2018年广东省潮州市中考数学一模试卷含答案解析
- 格式:pdf
- 大小:2.94 MB
- 文档页数:22
2018年广东省中考数学训练试卷(一)及答案1.(−2)2的算术平方根是()A.2B.±2C.﹣2D.√2.明天数学课要学“勾股定理”.小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为12 500 000,这个数用科学记数法表示为()A.1.25×105B.1.25×106C.1.25×107D.1.25×1083.一个几何体的主视图、左视图、俯视图完全相同,它一定是()A.圆柱B.圆锥C.球体D.长方体4.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相,则黄球的个数为()同.若从中随机摸出一个球,它是白球的概率为23A.2B.4C.12D.165.如图,直线l1//l2,∠1=40°,∠2=75°,则∠3等于()A.55°B.60°C.65°D.70°6.下列计算,正确的是()A.a6÷a2=a3B.(2x2)3=8x6C.3a2×2a2=6a2D.(−1)0×a=−a的图象,下列说法正确的是()7.关于反比例函数y=4xA.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称8.如图,直径为8的⊙A经过点C(0,4)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC等于()A.15°B.30°C.45°D.60°9.已知一次函数y=x+b的图象经过一、二、三象限,则b的值可以是()A.﹣2B.﹣1C.0D.210.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B 落在点F处,折痕为AE,且EF=3.则AB的长为()A.3B.4C.5D.611.不等式2x﹣1<﹣3的解集是___________.12.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为____________cm.13.若x,y为实数,且|x+1|+√y−1=0,则(xy)2013的值是_ _.14.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.15.在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法的序号是.16.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为____________.17.计算:√8−4sin45∘+|−4|.18.先化简,再求值:xx2−1⋅x2+xx2,其中x=2.19.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,Rt△ABC的顶点坐标为点A(﹣6,1),点B(﹣3,1),点C(﹣3,3).(1)将Rt△ABC沿x轴正方向平移5个单位得到Rt△A1B1C1,试在图上画出图形Rt△A1B1C1,并写出点A1的坐标;(2)将原来的Rt△ABC绕点B顺时针旋转90°得到R t△A2B2C2,试在图上画出图形R t△A2B2C2.并写出顶点A从开始到A2经过的路径长1.【能力值】无【知识点】(1)略【详解】(1)【分析】首先求得(−2)2的值,然后由4的算术平方根为2,即可求得答案.【解答】解:∵(−2)2=4,4的算术平方根为2,∴(−2)2的算术平方根是2.故选:A.【点评】此题考查了平方与算术平方根的定义.题目比较简单,解题要细心.【答案】(1)A2.【能力值】无【知识点】(1)略【详解】(1)【分析】根据用科学记数法表示数的方法进行解答即可.【解答】解:∵12 500 000共有8位数,∴n=8﹣1=7,∴12 500 000用科学记数法表示为:1.25×107.故选:C.【点评】本题考查的是科学记数法的概念,即把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【答案】(1)C3.【能力值】无【知识点】(1)略【详解】(1)【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、圆柱的主视图、左视图都是长方形,俯视图是圆形;故本选项错误;B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;C、球体的主视图、左视图、俯视图都是圆形;故本选项正确;D、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形;故本选项错误;故选:C.【点评】本题考查了简单几何体的三视图,锻炼了学生的空间想象能力.【答案】(1)C4.【能力值】无【知识点】(1)略【详解】(1)【分析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.【解答】解:设黄球的个数为x个,根据题意得:88+x =23,解得:x=4.∴黄球的个数为4.故选:B.【点评】此题考查了概率公式的应用.解此题的关键是设黄球的个数为x个,利用方程思想求解.【答案】(1)B5.【能力值】无【知识点】(1)略【详解】(1)【分析】设∠2的对顶角为∠5,∠1在l2上的同位角为∠4,结合已知条件可推出∠1=∠4=40°,∠2=∠5=75°,即可得出∠3的度数.【解答】解:∵直线l1//l2,∠1=40°,∠2=75°,∴∠1=∠4=40°,∠2=∠5=75°,∴∠3=65°.故选:C.【点评】本题主要考查三角形的内角和定理,平行线的性质和对顶角的性质,关键在于根据已知条件找到有关相等的角.【答案】(1)C6.【能力值】无【知识点】(1)略【详解】(1)【分析】根据同底数的幂的除法以及积的乘方,单项式的乘法法则即可判断.【解答】解:A、a6÷a2=a4,故选项错误;B、正确;C、3a2×2a2=6a4,故选项错误;D、(−1)0×a=a,故选项错误.故选:B.【点评】本题考查了同底数的幂的除法,乘法法则,以及0次幂的意义,理解幂的运算法则是关键.【答案】(1)B7.【能力值】无【知识点】(1)略【详解】(1)【分析】把(1,1)代入得到左边≠右边;k=4>0,图象在第一、三象限;根据轴对称的定义沿X轴对折不重合;根据中心对称的定义得到两曲线关于原点对称;根据以上结论判断即可.【解答】解:A、把(1,1)代入得:左边≠右边,故A选项错误;B、k=4>0,图象在第一、三象限,故B选项错误;C、沿x轴对折不重合,故C选项错误;D、两曲线关于原点对称,故D选项正确;故选:D.【点评】本题主要考查对反比例函数的性质,轴对称图形,中心对称图形等知识点的理解和掌握,能根据反比例函数的性质进行判断是解此题的关键.【答案】(1)D8.【能力值】无【知识点】(1)略【详解】(1)【分析】连接AC,AO,由OC=AC=OA得到三角形AOC为等边三角形,确定出∠OAC的度数,即可求出∠OBC的度数.【解答】解:连接AC,AO,∵C(0,4),∴OC=4,∵直径为8,∴AC=AO=4,∴△AOC为等边三角形,∴∠OAC=60°,∵∠OAC与∠OBC都对OC^,∠OAC=30°.∴∠OBC=12故选:B.【点评】此题考查了圆周角定理,等边三角形的判定与性质,熟练掌握圆周角定理是解本题的关键.【答案】(1)B9.【能力值】无【知识点】(1)略【详解】(1)【分析】根据一次函数图象与系数的关系得到k>0,b>0,然后对选项进行判断.【解答】解:∵一次函数y=x+b的图象经过一、二、三象限,∴k>0,b>0.故选:D.【点评】本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k ≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).【答案】(1)D10.【能力值】无【知识点】(1)略【详解】(1)【分析】先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF 是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.【解答】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF=√CE2−EF2=√52−32=4,设AB=x,在Rt△ABC中,A C2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.【点评】本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.【答案】(1)D11.【能力值】无【知识点】(1)略【详解】(1)【分析】首先移项,把﹣1移到不等式的右边,再合并同类项、把x的系数化为1即可.【解答】解:移项得:2x<﹣3+1,合并同类项得:2x<﹣2,把x的系数化为1得:x<﹣1.故答案为:x<﹣1.【点评】此题主要考查了解一元一次不等式,关键是注意不等式两边同时除以同一个负数时,要变号.【答案】(1)x<﹣112.【能力值】无【知识点】(1)略【详解】(1)【分析】由于DE为AB的垂直平分线,根据线段垂直平分线的性质得到CD=BD,由此推出△ACD的周长=AC+CD+AD=AC+AD+BD=AC+AB,即可求得△ACD的周长.【解答】解:∵DE为BC的垂直平分线,∴CD=BD,∴△ACD的周长=AC+CD+AD=AC+AD+BD=AC+AB,而AC=3cm,AB=5cm,∴△ACD的周长为3+5=8cm.故答案为:8.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.【答案】(1)813.【能力值】无【知识点】(1)略【详解】(1)【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+1=0,y﹣1=0,解得x=﹣1,y=1,所以,(xy)2013=(−1×1)2013=−1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.【答案】(1)-114.【能力值】无【知识点】(1)略【详解】(1)【分析】因为DE丄AB,E是AB的中点,所以AE=1cm,根据勾股定理可求出DE的长,菱形的面积=底边×高,从而可求出解.【解答】解:∵E是AB的中点,∴AE=1cm,∵DE丄AB,∴DE=√22−12=√3cm.∴菱形的面积为:2×√3=2√3cm2.故答案为:2√3.【点评】本题考查菱形的性质,四边都相等,菱形面积的计算公式以及勾股定理的运用等.【答案】(1)2√315.【能力值】无【知识点】(1)略【详解】(1)【分析】根据0≤x≤1时的函数图象判断出①正确;根据x=1时的y值判断出②正确;根据y=20时的x的值判断出③错误;根据函数图象y的值判断出④正确.