~第20题)两部份。
一.基础题组1. 【金陵中学2013-2014学年度第一学期高三期中试卷数学】在各项均为正数的等比数列{a n }中,已知a 1+ a 2+ a 3 =2, a 3+ a 4+ a 5 =8,则a 4+ a 5+ a 6 = .2. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】若n S 是等差数列}{n a 的前n 项和,且8320S S -=,则11S 的值为 .3. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】等差数列{}n a 中,公差0d ≠,且2371220a a a -+=,数列{}n b 是等比数列,且77b a =则68b b = .考点:1.等差数列的性质;2.等比中项4. 【江苏省兴化市安丰高级中学2014届高三学】设等比数列{}n a 的公比为q ,前n 项和为n S .则“||q =是“627S S =” 的条件.5.【江苏省兴化市安丰高级中学2014届高三】数列{}n a 是公差不为0的等差数列,且862a a a =+,则=55a S .6. 【江苏省扬州中学2013—2014期中考试模拟】等差数列{}n a 中,若124a a +=,91036a a +=,则10S = .考点:等差数列.7. 【江苏省徐州市2013-2014第一学期高三期中试题】设n S 是等差数列{}n a 的前n 项和,已知32=a ,116=a ,则=7S .8. 【盐城市2014届高三年级第一学期期中考试】在等比数列{}n a 中,22a =,516a =,则10a = .二.能力题组1. 【江苏省通州高级中学2013-2014学年度秋学期期中考试高三数学试卷】 各项均为正数的等比数列{}n a 中,811=a 12...8(2,)m m a a a m m N +⋅⋅⋅=>∈,若从中抽掉一项后,余下的m-1项之积为1m -,则被抽掉的是第 _ 项.2. 【江苏省徐州市2013-2014第一学期高三期中试题】设等比数列{}n a 满足公比*N q ∈,*N a n ∈,且{n a }中的任意两项之积也是该数列中的一项,若8112=a ,则q 的所有可能取值的集合为 .3. 【盐城市2014届高三年级第一学期期中考试】在数列{}n a 中,11a =,2(1)2n n n a a ++-=,记n S 是数列{}n a 的前n 项和,则60S = .4.【盐城市2014届高三年级第一学期期中考试】在数列{}n a 中,10a =,111111n n a a +-=--,设n b =,记n S 为数列{}n b 的前n 项和,则99S = .5.【江苏启东中学2014届上学期期中模拟高三数学】已知数列{}n a 的前n 项和为n S ,常数0λ>,且11n n a a S S λ=+对一切正整数n 都成立。
金陵中学2013-2014学年度第一学期高三数学期中试卷(满分:160分,考试时间:120分钟)一、填空题:本大题共14小题,每小题5分,共70分.请把正确答案填写在答题卡相应的位置上.1.设集合A ={x |-12<x <2},B ={x |x 2≤1},则A ∪B = .2.复数i 2(1-2i )的实部是 .3.命题“∃x ∈R ,x 2+ax+1<0” 的否定是 . 4.函数f (x )=1-log 3x 的定义域是 .5.在各项均为正数的等比数列{a n }中,已知a 1+ a 2+ a 3 =2, a 3+ a 4+ a 5 =8,则a 4+ a 5+ a 6 = . 6.已知向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,向量c =2a +b .则向量c 的模为 .7.在平面直角坐标系xOy 中,已知y=3x 是双曲线x 2a 2-y2b 2=1(a>0,b>0)的一条渐近线方程,则此双曲线的离心率为 .8.已知直线l ⊥平面α,直线m ⊆平面β,则下列四个命题: ①若α∥β,则l ⊥m ; ②若α⊥β,则l ∥m ;③若l ∥m,则α⊥β; ④若l ⊥m,则α∥β. 其中正确命题的序号是 . 9.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 在直线x +y = 5下方的概率为 .10.已知f(x)=3sin(2x -π6),若存在α∈(0,π),使f(α+x)= f(α-x)对一切实数x 恒成立,则α= .11.已知f(x)是定义在R 上的奇函数,当x ≥0时,f(x)=x 2+2x ,若f(2-a 2)>f(a),则实数a 的取值范围是 .12.已知函数f(x)= |lg(x-1)| 若a ≠b,f(a)= f(b) ,则a+2b 的取值范围是 . 13..定义在R 上的函数f(x)满足f(x)+f(x +5)=16,当x ∈(-1,4]时,f(x)=x 2-2x,则函数f(x)在[0,2013]上的零点个数是_____.14.