【解答】解:①由图可知,0≤x≤1时,甲的函数图象在乙的上边,所以,起跑后1小时内,甲在乙的前面,故本小题正确;②x=1时,甲、乙都是y=10千米,第1小时两人都跑了10千米,故本小题正确;③由图可知,x=2时,乙到达终点,甲没有到达终点,所以,乙比甲先到达终点,故本小题错误;④两人都跑了20千米正确;综上所述,正确的说法是①②④.故答案为:①②④.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.【答案】(1)①②④16.【能力值】无【知识点】(1)略【详解】(1)【分析】易得第二个矩形的面积为14,第三个矩形的面积为(14)2,依此类推,第n个矩形的面积为(14)n−1.【解答】解:已知第一个矩形的面积为1;第二个矩形的面积为原来的(14)2−1=14;第三个矩形的面积是(14)3−1=116;…故第n个矩形的面积为:(14)n−1.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【答案】(1)(14)n−117.【能力值】无【知识点】(1)略【详解】(1)【分析】直接利用二次根式的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.【解答】解:√8−4sin45∘+|−4|=2√2−4×√22+4=4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.【答案】(1)418.【能力值】无【知识点】(1)略【详解】(1)【分析】先将分子和分母分解因式,再约分,并将x的值代入可得结论.【解答】解:xx2−1⋅x2+xx2,=x(x+1)(x−1)⋅x(x+1)x2=1x−1,当x=2时,原式=12−1=1.【点评】本题考查分式的化简求值,解题的关键是分解因式.【答案】(1)119.【能力值】无【知识点】(1)略(2)略【详解】(1)【分析】(1)直接利用平移的性质得出对应点位置即可得出答案;(2)直接利用旋转的性质得出对应点位置,再利用弧长公式得出答案;【解答】解:如图所示Rt△A1B1C1,即为所求,点A1的坐标为:(﹣1,1);(2)如图所示:R t△A2B2C2,即为所求,顶点A从开始到A2经过的路径长为:90π×3180=3π2.【点评】此题主要考查了平移变换和旋转变换,正确得出对应点位置是解题关键.【答案】(1)(﹣1,1)(2)3π2。
2018年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.22.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)分解因式:x2﹣2x+1=.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=.14.(3分)已知+|b﹣1|=0,则a+1=.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x 轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?2018年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.7【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD 上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=2.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.(3分)已知+|b﹣1|=0,则a+1=2.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a ,b 的值是解题关键.15.(3分)如图,矩形ABCD 中,BC=4,CD=2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 π .(结果保留π)【分析】连接OE ,如图,利用切线的性质得OD=2,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD ﹣S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E ,∴OD=2,OE ⊥BC ,易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.(3分)如图,已知等边△OA 1B 1,顶点A 1在双曲线y=(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣1【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,再求值:•,其中a=.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为800人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M1(3,6);②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,所以M2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE 为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD 中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.(3)方法②分别过点B、F作直线OD的垂线,垂足分别为M,N.依次求出BM,DM,FN,DM,EN,则可求出EF.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=60°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,∴S=•OA•AB=×2×2=2,△AOC∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,=•OM•NE=×1.5x×x,∴S△OMN∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列图形中,线段MN的长度表示点M到直线l的距离的是()A.B.C.D.【答案】A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.2.如图,已知△ABC,按以下步骤作图:①分别以B,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为()A.90°B.95°C.105°D.110°【答案】C【解析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.3.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.【答案】C【解析】根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是()A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=1【答案】A【解析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答. 【详解】∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命题的反例.故选A.【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.5.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-3【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键. 6.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】D【解析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.7.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6【答案】D【解析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为23≈0.67>0.16,故A选项不符合题意,从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为1327≈0.48>0.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是12=0.5>0.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是16≈0.16,故D选项符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.8.如图,四边形ABCD内接于⊙O,F是CD上一点,且DF BC=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°【答案】B【解析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【详解】∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵DF BC=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【点睛】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.9.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间【答案】A【解析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.【详解】解:①以点A 为停靠点,则所有人的路程的和=15×100+10×300=1(米),②以点B 为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C 为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB 之间停靠时,设停靠点到A 的距离是m ,则(0<m <100),则所有人的路程的和是:30m+15(100﹣m )+10(300﹣m )=1+5m >1,⑤当在BC 之间停靠时,设停靠点到B 的距离为n ,则(0<n <200),则总路程为30(100+n )+15n+10(200﹣n )=5000+35n >1.∴该停靠点的位置应设在点A ;故选A .【点睛】此题为数学知识的应用,考查知识点为两点之间线段最短.10.二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象可能是( )A .B .C .D .【答案】C【解析】试题分析:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2b x a=->0,∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y ax b =+的图象经过第一、二、四象限,反比例函数c y x=图象在第一三象限,只有C 选项图象符合.故选C .考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.二、填空题(本题包括8个小题)11.关于x的不等式组3515-12xx a->⎧⎨≤⎩有2个整数解,则a的取值范围是____________.【答案】8⩽a<13;【解析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式3x−5>1,得:x>2,解不等式5x−a⩽12,得:x⩽125a+,∵不等式组有2个整数解,∴其整数解为3和4,则4⩽125a+<5,解得:8⩽a<13,故答案为:8⩽a<13【点睛】此题考查一元一次不等式组的整数解,掌握运算法则是解题关键12.如图,已知△ABC和△ADE均为等边三角形,点OAC的中点,点D在A射线BO上,连接OE,EC,若AB=4,则OE的最小值为_____.【答案】1【解析】根据等边三角形的性质可得OC=12AC,∠ABD=30°,根据“SAS”可证△ABD≌△ACE,可得∠ACE=30°=∠ABD,当OE⊥EC时,OE的长度最小,根据直角三角形的性质可求OE的最小值.【详解】解:∵△ABC的等边三角形,点O是AC的中点,∴OC=12AC,∠ABD=30°∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD当OE⊥EC时,OE的长度最小,∵∠OEC =90°,∠ACE =30°∴OE 最小值=12OC =14AB =1, 故答案为1【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键. 13.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线21y x k 2=+与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .【答案】-2<k <12。
潮州市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2018·重庆) 要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5 cm,则它的最长边为()A . 3cmB . 4cmC . 4.5cmD . 5cm2. (2分) (2019九上·嘉定期末) 如果点D、E分别在△ABC中的边AB和AC上,那么不能判定DE∥BC的比例式是()A . AD:DB=AE:ECB . DE:BC=AD:ABC . BD:AB=CE:ACD . AB:AC=AD:AE3. (2分)如图,在△AB C中,∠C=90°,AB=5,BC=3,则sinA的值是()A .B .C .D .4. (2分) (2018九上·金山期末) 如图,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正确的是()A . ;B . ;C . ;D . .5. (2分) (2017七下·南昌期中) 如图,AB∥CD∥EF,则等于180°的式子是()A . ∠1+∠2+∠3B . ∠1+∠2﹣∠3C . ∠1﹣∠2+∠3D . ∠2+∠3﹣∠16. (2分) (2017九上·凉山期末) 根据下表中的二次函数的自变量x与函数y的对应值,可判断二次函数的图像与x轴()A . 只有一个交点B . 有两个交点,且它们分别在y轴两侧C . 有两个交点,且它们均在y轴同侧D . 无交点二、填空题 (共12题;共16分)7. (1分) (2019九上·福田期中) 若,则 ________.8. (1分) (2019九上·嘉定期末) 已知P是线段AB的黄金分割点,AB=6cm , AP>BP ,那么AP=________cm .9. (1分) (2019九上·黄浦期末) 如果向量与单位向量方向相反,且长度为2,那么向量=________(用单位向量表示).10. (1分) (2016九上·临河期中) 函数y= (x﹣1)2+3,当x________时,函数值y随x的增大而增大.11. (5分) (2019九上·平房期末) 抛物线的顶点坐标是________.12. (1分)(2018·奉贤模拟) 某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是________.13. (1分) (2019九上·虹口期末) 在中,,如果,,那么________.14. (1分)(2017·广陵模拟) 如图,当小明沿坡度i=1:3的坡面由A到B行走了100米,那么小明行走的水平距离AC=________米.(结果可以用根号表示).15. (1分) (2017八上·肥城期末) 如图,已知AB=A1B,A1C=A1A2 , A2D=A2A3 , A3E=A3A4 ,∠B=20°,则∠A4=________度.16. (1分)(2019·濮阳模拟) 如图,在Rt△ABC中,AB=2,BC=1.将边BA绕点B顺时针旋转90°得线段BD,再将边CA绕点C顺时针旋转90°得线段CE,连接DE,则图中阴影部分的面积是________.17. (1分)(2020·温州模拟) 如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为________.18. (1分) (2015八下·深圳期中) 在直角坐标系中,O为坐标原点,已知点A(1,2),在y轴的正半轴上确定点P,使△AOP为等腰三角形,则点P的坐标为________.三、解答题 (共7题;共70分)19. (5分)(2017·曹县模拟) 计算:(﹣2)3﹣4cos30°+ ﹣(2017﹣π)0 .20. (10分)(2018·青浦模拟) 如图,已知点D、E分别在△ABC的边AC、BC上,线段BD与AE交于点F,且CD•CA=CE•CB.(1)求证:∠CAE=∠CBD;(2)若,求证:AB•AD=AF•AE.21. (10分)(2018·开封模拟) 如图,△ABC内接于⊙O,且AB为⊙O的直径OD⊥AB,与AC交于点E,与过点C的⊙O切线交于点D.(1)若AC=6,BC=3,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.22. (5分)(2020·枣阳模拟) 小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高度OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊绳A′B′=AB.AB垂直地面O′B于点B,A′B′垂直地面O′B于点C,吊臂长度OA′=OA=10米,且cosA ,sinA′ .求此重物在水平方向移动的距离BC.23. (10分)(2020·泉州模拟) 如图,抛物线y=ax2+bx+c的顶点为C(0,),与x轴交于A、B两点,且A(﹣1,0).(1)求抛物线的解析式;(2)点P从点B出发,以每秒1个单位的速度向点A运动,同时点Q从点C出发,以每秒v个单位的速度向y轴负方向匀速运动,运动时间为t秒,连接PQ交射线BC于点D ,当点P到达点A时,点Q停止运动,以点P 为圆心,PB为半径的圆与射线BC交于点E .①求BE的长;当t=1时,求DE的长;②若在点P , Q运动的过程中,线段DE的长始终是一个定值,求v的值及DE长.24. (15分)(2017·盘锦模拟) 如图,抛物线与x轴交于A(x1 , 0)、B(x2 , 0)两点,且x1<x2 ,与y轴交于点C(0,﹣4),其中x1 , x2是方程x2﹣4x﹣12=0的两个根.(1)求抛物线的解析式;(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F 为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.25. (15分)(2020·铜仁模拟) 如图在平面直角坐标系中顶点为点M的抛物线是由抛物线向右平移1个单位得到的,它与y轴负半轴交于点A,点B在抛物线上,且横坐标为3.(1)写出以M为顶点的抛物线解析式.(2)连接AB,AM,BM,求;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为,当时,求点P坐标.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共12题;共16分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共70分)19-1、20-1、20-2、21-1、21-2、22-1、23-1、24-1、24-2、25-1、25-2、25-3、。
2018年广东省中考数学模拟试卷及答案(一)2018年广东省中考数学模拟试卷(一)一、单项选择题(本题共10个小题,每小题3分,共30分)1.(3分)-3的相反数是()。
A。
3 B。
0 C。
-3 D。
无法确定2.(3分)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()。
A。
美 B。
丽 C。
广 D。
州3.(3分)2016年3月,XXX中标美国地铁史上最大一笔采购订单:芝加哥地铁车辆采购项目。
该项目标的金额为13.09亿美元。
13.09亿用科学记数法表示为()。
A。
13.09×10^8 B。
1.309×10^10 C。
1.309×10^9 D。
1309×10^64.(3分)如图所示,几何体的主视图是()。
A。
B。
C。
D。
5.(3分)反比例函数y=k/x,则k的取值范围是()。
A。
k。
1 B。
k。
0 C。
k < 1 D。
k < 06.(3分)XXX根据演讲比赛中九位评委所给的分数作了如下表格:平均数 8.5中位数 8.3众数 8.1方差 0.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()。
A。
平均数 B。
众数 C。
方差 D。
中位数7.(3分)如图,⊙O是△ABC的外接圆,∠XXX°,则∠A的度数是()。
A。
42° B。
48° C。
52° D。
58°8.(3分)如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,)。
A。
4 B。
7 C。
3 D。
129.(3分)某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()。
A。