已知函数f(x)=4x+k •2x+14x +2x +1,若对任意的实数x 1,x 2,x 3,不等式f(x 1)+ f(x 2) >f(x 3)恒成立,则实数k 的取值范围是 .二、解答题:本大题共6小题,共计90分.请在答题纸指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)已知向量a=(2cosx , 2sinx) ,b=(3cosx , cosx),设函数f(x)=a •b-3, 求: (1) f(x)的最小正周期和单调递增区间; (2)若()()626212f f απαπ--+=, 且α∈(π2,π). 求α.16.(本题满分14分)如图,四边形ABCD 为平行四边形,四边形ADEF 是正方形,且BD ⊥平面CDE ,H 是BE 的中点,G 是AE,DF 的交点. (1)求证:GH ∥平面CDE ; (2)求证:面ADEF ⊥面ABCD.17.(本题满分14分)已知等差数列{a n}中,首项a1=1,公差d为整数,且满足a1+3<a3, a2+5> a4,数列{b n}满足b n =1a n a n+1,其前n项和为S n.(1)求数列{a n}的通项公式;(2)若S2为S1,S m (m∈N*)的等比中项,求正整数m的值.(3)对任意正整数k,将等差数列{a n}中落入区间(2k,22k)内项的个数记为c k,求数列{c n}的前n 项和T n18.(本小题满分16分)如图,某自来水公司要在公路两侧铺设水管,公路为东西方向,在路北侧沿直线铺设线路l 1,在路南侧沿直线铺设线路l 2,现要在矩形区域ABCD 内沿直线将l 1与l 2接通.已知AB = 60m ,BC = 80m ,公路两侧铺设水管的费用为每米1万元,穿过公路的EF 部分铺设水管的费用为每米2万元,设∠EFB=π2-α,矩形区域内的铺设水管的总费用为W .(1)求W 关于α的函数关系式; (2)求W 的最小值及相应的角α.19.(本小题满分16分)F EDCBAl 2l 1公路公路已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,椭圆C 的上、下顶点分别为A 1,A 2,左、右顶点分别为B 1,B 2,左、右焦点分别为F 1,F 2.原点到直线A 2B 2的距离为255.(1)求椭圆C 的方程;(2)过原点且斜率为12的直线l ,与椭圆交于E ,F 点,试判断∠EF 2F 是锐角、直角还是钝角,并写出理由;(3)P 是椭圆上异于A 1,A 2的任一点,直线PA 1,PA 2,分别交x 轴于点N ,M,若直线OT 与过点M ,N 的圆G 相切,切点为T.证明:线段OT 的长为定值,并求出该定值.20.(本大题满分16分)Mxy TGP ONA 1A 2B 1B 2 F 1F 2已知函数f(x)=a|x|+2a x(a>0,a≠1)(1)若a>1,且关于x的方程f(x)=m有两个不同的正数解,求实数m的取值范围;(2)设函数g(x)= f(-x),x∈[-2,+∞),()g x满足如下性质:若存在最大(小)值,则最大(小)值与a无关.试求a的取值范围.金陵中学2013-2014学年度第一学期高三数学期中试卷参考答案1.{x |-1≤x <2}2.(-1)3.2,10x R x ax ∀∈++≥ 4.(0,3] 5.16 6.2 3 解析|c |2=(2a +b )2=4a 2+4a ·b +b 2=4+4×1×2×cos 60°+4=12,即|c |=2 3 7.2 解析由题意3b a =,∴2()12c be a a==+=. 8. ①③9.16.解析点P 在直线x +y = 5下方的情况有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)六种可能,故其概率为66×6 = 16.10.65,3ππ 11.(-2,1) 12.322+ 13.604解析 由()(5)16f x f x ++=,可知(5)()16f x f x -+=,则(5)(5)0f x f x +--=,所以()f x 是以10为周期的周期函数. 在一个周期(1,9]-上,函数2()2xf x x =-在(1,4]x ∈-区间内有3个零点,在(4,9]x ∈区间内无零点,故()f x 在一个周期上仅有3个零点,由于区间(3,2013]中包含201个周期,又[0,3]x ∈时也存在一个零点2x =,故()f x 在[0,2013]上的零点个数为32011604⨯+=.14.1[,4]2-.解析42122()421221x x x x x x x xk k f x --+⋅+++==++++,令22x xt -+=, 则(1)()1(2)11t k k f t t t t +-==+++≥. 原题等价为:对于2t ≥,min max [2()][()]f t f t ≥恒成立,求实数k 的取值范围. (1)当1k =时,显然成立; (2)当1k <时,2()13k f t +<≤,由22()13k +≥,得112k -<≤; (3)当1k >时,21()3k f t +<≤,由2213k +⨯≥,得14k <≤. 