48 + 5x = 720 B。
48x + 5 = 720 C。
720 + 5x = 48 D。
720x + 5 = 4810.(3分)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,按照此规律继续下去,则S2016的值为()。
广东省潮州市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)已知有理数a、b,且a<0,b<0,a的绝对值小于b的绝对值,则下列结论正确的是()A . a>-bB . b>-aC . a>bD . a<b2. (2分)如图,直线l1 , l2被直线l3所截,且l1∥l2 ,若∠1=72°,∠2=58°,则∠3=()A . 45°B . 50°C . 60°D . 58°3. (2分) (2017九上·蒙阴期末) 下列的平面几何图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分)(2017·百色) 在以下一列数3,3,5,6,7,8中,中位数是()A . 3B . 5C . 5.5D . 65. (2分)一元二次方程x2﹣2x=0的两根分别为x1和x2 ,则x1x2为()A . ﹣2B . 1C . 2D . 06. (2分)关于直线,下列说法不正确的是()A . 点在上B . 经过定点C . 当时,随的增大而增大D . 经过第一、二、三象限7. (2分)(2017·昌乐模拟) 如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A . 4cmB . 3cmC . 2cmD . 1cm8. (2分) (2020七下·和平期末) 如果关于x的不等式组仅有四个整数解:-1,0,1,2,那么适合这个为等式组的整数组成的有序实数对最多共有()A . 2个B . 4个C . 6个D . 9个9. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①方程ax2+bx+c=0的两根之和大于0;②abc<0;③y随x的增大而增大;④a-b+c<0;⑤a+b<0.其中正确的是A . 4个B . 3个C . 2个D . 1个10. (2分)(2019·禅城模拟) 如图,已知正方形ABCD , E为AB的中点,F是AD边上的一个动点,连接EF将△AEF沿EF折叠得△HEF ,延长FH交BC于M ,现在有如下5个结论:①△EFM定是直角三角形;②△BEM≌△HEM;③当M与C重合时,有DF=3AF;④MF平分正方形ABCD的面积;⑤FH•MH=,在以上5个结论中,符合题意的有()A . 2B . 3C . 4D . 5二、填空题 (共8题;共10分)11. (1分) (2017七上·东莞期中) 地球离太阳约有150000000万千米,用科学记数法表示为________万千米.12. (1分) (2019八上·虹口月考) 的有理化因式是________.(写一个)13. (1分)(2017·道外模拟) 把多项式a﹣ax2分解因式的结果是________.14. (1分) (2019九上·西城期中) 如图,点D为△ABC外一点,AD与BC边的交点为E , AE=3,DE=5,BE=4,要使△BDE∽△ACE ,且点B , D的对应点为A , C ,那么线段CE的长应等于________.15. (2分)学校购买35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x张,乙种票y张,则可列方程组________ ,方程组的解为x=________ ,y=________ .16. (1分)如图,已知等边△ABC中,点D为射线BA上一点,作DE=DC,交直线BC于点E.∠ABC的平分线BF,交CD于点F,过点A作AH⊥CD于H.当∠EDC=30°,CF=,则DH=________.17. (1分) (2020八下·眉山期末) 两个反比例函数C1:y=和C2:y=在第一象限内的图象如图所示,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为________.18. (2分) (2019九上·大丰月考) 如图,已知等边三角形的边长为,点为平面内一动点,且,将点绕点按逆时针方向转转,得到点,连接,则的最大值________.三、解答题 (共8题;共56分)19. (10分) (2018八上·扬州期中)(1)计算:;(2)求x的值:20. (10分) (2018八下·上蔡期中) 解方程:21. (2分)如图,在Rt△ABC中,∠C=90°,∠A=30°.点D是AB中点,点E为边AC上一点,连接CD ,DE ,以DE为边在DE的左侧作等边三角形DEF ,连接BF .(1)△BCD的形状为________;(2)随着点E位置的变化,∠DBF的度数是否变化?并结合图说明你的理由;(3)当点F落在边AC上时,若AC=6,请直接写出DE的长.22. (6分) (2016九上·苏州期末) 某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到________元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.23. (5分)(2020·青白江模拟) 如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的长度是12.5米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角∠CAQ为45°,坡角∠BAQ为37°,求二楼的层高BC(精确到0.1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75 )24. (10分)(2014·盐城) 如图①,在平面直角坐标系中,一块等腰直角三角板ABC的直角顶点A在y轴上,坐标为(0,﹣1),另一顶点B坐标为(﹣2,0),已知二次函数y= x2+bx+c的图象经过B、C两点.现将一把直尺放置在直角坐标系中,使直尺的边A′D′∥y轴且经过点B,直尺沿x轴正方向平移,当A′D′与y轴重合时运动停止.(1)求点C的坐标及二次函数的关系式;(2)若运动过程中直尺的边A′D′交边BC于点M,交抛物线于点N,求线段MN长度的最大值;(3)如图②,设点P为直尺的边A′D′上的任一点,连接PA、PB、PC,Q为BC的中点,试探究:在直尺平移的过程中,当PQ= 时,线段PA、PB、PC之间的数量关系.请直接写出结论,并指出相应的点P与抛物线的位置关系.(说明:点与抛物线的位置关系可分为三类,例如,图②中,点A在抛物线内,点C在抛物线上,点D′在抛物线外.)25. (10分) (2019八下·襄城月考) 已知直角△ABC,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF连接EF(1)如图1,求证:∠BED=∠AFD;(2)求证:BE2+CF2=EF2;(3)如图2,当∠ABC=45°,若BE=12,CF=5,求△DEF的面积.26. (3分)(2020·重庆模拟) 阅读以下材料,并按要求完成相应地任务:莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则 .下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∴∠DMI=∠NAI(同弧所对的圆周角相等),∴△MDI∽△ANI.∴ ,∴ ①如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF∵DE是⊙O的直径,∴∠DBE=90°.∵⊙I与AB相切于点F,∴∠AFI=90°,∴∠DBE=∠IFA.∵∠BAD=∠E(同弧所对圆周角相等),∴△AIF∽△EDB.∴ ,∴ ②任务:(1)观察发现:, ________(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为________cm.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共56分)19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、23-1、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、26-4、。
2018年广东省潮州市中考数学一模试卷一、选择题1.(3分)﹣的倒数是()A.﹣5 B.C.﹣ D.52.(3分)计算(2a2)3的结果是()A.2a6B.6a6C.8a6D.8a53.(3分)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.4.(3分)由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.5.(3分)如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为()A.60°B.45°C.40°D.30°6.(3分)广东省进出口总额在“十二五”末达到71400亿元,将数据71400亿用科学记数法表示为()A.7.1400×1012B.0.7140×1012C.71.400×1011D.7.140×10117.(3分)一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.B.C.D.8.(3分)如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,9.(3分)下列说法错误的是()A.抛物线y=﹣x2+x的开口向下B.两点之间线段最短C.角平分线上的点到角两边的距离相等D.一次函数y=﹣x+1的函数值随自变量的增大而增大10.(3分)如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED 交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y 与x之间函数关系的是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)在函数中,自变量x的取值范围是.12.(3分)依次连接菱形各边中点所得到的四边形是.13.(3分)一元二次方程x2﹣x﹣2=0的解是.14.(3分)已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x ﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是.15.(3分)如图,正方形CEGF的顶点E、F在正方形ABCD的边BC、CD上,且AB=5,CE=3,连接BG、DG,则图中阴影部分的面积是16.(3分)观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n个等式为.三、解答题(一)17.先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣18.解方程+=119.如图,△ABC是直角三角形,∠ACB=90°,(1)尺规作图:作⊙C,使它与AB相切于点D,与AC交于点E(保留作图痕迹,不写作法,请标明字母);(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,CD的长是四、解答题(二)20.某出版社为了了解在校大学生最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),在广州某大学进行随机调查,并将调查结果绘制成如下两幅不完整的统计图(如图所示),请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有12000名学生,估计全校最喜爱文学类图书的学生有多少人?21.写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,.求证:.证明:22.如图,反比例函数的图象与一次函数y=kx+5(k为常数,且k≠0)的图象交于A(﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.五、解答题(三)23.某超市电器销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售量销售收入A型号B型号第一周3台5台1800元第二周4台10台3100元(1)求A、B两种型号的电风扇的销售价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能请给出采购方案.若不能,请说明理由.24.如图1所示,OA是⊙O的半径,点D为OA上的一动点,过D作线段CD⊥OA交⊙O于点F,过点C作⊙O的切线BC,B为切点,连接AB,交CD于点E.(1)求证:CB=CE;(2)如图2,当点D运动到OA的中点时,CD刚好平分,求证:△BCE是等边三角形;(3)如图3,当点D运动到与点O重合时,若⊙O的半径为2,且∠DCB=45°,求线段EF的长.25.已知:如图1,△ABC中,AB=6,AC=,BC=3,过边AC上的动点E(点E不与点A、C重合)作EF⊥AB于点F,将△AEF沿EF所在的直线折叠得到△A'EF,设CE=x,折叠后的△A'EF与四边形BCEF重叠部分的面积记为S.(1)如图2,当点A'与顶点B重合时,求AE的长;(2)如图3,当点A'落在△ABC的外部时,A'E与BC相交于点D,求证:△A'BD 是等腰三角形;(3)试用含x的式子表示S,并求S的最大值.2018年广东省潮州市中考数学一模试卷参考答案与试题解析一、选择题1.(3分)﹣的倒数是()A.﹣5 B.C.﹣ D.5【解答】解:﹣的倒数为﹣5.故选:A.2.(3分)计算(2a2)3的结果是()A.2a6B.6a6C.8a6D.8a5【解答】解:(2a2)3=8a6.故选:C.3.(3分)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、不是中心对称图形,本选项错误;D、是中心对称图形,本选项正确.故选:D.4.(3分)由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【解答】解:几何体的主视图有2列,每列小正方形数目分别为2,1,故选:A.5.(3分)如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为()A.60°B.45°C.40°D.30°【解答】解:如图,延长AC交直线m于D,∵△ABC是等边三角形,∴∠3=60°﹣∠1=60°﹣20°=40°,∵l∥m,∴∠2=∠3=40°.故选:C.6.(3分)广东省进出口总额在“十二五”末达到71400亿元,将数据71400亿用科学记数法表示为()A.7.1400×1012B.0.7140×1012C.71.400×1011D.7.140×1011【解答】解:71400亿用科学记数法表示为7.140×1012,故选:A.7.(3分)一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.B.C.D.【解答】解:列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共9种等可能的结果,两次都是黑色的情况有1种,∴两次摸出的球都是黑球的概率为,故选:D.8.(3分)如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,【解答】解:连接OB,∵OB=4,∴BM=2,∴OM=2,==π,故选:D.9.(3分)下列说法错误的是()A.抛物线y=﹣x2+x的开口向下B.两点之间线段最短C.角平分线上的点到角两边的距离相等D.一次函数y=﹣x+1的函数值随自变量的增大而增大【解答】解:在抛物线y=﹣x2+x中,二次项系数为﹣1,故抛物线开口向下,即A说法正确,故A不符合题意;由线段的性质可知两点之间线段最短,故B说法正确,故B不符合题意;由角平分线的性质可知角平分线上的点到角两边的距离相等,故C说法正确,故C不符合题意;在y=﹣x+1中,一次函数系数为﹣1,故函数值随x的增大而减小,故D说法错误,故选:D.10.(3分)如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED 交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y 与x之间函数关系的是()A.B.C.D.【解答】解:根据题意知,BF=1﹣x,BE=y﹣1,且△EFB∽△EDC,则=,即=,所以y=(0.2≤x≤0.8),该函数图象是位于第一象限的双曲线的一部分.A、D的图象都是直线的一部分,B的图象是抛物线的一部分,C的图象是双曲线的一部分.故选:C.二、填空题(共6小题,每小题3分,满分18分)11.(3分)在函数中,自变量x的取值范围是x≤1且x≠﹣2.【解答】解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.故答案为:x≤1且x≠﹣2.12.(3分)依次连接菱形各边中点所得到的四边形是矩形.【解答】解:连接AC、BD交于O,∵E、F、G、H分别是AB、AD、CD、BC的中点,∴EF∥BD,FG∥AC,HG∥BD,EH∥AC,∴EF∥HG,EH∥FG,∴四边形EFGH是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∵EF∥BD,EH∥AC,∴EF⊥EH,∴∠FEH=90°,∴平行四边形EFGH是矩形,故答案为:矩形.13.(3分)一元二次方程x2﹣x﹣2=0的解是2或﹣1.【解答】解:∵x2﹣x﹣2=0∴(x﹣2)(x+1)=0∴x1=2,x2=﹣1.14.(3分)已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x ﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是y3>y1>y2.【解答】解:把A(4,y1),B(,y2),C(﹣2,y3)分别代入y=(x﹣2)2﹣1得:y1=(x﹣2)2﹣1=3,y2=(x﹣2)2﹣1=5﹣4,y3=(x﹣2)2﹣1=15,∵5﹣4<3<15,所以y3>y1>y2.故答案为y3>y1>y2.15.(3分)如图,正方形CEGF的顶点E、F在正方形ABCD的边BC、CD上,且AB=5,CE=3,连接BG、DG,则图中阴影部分的面积是8【解答】解:阴影部分的面积=三角形ABG的面积+三角形DFG的面积=5×(5﹣3)÷2+3×(5﹣3)÷2=5+3=8.故答案为:8.16.(3分)观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n个等式为(2n+1)2﹣12=4n(n+1).【解答】解:通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).故答案为:(2n+1)2﹣12=4n(n+1).三、解答题(一)17.先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣【解答】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,当a=1、b=﹣时,原式=12+(﹣)2=1+=.18.解方程+=1【解答】解:去分母得:3+x2+3x=x2﹣9,解得:x=﹣4,经检验x=﹣4是分式方程的解.19.如图,△ABC是直角三角形,∠ACB=90°,(1)尺规作图:作⊙C,使它与AB相切于点D,与AC交于点E(保留作图痕迹,不写作法,请标明字母);(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,CD的长是【解答】解:(1)如图,⊙C,点D、E为所作;(2)∵∠A=30°,∴∠B=60°,在Rt△BCD中,BD=BC=,∴CD=BD=.故答案为.四、解答题(二)20.某出版社为了了解在校大学生最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),在广州某大学进行随机调查,并将调查结果绘制成如下两幅不完整的统计图(如图所示),请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有12000名学生,估计全校最喜爱文学类图书的学生有多少人?【解答】解:(1)本次被调查的学生人数为12÷20%=60人;(2)“艺体”类的人数为60﹣(24+12+16)=8,补全条形图如下:(3)12000×=4800,答:估计全校最喜爱文学类图书的学生有4800人.21.写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,在△ABC中,∠B=∠C.求证:AB=AC.证明:【解答】解:在△ABC中,∠B=∠C,AB=AC,证明:过点A作AD⊥BC于D,∴∠ADB=∠ADC=90°,在△ABD和△ACD中,∴△ABD≌△ACD(AAS),∴AB=AC.22.如图,反比例函数的图象与一次函数y=kx+5(k为常数,且k≠0)的图象交于A(﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.【解答】解:(1)把A(﹣2,b)代入,得b=﹣=4,所以A点坐标为(﹣2,4),把A(﹣2,4)代入y=kx+5,得﹣2k+5=4,解得k=,所以一次函数解析式为y=x+5;(2)将直线AB向下平移m(m>0)个单位长度得直线解析式为y=x+5﹣m,根据题意方程组只有一组解,消去y得﹣=x+5﹣m,整理得x2﹣(m﹣5)x+8=0,△=(m﹣5)2﹣4××8=0,解得m=9或m=1,即m的值为1或9.五、解答题(三)23.