综上,实数k 的取值范围为1[,4]2-.15.解()3f x a b =- =223cos 2sin cos 3x x x +-=sin 23cos2x x +=2sin(2)3x π+-3分(1)函数()f x 的最小正周期为22T ππ== ---------------5分 由222232k x k πππππ-≤+≤+,得51212k x k ππππ-≤≤+(k Z ∈) ∴函数()f x 的单调递增区间为5[,]()1212k k k Z ππππ-+∈ ---------------8分 (2)∵()()626212f f απαπ--+=,∴2sin 2cos 6αα-=,∴22sin()64πα-=…………………………………………………………11分∴3sin()42πα-=,∵(,)2παπ∈,∴3(,)444πππα-∈, ∴43ππα-=或23π,∴712πα=或1112π ---------------14分 16.证明:⑴G 是,AE DF 的交点,∴G 是AE 中点,又H 是BE 的中点,∴EAB ∆中,AB GH //, ---------------2分 ∵ABCD 为平行四边形 ∴AB ∥CD∴//GH CD , ----------------------------------------------4分 又∵,CD CDE GH CDE ⊂⊄平面平面∴//GH 平面CDE -------------------7分⑵BD CDE ⊥ 平面, 所以BD ED ⊥, -------------------9分 又因为四边形AFED 为正方形,ED AD ∴⊥, ------------------10分AD BD D = ,ED ABCD ⊥面,- -----------------12分 ED AFED ⊂ 面AFED ABCD ⊥面面. ----------------14分17.解:(1)由题意,得111132,53,a a d a d a d +<+⎧⎨++>+⎩解得32< d <52. ……………………2分又d ∈Z ,∴d = 2.∴n a =1+(n -1)⋅2=2n -1. ………………………4分 (2)∵111(21)(21)n n n b a a n n +==⋅-+111()22121n n =--+………………………………..6分∴111111[(1)()()]23352121n S n n =-+-+⋅⋅⋅+--+11(1)22121n n n =-=++…………………7分 ∵113S =,225S =,21m m S m =+,2S 为1S ,m S (*∈N m )的等比中项, ∴221m S S S =,即2215321m m ⎛⎫=⋅ ⎪+⎝⎭,解得m =12. ……………………………………….9分 (3)对任意正整数k ,k k n 22122<-<,则212212121+<<+--k k n , 而*∈N k ,由题意可知 11222---=k k k c , …………………………………12分 于是 )222()222(110123121--+⋅⋅⋅⋅⋅⋅++-+⋅⋅⋅⋅⋅⋅++=+⋅⋅⋅⋅⋅⋅++=n n n n c c c T31232)12(322212121221212212+⋅-=---=-----=+++n n nn n n , 即3123212+⋅-=+n n n T . ………………14分18.解:(1)如图,过E 作EM BC ⊥, 垂足为M ,由题意得∠MEF=α, 故有60tan MF α=,60cos EF α=,8060tan AE FC α+=-,……………….3分 所以60(8060tan )12cos W αα=-⨯+⨯ =80+120cos α-60tanα(其中00π40,tan )23ααα<=≤≤……..……………8分 (2)W sin 18060120cos cos ααα=-+ sin 28060cos αα-=-.设sin 2()cos f ααα-=,则22cos cos (sin )(sin 2)12sin ()cos cos f αααααααα----'==. ………………11 分令()0f α'=得12sin 0α-=,即1sin 2α=,得6πα=.列表α(0,)6π6π 0(,)6πα ()f α' + 0 - ()f α单调递增极大值单调递减所以当6πα=时有max ()3f α=-,此时有min 80603W =+. …………… 14分答:铺设水管的最小费用为80603+万元,相应的角6πα=. ………………… 16分19.解:(1)因为椭圆C 的离心率e =32, 故设a =2m ,c =3m ,则b =m . 直线A 2B 2方程为 bx -ay -ab =0, 即mx -2my -2m 2=0. 所以2m 2m 2+4m 2=255,解得m =1.