某超市电器销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售量销售收入A型号B型号第一周3台5台1800元第二周4台10台3100元(1)求A、B两种型号的电风扇的销售价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能请给出采购方案.若不能,请说明理由.【解答】解:(1)设A、B两种型号的电风扇的销售价分别为x、y元,则:,解得:,答:A、B两种型号电风扇的销售介分别为250元和210元.(2)设采购A种型号电风扇a台,则采购B种型号的电风扇(30﹣a)台则200a+170(30﹣a)≤540,解得:a≤10,答:最多采购A种型号的电风扇10台.(3)根据题意得:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得a=20,∵a≤10,∴在(2)条件下超市销售完这30台电风扇不能实现利润为1400元的目标.24.如图1所示,OA是⊙O的半径,点D为OA上的一动点,过D作线段CD⊥OA交⊙O于点F,过点C作⊙O的切线BC,B为切点,连接AB,交CD于点E.(1)求证:CB=CE;(2)如图2,当点D运动到OA的中点时,CD刚好平分,求证:△BCE是等边三角形;(3)如图3,当点D运动到与点O重合时,若⊙O的半径为2,且∠DCB=45°,求线段EF的长.【解答】证明:(1)在图1中,连接OB.∵CB为⊙O的切线,切点为B,∴OB⊥BC,∴∠OBC=90°.∵OA=OB,∴∠DAE=∠OBA.∵∠DAE+∠DEA=90°,∠OBA+∠CBE=90°,∴∠DEA=∠CBE.∵∠CEB=∠DEA,∴∠CE B=∠CBE,∴CB=CE.(2)在图2中,连接OF,OB.在Rt△ODF中,OF=OA=2OD,∴∠OFD=30°,∴∠DOF=60°.∵CD刚好平分,∴∠AOB=2∠AOF=120°,∴∠C=360°﹣∠ODC﹣∠OBC﹣∠AOB=60°.∵CB=CE,∴△BCE是等边三角形.(3)解:在图3中,连接OB.∵∠OBC=90°,∠DCB=45°,∴△OBC为等腰直角三角形,∴BC=OB=2,OC=2.又∵CB=CE,∴OE=OC﹣CE=OC﹣BC=2﹣2,∴EF=DF﹣OE=2﹣(2﹣2)=4﹣2.25.已知:如图1,△ABC中,AB=6,AC=,BC=3,过边AC上的动点E(点E不与点A、C重合)作EF⊥AB于点F,将△A EF沿EF所在的直线折叠得到△A'EF,设CE=x,折叠后的△A'EF与四边形BCEF重叠部分的面积记为S.(1)如图2,当点A'与顶点B重合时,求AE的长;(2)如图3,当点A'落在△ABC的外部时,A'E与BC相交于点D,求证:△A'BD 是等腰三角形;(3)试用含x的式子表示S,并求S的最大值.【解答】解:(1)如图2中,∵AC2+BC2=(3)2+32=36,AB2=36,∴△ABC是直角三角形,∠C=90°,当点A'与顶点B重合时,AF=FB=3,cosA==,∴∠A=30°,∴AE==2.(2)如图3中,由(1)可知∠A=30°,∠C=90°,∴∠ABC=60°,∵∠ABC=∠A′+∠BDA′,∠A′=∠A=30°,∴∠A′=∠A′DB=30°,∴BD=BA′,∴△BDA′是等腰三角形.(3)①如图3中,当0<x≤时,重叠部分是四边形EFBD,S=S△EFA′﹣S△CDA′=•(3﹣x)•(3﹣x)﹣•[2(3﹣x)﹣6]× [2(3﹣x)﹣6]=﹣x2+x﹣,=∴S最大值=②如图1中,<x<3时,重叠部分是△EFA′,S=(x﹣3)2,S最大值=3,3<,∴S的最大值为.。
2018年广东省潮州中考数学一模试卷一、选择题:本大题共10小题,每小题3分,共30分1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.下列计算正确的是()A.(a﹣b)2=a2﹣b2B.5x2+x3=5x5C.+= D.(a2b)3=a6b33.要使有意义,则x的取值范围是()A.x≠1 B.x≠3 C.x≥1且x≠3 D.x≥3且x≠14.在下面的四个几何体中,它们各自的左视图与主视图不一样的是()A.正方体B.长方体C.圆柱D.圆锥5.有二十二位同学参加智力竞赛,他们的分数互不相同,按分数高低选十一位同学进入下一轮比赛,小明知道了自己的分数后,还需知道哪个统计量,就能判断自己能否进入下一轮比赛()A.中位数B.众数 C.方差 D.平均数6.如图,AB是⊙O的直径,C,D为圆上两点,若∠AOC=130°,则∠D等于()A.20°B.25°C.35°D.50°7.已知一圆锥的母线长为6,底面半径为3,则该圆锥的侧面积为()A.27πB.36πC.18πD.9π8.不等式组的解集在数轴上表示正确的是()A.B.C.D.9.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a<﹣1 B.﹣1<a<C.﹣<a<1 D.a>10.抛物线y=ax2+bx+c的图象如图,则下列结论:①abc>0;②a+b+c=2;③a﹣b+c <0;④b2﹣4ac<0.其中正确的结论是()A.①② B.②③ C.②④ D.③④二、填空题:本大题6小题,每小题4分,共24分11.地球上的海洋面积约为361 000 000平方千米,用科学记数法表示为______平方千米.12.方程:3x2=x的解为:______.13.分解因式:m(x﹣y)+n(y﹣x)=______.14.关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,则k的取值范围是______.15.如图,AB∥CF,E为DF的中点,AB=10,CF=6,则BD=______.16.已知一副直角三角板如图放置,其中BC=3,EF=4,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则两个三角板重叠部分(阴影部分)的面积为______.三、解答题:本大题共3小题,每小题6分,共18分17.计算:(﹣)﹣1﹣tan45°+(π﹣2016)0﹣.18.某商店购进一种商品,单价30元.试销中发现这种商品每天的销售量p(件)与每件的销售价x(元)满足关系:p=100﹣2x.若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?19.如图,在直角三角形ABC中,∠ACB=90°.(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O(尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,请你确定AB与所作⊙O的位置关系,直接写出你的结论.四、解答题:本大题共3小题,每小题7分,共21分20.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 6第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.21.如图,在平面直角坐标系中,双曲线y=与直线y=kx+b相交于A、B两点,过点A作AC⊥x轴于点C,其中AC=4,tan∠AOC=且点B的坐标为(﹣6,n).(1)求双曲线和直线AB的解析式;(2)根据图象回答,当x取何值时kx+b>.22.如图,在东西方向的海岸线MN上有相距10海里的A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东60°方向上,船P在船B的北偏西45°方向上.求船P到海岸线MN的距离(结果保留根号).五、本大题共3小题,每小题9分,共27分23.已知抛物线y=x2﹣px﹣(1)若抛物线与y轴交点的坐标为(0,1),求抛物线与x轴交点的坐标;(2)证明:无论p为何值,抛物线与x轴必有交点;(3)若抛物线的顶点在x轴上,求出这时顶点的坐标.24.如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC边于点D,交AC边于点G,过D作⊙O的切线EF,交AB的延长线于点F,交AC于点E.(1)求证:BD=CD;(2)若AE=6,BF=4,求⊙O的半径;(3)在(2)条件下判断△ABC的形状,并说明理由.25.如图,Rt△ABC的顶点坐标分别为A(0,),B(,),C(1,0),∠ABC=90°,BC与y轴的交点为D,D点坐标为(0,),以点D为顶点y轴为对称轴的抛物线过点B.(1)求该抛物线的解析式.(2)将△ABC沿AC折叠后得到点B的对应点B',求证:四边形AOCB'是矩形,并判断点B'是否在(1)的抛物线上.(3)延长BA交抛物线于点E,在线段BE上取一点P,过点P作x轴的垂线,交抛物线于点F,是否存在这样的点P,使四边形PADF是平行四边形?若存在,求出点P的坐标;若不存在,说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.﹣3的相反数是( )A .3B .﹣3C .D .﹣【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A .2.下列计算正确的是( )A .(a ﹣b )2=a 2﹣b 2B .5x 2+x 3=5x 5C . +=D .(a 2b )3=a 6b 3【考点】二次根式的加减法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】利用二次根式的性质以及积的乘方运算法则分别化简求出答案.【解答】解:A 、(a ﹣b )2=a 2+b 2﹣2ab ,故此选项错误;B 、5x 2+x 3,无法计算,故此选项错误;C 、+,无法计算,故此选项错误;D 、(a 2b )3=a 6b 3,故此选项正确;故选:D .3.要使有意义,则x 的取值范围是( )A .x ≠1B .x ≠3C .x ≥1且x ≠3D .x ≥3且x ≠1【考点】分式有意义的条件.【分析】分式有意义的条件是:分母不等于零.【解答】解:依题意得:x ﹣3≠0,解得x ≠3.故选:B .4.在下面的四个几何体中,它们各自的左视图与主视图不一样的是( )A .正方体 B .长方体C.圆柱D.圆锥【考点】简单几何体的三视图.【分析】主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图.分别分析四个选项的左视图和主视图,从而得出结论.【解答】解:A、左视图与主视图都是正方形,故A不符合题意;B、左视图与主视图不相同,分别是正方形和长方形,故B符合题意;C、左视图与主视图都是矩形,故C不符合题意;D、左视图与主视图都是等腰三角形.故D不符合题意.故选:B.5.有二十二位同学参加智力竞赛,他们的分数互不相同,按分数高低选十一位同学进入下一轮比赛,小明知道了自己的分数后,还需知道哪个统计量,就能判断自己能否进入下一轮比赛()A.中位数B.众数 C.方差 D.平均数【考点】统计量的选择.【分析】因为有二十二位同学参加,选十一位同学进入下一轮比赛.那么分数从高到低排列后,小明知道自己的分数与第11名学生的分数,才能判断自己能否进入下一轮比赛.