所以 a =2,b =1,椭圆方程为x 24+y 2=1. ………………… 5分(2)由⎩⎨⎧x24+y 2=1,y =12x ,得E (2,22),F (-2,-22).……………………………….7分又F 2(3,0),所以F 2E →=(2-3,22),F 2F →=(-2-3,-22),所以F 2E →·F 2F →=(2-3)×(-2-3)+22×(-22)=12>0.所以∠EF 2F 是锐角. ………………… 10分 (3)由(1)可知A 1(0,1) A 2(0,-1),设P (x 0,y 0), 直线P A 1:y -1=y 0-1x 0x ,令y =0,得x N =-x 0y 0-1;直线P A 2:y +1=y 0+1x 0x ,令y =0,得x M =x 0y 0+1;……………………………………12分解法一:设圆G 的圆心为(12(x 0y 0+1-x 0y 0-1),h ),则r 2=[12(x 0y 0+1-x 0y 0-1)-x 0y 0+1]2+h 2=14(x 0y 0+1+x 0y 0-1)2+h 2.OG 2=14(x 0y 0+1-x 0y 0-1)2+h 2.OT 2=OG 2-r 2=14(x 0y 0+1-x 0y 0-1)2+h 2-14(x 0y 0+1+x 0y 0-1)2-h 2=x 021-y 02.………….14分而x 024+y 02=1,所以x 02=4(1-y 02),所以OT 2=4, 所以OT =2,即线段OT 的长度为定值2. ………………… 16分 解法二:OM ·ON =|(-x 0y 0-1)·x 0y 0+1|=x 021-y 02,而x 024+y 02=1,所以x 02=4(1-y 02),所以OM ·ON =4. 由切割线定理得OT 2=OM ·ON =4.所以OT =2,即线段OT 的长度为定值2. ………………… 16分20.解:(1)令xa t =,0x >,因为1a >,所以1t >,所以关于x 的方程()f x m =有两个不同的正数解等价于关于t 的方程2t m t+=有相异的且均大于1的两根,即 关于t 的方程220t mt -+=有相异的且均大于1的两根,…………………………………………2分所以2280,1,2120m m m ⎧∆=->⎪⎪>⎨⎪⎪-+>⎩,…………………………………………………………………4分解得223m <<,故实数m 的取值范围为区间(22,3).……………………………6分 (2)||()2,[2,)x x g x a a x =+∈-+∞ ①当1a >时,a )0x ≥时,1x a ≥,()3x g x a =,所以 ()[3,)g x ∈+∞,b )20x -≤<时,211x a a≤<()2x x g x a a -=+,所以 ()221'()ln 2ln ln x x x xa g x a a a a a a --=-+=……8分ⅰ)当2112a >即412a <<时,对(2,0)x ∀∈-,'()0g x >,所以 ()g x 在[2,0)-上递增, 所以 222()[,3)g x a a∈+,综合a ) b )()g x 有最小值为222a a +与a 有关,不符合…10分 ⅱ)当2112a ≤即42a ≥时,由'()0g x =得1log 22a x =-,且当12log 22a x -<<-时,'()0g x <,当1log 202a x -<<时,'()0g x >,所以 ()g x 在1[2,log 2]2a --上递减,在1[log 2,0]2a -上递增,所以min 1()log 22a g x g ⎛⎫=-= ⎪⎝⎭22,综合a ) b ) ()g x 有最小值为22与a 无关,符合要求.………12分②当01a <<时,a ) 0x ≥时,01x a <≤,()3x g x a =,所以 ()(0,3]g x ∈b ) 20x -≤<时,211x a a<≤,()2x x g x a a -=+, 所以 ()221'()ln 2ln ln x x x xa g x a a a a a a --=-+= 0<,()g x 在[2,0)-上递减,所以 222()(3,]g x a a∈+,综合a ) b ) ()g x 有最大值为222a a +与a 有关,不符合……15分 综上所述,实数a 的取值范围是42a ≥.………………………………………………16分金陵中学2013-2014学年度第一学期高三期中试卷数学(附加题)21【选做题】在下面A,B,C,D四个小题中只能选做两题,每小题10分,共20分.A.选修4—1:几何证明选讲(本小题满分10分)如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:(1)l是⊙O的切线;(2)PB平分∠ABD.证明:(1)连结OP,因为AC⊥l,BD⊥l,所以AC//BD.又OA=OB,PC=PD,所以OP//BD,从而OP⊥l.因为P在⊙O上,所以l是⊙O的切线. ...........5分(2)连结AP,因为l是⊙O的切线,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD. .........10分B .选修4—2:矩阵与变换(本小题满分10分) 已知矩阵M =⎣⎢⎡⎦⎥⎤1 23 4,N =⎣⎢⎡⎦⎥⎤0 -11 3. (1)求矩阵MN ;(2)若点P 在矩阵MN 对应的变换作用下得到Q (0,1),求点P 的坐标.解:(1)MN =⎣⎢⎡⎦⎥⎤1 23 4 ⎣⎢⎡⎦⎥⎤0 -11 3=⎣⎢⎡⎦⎥⎤2 54 9; …………5分 (2)设P (x ,y ),则解法一:⎣⎢⎡⎦⎥⎤2 54 9 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤01,即⎩⎨⎧2x +5y =0,4x +9y =1.解得⎩⎪⎨⎪⎧x =52,y =-1,即P (52,-1). …………10分解法二:因为⎣⎢⎡⎦⎥⎤2 54 9-1=⎣⎢⎢⎡⎦⎥⎥⎤-92 52 2 -1.所以⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤-92 52 2 -1 ⎣⎢⎡⎦⎥⎤01=⎣⎢⎢⎡⎦⎥⎥⎤ 52-1. 即P (52,-1). …………10分C .选修4—4:坐标系与参数方程(本小题满分10分) 在直角坐标系xoy 中,曲线C 的参数方程为22cos ,2sin ,x y θθ⎧=+⎪⎨=⎪⎩(θ为参数),若以直角坐标系xoy 的原点为极点,OX 为极轴,且长度单位相同,建立极坐标系,直线l 的极坐标方程为 ρsin(θ+π4)=0, 求与直线l 垂直且与曲线C 相切的直线m 的极坐标方程.解:22:,:(2)4l y x C x y =--+=················3分 设:m y x b =+,直线m 与C 相切,可得|2|2,211b b +=∴=+或32b =-,··················7分 ∴直线m 的极坐标方程为cos sin 20ρθρθ-+=或cos sin 320ρθρθ--=···10分D .[选修4 - 5:不等式选讲](本小题满分10分)设f (x )=x 2-x +13,实数a 满足| x -a |<1,求证:| f (x )-f (a )|<2(|a |+1). 证:13)(2+-=x x x f ,|||)()(|22a a x x a f x f +--=-∴1=-⋅+-x a x a 1<+-x a ,又1()21+-=-+- x a x a a 21≤-+-x a a 1212(1)<++=+a a .…………10分 [必做题]22.(本小题满分10分)口袋中有n (n ∈N *)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X , 若P (X =2)= 730求: (1)n 的值;(2)X 的概率分布与数学期望.解:(1)由题知,307)2)(3(3)2(23113=++=⨯==+n n n A A A X P n n 分所以因为即即5.7,.0)7)(67(,042557*2 =∈=--=+-n N n n n n n(2)由题知,X 的可能取值为1,2,3,4,所以,120112073071071)4(,1207)3(,307)2(,107)1(310172311017=---==========X P A A A X P X P A A X P所以,X 的概率分布表为 X 1234P107 307 1207 1201 所以.811120141207330721071)(=⨯+⨯+⨯+⨯=X E答X 的数学期望是.811…………10分 23.(本小题满分10分)设P 1,P 2,…,P j 为集合P ={1,2,…,i }的子集,其中i ,j 为正整数.记a ij 为满足P 1∩P 2∩…∩P j =∅的有序子集组(P 1,P 2,…,P j )的个数. (1)求a 22的值; (2)求a ij 的表达式.解:(1)由题意得P 1,P 2为集合P ={1,2}的子集,因为P 1∩P 2=∅,所以集合P ={1,2}中的元素“1”共有如下3种情形: 1∉P 1,且1∉ P 2;1∈P 1,且1∉ P 2;1∉P 1,且1∈P 2; 同理可得集合P ={1,2}中的元素“2”也有3种情形,根据分步乘法原理得,a 22=3×3=9; …………4分 (2)考虑P ={1,2,…,i }中的元素“1”,有如下情形: 1不属于P 1,P 2,…,P j 中的任何一个,共C 0j 种; 1只属于P 1,P 2,…,P j 中的某一个,共C 1j 种; 1只属于P 1,P 2,…,P j 中的某两个,共C 2j 种; ……1只属于P 1,P 2,…,P j 中的某(j -1)个,共C j -1j 种,根据分类加法原理得,元素“1”共有C 0j +C 1j +C 2j +…+C j -1j =2j -1种情形,…………8分 同理可得,集合P ={1,2,…,i }中其它任一元素均有(2j -1)种情形, 根据分步乘法原理得,a ij =(2j -1)i . …………10分。