【解答】解:因为有二十二位同学参加,选十一位同学进入下一轮比赛,那么分数从高到低排列后,第11名和第12名的平均的分数就是中位数,所以小明知道自己的分数和中位数后,才能判断自己能否进入下一轮比赛.故选A.6.如图,AB是⊙O的直径,C,D为圆上两点,若∠AOC=130°,则∠D等于()A.20°B.25°C.35°D.50°【考点】圆周角定理.【分析】先根据∠AOC=130°得到∠BOC,再根据圆周角定理即可得到∠D的度数.【解答】解:∵AB是⊙O的直径,∴∠BOC=180°﹣∠AOC=180°﹣130°=50°,∴∠D=∠BOC=×50°=25°.故选B .7.已知一圆锥的母线长为6,底面半径为3,则该圆锥的侧面积为( )A .27πB .36πC .18πD .9π【考点】圆锥的计算.【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:∵一圆锥的母线长为6,底面半径为3,∴该圆锥的侧面积为:π×3×6=18π.故选C .8.不等式组的解集在数轴上表示正确的是( )A .B .C .D .【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】根据解不等式的方法,可得不等式的解集,根据不等式的解集的公共部分是不等式组的解集,可得答案.【解答】解:,解得, 故选:C .9.已知点P (a+1,2a ﹣3)关于x 轴的对称点在第一象限,则a 的取值范围是( )A .a <﹣1B .﹣1<a <C .﹣<a <1D .a >【考点】关于x 轴、y 轴对称的点的坐标;一元一次不等式组的应用.【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”,再根据各象限内的点的坐标的特点列出不等式组求解即可.【解答】解:∵点P (a+1,2a ﹣3)关于x 轴的对称点在第一象限,∴点P 在第四象限,∴,解不等式①得,a >﹣1,解不等式②得,a <,所以,不等式组的解集是﹣1<a <.故选:B .10.抛物线y=ax 2+bx+c 的图象如图,则下列结论:①abc >0;②a+b+c=2;③a ﹣b+c <0;④b 2﹣4ac <0.其中正确的结论是( )A .①②B .②③C .②④D .③④【考点】二次函数图象与系数的关系.【分析】由图象获取相关信息:系数a 、b 、c 的符号,对称轴的位置,x=±1时,对应的函数值,及抛物线与x 轴(y 轴)的交点情况.【解答】解:①由图象可知a >0,b >0,c <0,abc <0,错误;②把(1,2)代入抛物线解析式可得a+b+c=2,正确;③当x=﹣1时,y <0,即a ﹣b+c <0,正确;④抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,错误.故选B .二、填空题:本大题6小题,每小题4分,共24分11.地球上的海洋面积约为361 000 000平方千米,用科学记数法表示为 3.61×108 平方千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【解答】解:361 000 000=3.61×108平方千米.12.方程:3x 2=x 的解为: x1=0,x 2= .【考点】解一元二次方程-因式分解法.【分析】先移项得到3x 2﹣x=0,然后利用因式分解法解方程.【解答】解:3x 2﹣x=0,x (3x ﹣)=0,x=0或3x ﹣=0,所以x 1=0,x 2=.故答案为x 1=0,x 2=.13.分解因式:m (x ﹣y )+n (y ﹣x )= (x ﹣y )(m ﹣n ) .【考点】因式分解-提公因式法.【分析】直接提取公因式(x ﹣y ),进而求出答案.【解答】解:m (x ﹣y )+n (y ﹣x )=m (x ﹣y )﹣n (x ﹣y )=(x ﹣y )(m ﹣n ).故答案为:(x ﹣y )(m ﹣n ).14.关于x 的一元二次方程x 2﹣2x ﹣k=0有两个不相等的实数根,则k 的取值范围是 k >﹣1 .【考点】根的判别式.【分析】根据判别式的意义得到△=(﹣2)2+4k >0,然后解不等式即可.【解答】解:∵关于x 的一元二次方程x 2﹣2x ﹣k=0有两个不相等的实数根,∴△=(﹣2)2+4k >0,解得k >﹣1.故答案为:k >﹣1.15.如图,AB ∥CF ,E 为DF 的中点,AB=10,CF=6,则BD= 4 .【考点】全等三角形的判定与性质.【分析】根据平行的性质求得内错角相等,已知对顶角相等,又知E 是DF 的中点,所以根据ASA 得出△ADE ≌△CFE ,从而得出AD=CF ,已知AB ,CF 的长,那么BD 的长就不难求出.【解答】解:∵AB ∥FC ,∴∠ADE=∠EFC ,∵E 是DF 的中点,∴DE=EF ,在△ADE 与△CFE 中,,∴△ADE≌△CFE,∴AD=CF,∵AB=10,CF=6,∴BD=AB﹣AD=10﹣6=4.故答案为4.16.已知一副直角三角板如图放置,其中BC=3,EF=4,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则两个三角板重叠部分(阴影部分)的面积为3﹣.【考点】平移的性质.【分析】根据特殊角的锐角三角函数值,求出EC、EG、AE的长,得到阴影部分的面积.【解答】解:∵∠F=45°,BC=3,∴CF=3,又EF=4,则EC=1,∵BC=3,∠A=30°,∴AC=3,则AE=3﹣1,∠A=30°,∴EG=3﹣,阴影部分的面积为:×3×3﹣×(3﹣1)×(3﹣)=3﹣.故答案为:3﹣.三、解答题:本大题共3小题,每小题6分,共18分17.计算:(﹣)﹣1﹣tan45°+(π﹣2016)0﹣.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果.【解答】解:原式=﹣2﹣1+1﹣4=﹣2﹣4.18.某商店购进一种商品,单价30元.试销中发现这种商品每天的销售量p(件)与每件的销售价x(元)满足关系:p=100﹣2x.若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?【考点】一元二次方程的应用.【分析】本题的等量关系是每件商品的利润×每天的销售量=每天的总利润.依据这个等量关系可求出商品的售价,然后代入p与x的关系式中求出p的值.【解答】解:设每件商品的售价应定为x元,每天要销售这种商品p件.根据题意得:(x﹣30)=200,整理得:x2﹣80x+1600=0,∴(x﹣40)2=0,∴x1=x2=40∴p=100﹣2x=20;故,每件商品的售价应定为40元,每天要销售这种商品20件.19.如图,在直角三角形ABC中,∠ACB=90°.(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O(尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,请你确定AB与所作⊙O的位置关系,直接写出你的结论.【考点】作图—复杂作图;直线与圆的位置关系.【分析】(1)根据角平分线的作法作图即可;(2)过O向AB作垂线,再根据角平分线的性质可得DO=CO,然后可得D在⊙O上,进而得到直线AB与⊙O相切.【解答】解:(1)如图所示:(2)直线AB与⊙O相切;理由:过O向AB作垂线,∵BO平分∠ABC,∴DO=CO,∴D在⊙O上,∴直线AB与⊙O相切.四、解答题:本大题共3小题,每小题7分,共21分20.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 6第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.【考点】频数(率)分布直方图;频数(率)分布表;列表法与树状图法.【分析】(1)利用总数50减去其它项的频数即可求得;(2)根据(1)的计算结果即可补全直方图;(3)利用树状图方表示出所有可能的结果,然后利用频率公式即可求解.【解答】解:(1)表中a的值是:a=50﹣6﹣8﹣16﹣10=10;(2)根据题意画图如下:(3)用A表示小宇B表示小强,C、D表示其他两名同学,根据题意画树状图如下:从上图可知共有12种等可能情况,小宇与小强两名男同学分在同一组的情况有4种,则小宇与小强两名男同学分在同一组的概率是P==.21.如图,在平面直角坐标系中,双曲线y=与直线y=kx+b相交于A、B两点,过点A作AC⊥x轴于点C,其中AC=4,tan∠AOC=且点B的坐标为(﹣6,n).(1)求双曲线和直线AB的解析式;(2)根据图象回答,当x取何值时kx+b>.【考点】反比例函数与一次函数的交点问题.【分析】(1)由AC=4、tan∠AOC=可得点A坐标,代入y=可得双曲线解析式,继而可知点B坐标,将点A、B坐标代入y=kx+b可求得一次函数解析式;(2)根据图象,分别在第一、三象限求出一次函数的值大于反比例函数的值时x的取值范围.【解答】解:(1)∵AC=4,tan∠AOC=,∴OC=3,∴点A坐标为(3,4),将点A(3,4)代入y=,求得m=12,故反比例函数解析式为y=,将点B(﹣6,n)代入得:n=﹣2,即点B坐标为(﹣6,﹣2),将A(3,4)、B(﹣6,﹣2)代入y=kx+b得:,解得:,故直线AB的解析式为y=x+2;(2)由图象可知,当﹣6<x<0或x>3时,kx+b>.22.如图,在东西方向的海岸线MN上有相距10海里的A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东60°方向上,船P在船B的北偏西45°方向上.求船P到海岸线MN的距离(结果保留根号).【考点】解直角三角形的应用-方向角问题.【分析】过P作PG⊥AB于点G,设PG=x,分别在Rt△PGB中和Rt△PGA中利用三角函数解答.【解答】解:如图,过P作PG⊥AB于点G,设PG=x,在Rt△PGB中,∵∠PBG=90°﹣45°=45°,∴∠BPG=45°=∠PBG,∴GB=PG=x,在Rt△PGA中,∠PAG=90°﹣60°=30°,∴AG==PG=x,∵AB=10,∴x+x=10,解得x=5(﹣1),答:船P到海岸线MN的距离为5(﹣1)海里.五、本大题共3小题,每小题9分,共27分23.已知抛物线y=x 2﹣px ﹣(1)若抛物线与y 轴交点的坐标为(0,1),求抛物线与x 轴交点的坐标;(2)证明:无论p 为何值,抛物线与x 轴必有交点;(3)若抛物线的顶点在x 轴上,求出这时顶点的坐标.【考点】抛物线与x 轴的交点.【分析】(1)将抛物线与y 轴的交点代入解析式求出p 的值,即可求出抛物线与x 轴的交点;(2)找出a ,b ,c 的值,表示出根的判别式,配方后利用完全平方式的性质判断得到根的判别式大于等于0,即可得证;(3)表示出顶点坐标,根据顶点在x 轴上,得到纵坐标为0,即可确定出p 的值,进而得出顶点坐标.【解答】解:(1)对于抛物线y=x 2﹣px+﹣,将x=0,y=1代入得:﹣=1,即p=,∴抛物线解析式为y=x 2﹣x+1,令y=0,得到x 2﹣x+1=0,解得:x 1=,x 2=2,则抛物线与x 轴交点的坐标为(,0)与(2,0);(2)∵△=p 2﹣4(﹣)=p 2﹣2p+1=(p ﹣1)2≥0,∴无论p 为何值,抛物线与x 轴必有交点;(3)抛物线顶点坐标为(,﹣+﹣),∵抛物线的顶点在x 轴上,∴﹣+﹣=0, 解得:p=1,则此时顶点坐标为(,0).24.如图,在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 边于点D ,交AC 边于点G ,过D 作⊙O 的切线EF ,交AB 的延长线于点F ,交AC 于点E .(1)求证:BD=CD ;(2)若AE=6,BF=4,求⊙O 的半径;(3)在(2)条件下判断△ABC 的形状,并说明理由.【考点】圆的综合题.【分析】(1)根据圆周角定理得出∠ADB=90°,再由等腰三角形的三线合一性质即可得出结论.(2)推出△FOD∽△FAE,得出比例式,即可求出半径.(3)求出∠F=30°,求出∠BOD=60°,得出等边三角形OBD,推出∠ABC=60°,根据等边三角形判定推出即可.【解答】(1)证明:连接AD,如图所示:∵AB为直径,∴∠ADB=90°,∵AB=AC,∴BD=CD;(2)解:设⊙O的半径是R,则FO=4+R,FA=4+2R,OD=R,连接OD,如图所示:∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴△FOD∽△FAE,∴,∴,即R2﹣R﹣12=0,∵R为半径,∴R=4,R=﹣3(舍去),即⊙O的半径是4.(3)△ABC是等边三角形;理由:∵EF是⊙O的切线,∴OD⊥EF,∴∠ODF=90°,∵FO=4+4=8,OD=4,∴∠F=30°,∴∠FOD=60°,∵OB=OD,∴△OBD是等边三角形,∴∠ABC=60°,∵AC=AB,∴△ABC是等边三角形.25.如图,Rt△ABC的顶点坐标分别为A(0,),B(,),C(1,0),∠ABC=90°,BC与y轴的交点为D,D点坐标为(0,),以点D为顶点y轴为对称轴的抛物线过点B.(1)求该抛物线的解析式.(2)将△ABC沿AC折叠后得到点B的对应点B',求证:四边形AOCB'是矩形,并判断点B'是否在(1)的抛物线上.(3)延长BA交抛物线于点E,在线段BE上取一点P,过点P作x轴的垂线,交抛物线于点F,是否存在这样的点P,使四边形PADF是平行四边形?若存在,求出点P的坐标;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)设抛物线解析式,因点B在抛物线上面,代入求出抛物线解析式;(2)△ABC沿AC折叠,要用到点的对称,得到B′的坐标然后验证是否在抛物线上;(3)假设存在,设直线BA的解析式,根据B、A坐标解出直线BA的解析式,用m表示出P点坐标,因为PF=AD可以得到P点坐标.【解答】解:(1)设抛物线的解析式为y=ax2+,∵B(,)在抛物线上,∴把B (,)代入y=ax 2+得a=.∴抛物线解析式为y=x 2+.(2)∵点B (,),C (1,0),∴CB=,∴CB'=CB=OA .又CA==2∴AB==1 ∴AB'=AB=OC .∴四边形AOCB'是矩形.∵CB'=,OC=1,∴B'点的坐标为(1,).∵当x=1时,代入y=x 2+得y=,∴B'(1,)在抛物线上.(3)存在.理由是:设BA 的解析式为y=kx+b ,∴∴ ∵P ,F 分别在直线BA 和抛物线上,且PF ∥AD ,∴设P (m ,m+),F (m , m 2+)PF=(m+)﹣(m 2+),AD=﹣=如果PF=AD ,则有=(m+)﹣(m 2+)=解得m 1=0(不符合题意舍去),m 2=.∴当m=时,PF=AD ,存在四边形ADFP 是平行四边形.当m=时,m+=,∴P点的坐标是(,).2016年9月24日。
2017 ~ 2018学年度第二学期九年级教学质量检查数学科参考答案一、选择题1.D 2.C 3.D 4.D 5.C 6.A 7.B 8.A 9.B 10.C 二、填空题11.6 12.(2)(2)m x x +- 13.110︒ 14.六 15.22.5︒ 16三、解答题17.解:原式141242=⨯+-+………4分5=………6分18.解:245x x -=………1分24454x x -+=+………2分2(2)9x -=………3分23x -=±………4分 5,112x x ==-………6分19.解:(1)如图所示,AD 为所求DCBA正确作图得2分,结论1分,共3分(2)∵AB=AC ,AD 平分∠BAC ∴AD ⊥BC, ∠BDA=90°………5分∴∠BAD=90°-∠B=90°-70°=20°………6分四、解答题20.解:(1)画树状图为:………2分共有12种等可能的结果,其中摸出的球上的数字之和小于5的情况有6种, 所以P(小王)61122==;………4分 (2)不同意,理由如下:………5分 ∵P(小王)12=,P(小李)11122=-=………6分 ∴规则是公平的.………7分21.解:(1)设乙工程队每天能完成绿化的面积是xm 2,依题意得………1分40040042x x-=………2分 解得:50x =经检验,50x =是原方程的解………3分502100⨯=答:甲、乙工程队每天能完成绿化的面积分别是100m 2、50m 2………4分 (2)设应安排甲队工作y 天,依题意得 18001000.40.25850yy -+⨯≤………5分解得10y ≥………6分答:至少应安排甲队工作10天………7分22.(1)证明: ∵E 为AD 的中点∴AD=2ED ∵AD=2BC∴ED=BC ………1分 ∵AD ∥BC∴四边形BCDE 为平行四边形………2分 ∵∠ABD=90° ∴BE=AE=DE=12AD ∴四边形BCDE 为菱形………3分(2)解:如图,连接AC 交BE 于点F又∵AC 平分∠BAE ∴∠BAF=∠EAF ∵AD ∥BCFE DCBAEDCBA∴∠BCA=∠EAF ∴∠BCA=∠BAF ∴BA=BC=1………4分 ∵四边形BCDE 为菱形 ∴BE=BC ∴BE=AE=AB∴△ABE 是等边三角形………5分 ∴∠ABF=60° ∵∠BAF=∠EAF ∴AF ⊥BE 在RT △ABF 中AF=AB ⋅sin ∠………6分∵BA=BC ,AF ⊥BE ∴7分五、解答题23.解:(1)把(1,2)A -代入y =-x 2+c 得 12c -+=∴3c =∴23y x =-+………1分 把(2,)B n 代入y =-x 2+3得1n =-∴(2,1)B -把(1,2)A -、(2,1)B -分别代入y =kx +b 得 221k b k b -+=⎧⎨+=-⎩………2分 解得11k b =-⎧⎨=⎩∴1y x =-+………3分(2)12x -<<………5分(3)连接AC 、BC ,设直线AB 交y 轴于点D 把0x =代入23y x =-+得3y =∴(0,3)C把0x =代入1y x =-+得1y = ∴(0,1)D ………6分 ∴312CD =-=………7分S S S ABC ACD BCD =+∆∆∆111222CD CD =⋅-+⋅………8分 11212222=⨯⨯+⨯⨯ 3=………9分24.(1)证明:连接BD∵BC 切⊙O 于点B ∴∠ABC=90° ∵AB=BC ∴∠A=∠C=45° ∵AB 为圆O 的直径∴∠ADB=90°,即BD ⊥AC ………1分 ∴AD=DC=BD=12AC ,∠CBD=∠C=45° ∴∠A=∠FBD ∵DF ⊥DG ∴∠FDG=90° ∴∠FDB+∠BDG=90° ∵∠EDA+∠BDG=90° ∴∠EDA=∠FDB ………2分 ∴△AED ≌△BFD ∴AE=BF ………3分 (2)证明:连接EF 、BG ∵△AED ≌△BFD ∴DE=DF ∵∠EDF=90°∴△EDF 是等腰直角三角形 ∴∠DEF=45°………4分 ∵∠G=∠A=45° ∴∠G=∠DEF ∴GB ∥EF ………5分(3)解:由(1)得BF = AE =1在Rt△EBF中EF=∵△DEF为等腰直角三角形,∠EDF=90°∴cos cos45DE EF FED=⋅∠=︒=6分∵∠G=∠A,∠GEB=∠AED∴△GEB∽△AED………7分∴GE EBAE ED=∴1GE∴GE=8分则GD GE ED=+=+=………9分25.(1)30,2︒………2分(2)如图∵AD∥BC∴1801809090A ABC∠=︒-∠=︒-︒=︒在RT ABD∆中BD∵1sin2ABADBBD∠===∴30ADB∠=︒∵G是BD的中点∴1122BG BD==⨯3分∵AD∥BC∴30ADB DBC∠=∠=︒∵GEF∆是等边三角形∴60GFE∠=︒GEDF CBA∴90BGF ∠=︒ 在RT BGF ∆中2cos BG BF GBF ===∠………4分∴22x =即1x =………5分 (3)分两种情况:当23x <<,如图1,点E 、点F 在线段BC 上GEF ∆与四边形ABCD 重叠部分为四边形EFNM 603030FNC GFE DCB ∠=∠-∠=︒-︒=︒∴FNC DCB ∠=∠ ∴62FN FC x ==- ∴(62)36GN x x x =--=- ∵30,60FNC GNM G ∠=∠=︒∠=︒ ∴90GMN ∠=︒ 在RT GNM ∆中 13322MG GN x ==-3tan 60(3)2NM MG x =⋅︒=-=∴113(222y S S x x GFE GMN =-=---∆∆………6分2=+-182)7x =-+ ∴当187x =时,y =最大7分当36x ≤<时,如图2,点E 在线段BC 上,点F 在线段BC 的延长线上,GEF ∆与四边形ABCD 重叠部分为ECP ∆∵30,60PCE PEC ∠=︒∠=︒ ∴90EPC ∠=︒ 在RT EPC ∆中6EC x =-,11322EP EC x ==-,1tan (3)tan 602PC EP PEC x =⋅∠=-⋅︒= B E F C图1∴112(3)22y x=⨯-=+………8分对称轴为6x==当6x<时,y随x的增大而减小∴当3x=时,y=最大综上所述:当187x=时,y=最大9分。
2018年广东省中考数学试卷
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.
1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.2
2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()
A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×108 3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()
A.B.C.D.
4.(3分)数据1、5、7、4、8的中位数是()
A.4 B.5 C.6 D.7
5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()
A.圆 B.菱形C.平行四边形D.等腰三角形
6.(3分)不等式3x﹣1≥x+3的解集是()
A.x≤4 B.x≥4 C.x≤2 D.x≥2
7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE。