初二上册数学一次函数单元测试题及答案
- 格式:doc
- 大小:122.00 KB
- 文档页数:4
八年级数学上册《第十九章一次函数》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.在圆的面积公式S=πr2中,变量是()A.S,πB.S,r C.π,r D.只有r2.已知正比例函数y=(m−3)x的图象过第二、四象限,则m的取值范围是( )A.m≥3B.m>3C.m≤3D.m<33.已知小明家、体育场、超市在一条笔直的公路旁(小明家、体育场、超市到公路的距离忽略不计),图中的信息反映的过程是小明从家跑步去体育场,在体育场锻炼了一阵后又走到超市买些学习用品,然后再走回家.图中x表示小明所用的时间,y表示小明离家的距离.根据图中的信息,下列说法中错误的是().A.体育场离小明家的距离是2.5kmB.小明在体育场锻炼的时间是15minC.小明从体育场出发到超市的平均速度是50m/minD.小明从超市回家的平均速度是60m/min4.一次函数y=−2x+4的图象可由y=−2x的图象平移得到的,则平移的方法为()A.向上平移4个单位B.向下平移4个单位C.向右平移4个单位D.向左平移4个单位5.点P(a,b)在函数y=4x+3的图象上,则代数式8a−2b+1的值等于()A.7 B.5 C.-5 D.-66.一次函数y=2ax−b(a<0)的图象经过两个点A(−1,y1)和B(2,y2),则y1,y2的大小关系是()A.y1>y2B.y1<y2C .当b >0时y 1>y 2D .当b <0时7.如图,一次函数y =kx +b 与y =x +2的图象相,交于点P(m ,4),则关于x 、y 的二元一次方程组{kx −y =−b y −x =2的解是( )A .{x =2y =4B .{x =1y =4C .{x =3y =4D {x =4y =48.如图,若一次函数y 1=−x −1与y 2=ax −3的图象交于点P(m ,−2)则关于x 的不等式−x −1<ax −3的解集是( )A .x >2B .x >1C .x <1D .x <−29.清明假期第一天天气晴朗,小明和爸爸去爬山.小明和爸爸同时从山脚出发,由于爸爸有爬山经验,匀速爬到山顶.小明刚开始的速度比爸爸快,累了之后减速继续爬山,和爸爸相遇后0.5h 才加速追赶爸爸,最终爸爸用2h 爬到了山顶,小明比爸爸晚了6min 到达.他们出发的时间x (单位:h )与爬山的路程y (单位:km )的函数图象如图所示,则下列说法错误的是( )A .爸爸爬山的速度为3km/hB .1.5h 时爸爸与小明的距离为0.5kmC .山脚到山顶的总路程为6kmD .小明加速追赶爸爸时的速度为3km/h二、填空题10.已知函数y =(m −1)x |m|−3是关于x 的一次函数,则m 的值为 .11.在平面直角坐标中,点A(−3,−2)、B(−1,−2)直线y =kx(k ≠0)与线段AB 有交点,则k 的取值范围为 .12.将直线y =−2x −1向左平移a (a >0)个单位长度后,经过点(1,−5),则a 的值为 .13.如图,直线y =2x +1和y =kx +3相交于点A(34,52),则关于x 的不等式kx +3≤2x +1的解集为 .14.某苹果种植合作社通过网络销售苹果,如图所示的线段AB 反映了苹果的日销售量y (千克)与销售单价x (元/千克)间的函数关系,已知1千克苹果的成本是5元,如果某天该合作社的苹果销售单价为8元/千克,那么这天销售苹果的盈利是 元.三、解答题15.一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油.在此次行驶过程中,行驶了450千米时,司机发现离前方最近的加油站有75千米的路程.在开往该加油站的途中,当汽车开始提示加油时,离加油站的路程是多少千米?16.如图,在平面直角坐标系内,直线AB与x轴交于点A(1,0),与y轴交于点B(0,−2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=3,求点C的坐标.17.潮州市湘桥区农投公司现有22吨优质农产品需要销售,经市场调查,采用批发、零售两种销售方式,这两种销售方式每天的销量及每顿所获得利润如表:销售方式批发零售利润(元/吨)1200 2000假设农投公司售完22吨优质农产品,共批发了x吨,所获总利润为y元.(1)求出y与x之间的函数关系式;(2)如果农投公司销售这批优质农产品共获利28000元,请计算农投公司通过批发方式销售这批农产品共多少吨?18.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?19.某商场计划购进甲、乙两种商品共80件进行销售,已知甲种商品的进价为120元/件,乙种商品的进价为80元/件,甲种商品的销售单价为150元/件,乙种商品的销售单价y(元/件)与购进乙种商品的数量x(件)之间的函数关系如图所示.(1)求y(元/件)关于x(件)的函数关系式(不要求写出自变量x的取值范围);(2)当购进乙种商品30件时,求销售完80件甲、乙两种商品获得的总利润;(3)实际经营时,因原材料价格上张,甲、乙两种商品的进价均提高了10%,为保证销售完后总利润不变,商场决定将这两种商品的销售单价均提高m元,且m不超过乙种商品原销售单价的9%,求m的最大值.参考答案1.B2.D3.C4.A5.C6.A7.A8.B9.D10.-111.23≤k ≤212.113.x ≥3414.660015.(1)解:设该一次函数解析式为y=kx+b将(150,45)、(0,60)代入y=kx+b 中,得 {150k +b =45b =60解得: {k =−110b =60∴该一次函数解析式为y= −110 x+60.(2)解:当y= −110 x+60=8时解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530-520=10千米油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.16.(1)解:设直线AB 的解析式为y =kx +b把A(1,0),B(0,−2)分别代入得{k +b =0b =−2,解得{k =2b =−2∴直线AB 的解析式为y =2x −2;(2)解:设C(t ,2t −2),∵S △BOC =3∴12×2×t =3,解得t =3,∴C 点坐标为(3,4).17.(1)解:由题意可得y =1200x +2000(22−x)y =−800x +44000(2)解:当y =28000时−800x +44000=28000解得:x =20答:农投公司通过批发方式销售这批农产品20吨.18.(1)解:设购买乙种头盔的单价为x 元,则甲种头盔的单价为(x +11)元,根据题意,得20(x +11)+30x =2920解得 x =54x +11=65答:甲、乙两种头盔的单价各是65元,54元.(2)解:设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w则m ≥12(40−m),解得m ≥1313,故最小整数解为m =14w =0.8×65m +(54−6)(40−m)=4m +1920∵4>0,则w 随m 的增大而增大∴m =14时,w 取最小值,最小值=4×14+1920=1976.答:购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.19.(1)解:设y 关于x 的函数关系式为y =kx +b依题意得{20k +b =120,60k +b =100解得{k =−12b =130,所以y 关于x 的函数关系式为y =−12x +130 (2)解:当x =30时,y =−12×30+130=115利润为(150−120)×(80−30)+(115−80)×30=2550(元)答:当购进乙种商品30件时,总利润为2550元.(3)解:依题意,甲种商品进价为120×(1+10%)=132(元/件)乙种商品的进价是80×(1+10%)=88(元/件)根据提价前后总利润不变得(150+m−132)(80−x)+(−12x+130+m−88)x=(150−120)(80−x)+(−12x+130−80)x,化简得,x=−20m+240∵m≤9%(−12x+130)∴m≤9%[−12(−20m+240)+130]∴m≤9∴m的最大值为9.。
北师大版八年级数学上册第4章《一次函数》单元测试题(含答案)一、单选题1.下列表达式中,y 是x 的函数的是( )A .2y x =B .||1y x =+C .||y x =D .221y x =-2.下列函数中,属于正比例函数的是( )A .22y x =+B .21y x =-+C .1y x =D .5x y = 3.在函数23y x =-中,当自变量5x =时,函数值等于( )A .1B .4C .7D .134.如图,在平面直角坐标系中,线段AC 所在直线的解析式为4y x =-+,E 是AB 的中点,P 是AC 上一动点,则PB PE +的最小值是( )A .42B .22C .25D .55.如图,直线y =x +5和直线y =ax +b 相交于点P ,根据图象可知,关于x 的方程x +5=ax +b 的解是( )A .x =20B .x =25C .x =20或25D .x =﹣20 6.点(3,5)-在正比例函数y kx =(0k ≠)的图象上,则k 的值为( )A .-15B .15C .35D .53- 7.已知某汽车耗油量为0.1L/km ,油箱中现有汽油50L .如果不再加油,记此后汽车行驶的路程为x km ,油箱中的油量为y L .则此问题中的常量和变量是( )A .常量50;变量x .B .常量0.1;变量y .C .常量0.1,50;变量x ,y .D .常量x ,y ;变量0.1,50.8.一次函数y =(a +1)x +a +2的图象过一、二、四象限,则a 的取值是( )A .a <﹣2B .a <﹣1C .﹣2≤a ≤﹣1D .﹣2<a <﹣19.已知,甲、乙两地相距720米,甲从A 地去B 地,乙从B 地去A 地,图中分别表示甲、乙两人离B 地的距离y (单位:米),下列说法正确的是( )A .乙先走5分钟B .甲的速度比乙的速度快C .12分钟时,甲乙相距160米D .甲比乙先到2分钟 10.函数13y x =+中自变量x 的取值范围是( ) A .3x >- B .3x ≥- C .3x <- D .3x ≠-11.汽车由A 地驶往相距120km 的B 地,它的平均速度是60km/h ,则汽车距B 地路程s (km )与行驶时间t (h )的关系式为( ).A .12060s t =-B .12060s t =+C .60s t =D .120s t =12.如图所示,一次函数()0y kx b k =+≠的图象经过点()3,2P ,则方程2kx b +=的解是( )A .1x =B .2x =C .3x =D .无法确定二、填空题(共0分)13.一次函数(21)y m x m =-+的函数值y 随x 值的增大而增大,则m 的取值范围是____ ____.14.从﹣1,2,3这三个数中随机抽取两个数分别记为x ,y ,把点M 的坐标记为(x ,y ),若点N 为(﹣4,0),则在平面直角坐标系内直线MN 经过第一象限的概率为___ .15.一个正方形的边长为3cm ,它的边长减少cm x 后,得到的新的正方形周长(cm)y 与(cm)x 之间的函数关系式为124y x =-,自变量x 的取值范围是________ __.16.弹簧的长度()cm y 与所挂物体的质量()kg x 的关系如图所示,则当弹簧所挂物体质量是10kg 时的长度是____ __cm .17.方程328x +=的解是x =______,则函数32y x =+在自变量x 等于_______时的函数值是818.如图(a )所示,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,ABP 的面积为y ,如果y 关于x 的关系如图(b )所示,则m 的值是________.19.小亮早晨从家骑车到学校,先上坡后下坡,所行路程()y m 与时间(min)x 的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡、下坡的速度分别相同,则小明从学校骑车回家用的时间是__________min .20.某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______x x千克糯米;设某人的付款金额为x元,购买量为y千克,则购买量y关于付款金额(10)的函数解析式为______.三、解答题21.某天小刚骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续前行,按时赶到学校,如图是小刚从家到学校这段所走的路程s(米)与时间t(分)之间的关系.(1)小刚从家到学校的路程是________米,从家出发到学校,小刚共用了________分;(2)小刚修车用了多长时间;(3)小刚修车前的平均速度是多少?22.已知如图,在平面直角坐标系中,点A(3,7)在正比例函数图像上.(1)求正比例函数的解析式.(2)点B(1,0)和点C都在x轴上,当△ABC的面积是17.5时,求点C的坐标.23.如图一次函数y kx b =+的图象经过点(1,5)A -,与x 轴交于点B ,与正比例函数3y x =的图象交于点C ,点C 的横坐标为1.(1)求AB 的函数表达式.(2)若点D 在y 轴负半轴,且满足13COD BOC S S =△△,求点D 的坐标. (3)若3kx b x +<,请直接写出x 的取值范围.24.如图1,在长方形ABCD 中,点P 从点B 出发,沿B →C →D →A 运动到点A 停止.设点P 的运动路程为x ,△P AB 的面积为y ,y 与x 的关系图象如图2所示.(1)AB 的长度为______,BC 的长度为______.(2)求图象中a 和b 的值.(3)在图象中,当m =15时,求n 的值.25.因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?26.甲、乙两地之间有一条笔直的公路,小明从甲地出发步行前往乙地,同时小亮从乙地出发骑自行车前往甲地,小亮到达甲地没有停留,按原路原速返回,追上小明后两人一起步行到乙地.如图,线段OA 表示小明与甲地的距离y 1(米)与行走的时间x (分钟)之间的函数关系:折线BCDA 表示小亮与甲地的距离y 2(米)与行走的时间x (分钟)之间的函数关系.请根据图象解答下列问题:(1)小明步行的速度是 米/分钟,小亮骑自行车的速度是 米/分钟;(2)线段OA 与BC 相交于点E ,求点E 坐标;(3)请直接写出小亮从乙地出发到追上小明的过程中,与小明相距100米时x 的值.27.如图1,在Rt △ABC 中,AC =BC ,点D 在AC 边上,以CD 为边在AC 的右侧作正方形CDEF .点P 以每秒1cm 的速度沿F →E →D →A →B 的路径运动,连接BP 、CP ,△BCP 的面积y (2cm )与运动时间x (秒)之间的图象关系如图2所示.(1)求EF 的长度和a 的值;(2)当x =6时,连接AF ,判断BP 与AF 的数量关系,说明理由.28.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费:月用水量不超过320m 时,按2.5元/ 3m 计费;月用水量超过320m 时,其中320m 仍按2.5元/3m 收费,超过部分按3.2元/ 3m 计费,设每户家庭月用水量为3xm 时,应交水费y 元.(1)分别写出020x ≤≤和20x >时,y 与x 的函数表达式.(2)小明家第二季度缴纳水费的情况 如下:月份四月份 五月份 六月份 交费金额 40元 45元 56.4元小明家第二季度共用水多少立方米?29.一慢车和一快车沿相同路线从A 地到B 地,两车所行的路程s (千米)与慢车行驶的时间x (时)关系如图所示.根据图像解决下列问题:(1)快车比慢车晚 小时出发,快车比慢车早到 小时.快车追上慢车时,快车行驶了 千米.(2)求A 、B 两地相距多少千米?30.某公交车每月的支出费用为4000元,每月的乘车人数x (人)与每月的利润y (元)的变化关系如下表所示:(利润=收入费用-支出费用,每位乘客的公交票价是固定不变的):x (人) 500 10001500 2000 2500 3000 … y (元)3000- 2000- 1000- 01000 2000 … (1)在这个变化过程中,直接写出自变量和因变量;(2)观察表中数据可知,每月乘客量达到_____人以上时,该公交车才会盈利;(3)请你估计每月乘车人数为3500人时,每月的利润为______元;(4)根据表格直接写出y 与x 的表达式,并求出5月份乘客量需达多少人时,可获得5000元的利润参考答案1.C2.D3.C4.C5.A6.D7.C8.D9.D10.A11.A12.C13.12m > 14.2315.03x ≤<16.1517. 2 218.519.37.220. 3 42y x =+##24y x =+21.(1)由图象可得,小刚从家到学校的路程共2000米,从家出发到学校,小明共用了20分钟;故答案为:2000,20;(2)小刚修车用了:15-10=5(分钟),答:小刚修车用了5分钟;(3)由图象可得,小刚修车前的速度为:1000÷10=100米/分钟.答:小刚修车前的平均速度是100米/分钟.22.解:(1)设正比例函数的解析式为y kx =,将点(3,7)A 代入得:37k =,解得73k =, 则正比例函数的解析式为73y x =; (2)如图,过点A 作AD x ⊥轴于点D ,(3,7)A ,7AD ∴=,设点C 的坐标为(,0)a ,则1BC a =-,ABC 的面积是175., 117.52BC AD ∴⋅=,即17117.52a ⨯-=, 解得6a =或4a =-,故点C 的坐标为(6,0)或(4,0)-.23.解:(1)∵一次函数y kx b =+与正比例函数3y x =的图象交于点C ,点C 的横坐标为1,∴把x =1代入正比例函数得:3y =,∴点()1,3C ,∴把点()1,5A -、()1,3C 代入一次函数得:53k b k b -+=⎧⎨+=⎩,解得:14k b =-⎧⎨=⎩, ∴AB 的函数解析式为4y x =-+;(2)由(1)得:()1,3C ,AB 的函数解析式为4y x =-+, ∴令y =0时,则有4x =,∴点()4,0B ,∴OB =4,令C x 表示点C 的横坐标,C y 表示点C 的纵坐标,则由图象可得:1143622BOC C S OB y =⋅=⨯⨯=, ∵13COD BOC S S =△△, ∴2COD S =, ∴122COD C S OD x =⋅=△, ∴4OD =,∵点D 在y 轴负半轴,∴()0,4D -;(3)由图象可得:当3kx b x +<时,则x 的取值范围为1x >.24.解:由图2知,当x =5时,点P 与C 重合, ∴BC =5,当x =13时,点P 与D 重合,∴BC +CD =13,∴CD =8=AB ,故答案为:8,5;(2)当P 与C 点重合时,b =185202⨯⨯=,当点P 与A 重合时,a =5+8+5=18; (3)∵15m =58>+,∴此时点P 在AD 边上,且AP =3. ∴183122n =⨯⨯=. 25.由图中可知,货车a 小时走了90km ,∴a =9060 1.5÷=;(2)设轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =kt +b ,将(1.5,0)和(3,150)代入得,1.503150k b k b +=⎧⎨+=⎩, 解得,100150k b =⎧⎨=-⎩, ∴轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =100t -150;(3)将s =330代入s =100t -150,解得t =4.8,两车相遇后,货车还需继续行驶:()330150603-÷=(h),到达乙地一共:3+3=6(h ),6-4.8=1.2(h),∴轿车比货车早1.2h 时间到达乙地.26.(1)由图可知,小明步行的速度为1500÷30=50(米/分钟),小亮骑车的速度为1500÷10=150(米/分钟),故答案为:50,150;(2)点E的横坐标为:1500÷(50+150)=7.5,纵坐标为:50×7.5=375,即点E的坐标为(7.5,375);(3)小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.理由:两人相遇前,(50+150)x+100=1500,得x=7,两人相遇后,(50+150)x﹣100=1500,得x=8,小亮从甲地到追上小明时,50x﹣100=150(x﹣10),得x=14,即小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.27.解:当点P在边EF上运动时,y=S△BCP12=BC•PF12=BC×1×x12=BC•x,∵BC为定值,∴y随x的增大而增大,∴当x=3时,y=a,此时EF=1×3=3(cm),当点P在边ED上运动时,点P到BC的距离等于3,y=S△BCP12=BC×332=BC,∴y的值不变,∵四边形FEDC是正方形,∴DE=EF=3cm,∴x331+==6(秒),∴b=6,当点P在DA上运动时,y=S△PBC12=BC•PC,∴y随PC的增大而增大,当点P与点A重合时,即x=8时,y最大,此时AD=8×1﹣3﹣3=2,∴AC=BC=3+2=5(cm),∴a12=BC×EF12=⨯5×3152=;(2)由(1)知,当点x =6时,点P 在点D 处,如图所示:此时,BD =AF ,理由:∵BC =AC ,CD =CF ,∠ACB =∠ACF =90°,∴△BDC ≌△AFC (SAS ),∴BD =AF .28.(1)当020x ≤≤时,1 2.5y x =;当20x >时,()2 2.520 3.220 3.214y x x =⨯+-=-;()2当20x 时,150y =4050,4550,56.450<<>∴四、五月份的月用水量比320m 少,六月份的月用水量比320m 多令140y =,得16x =令145y ,得18x =令256.4y =,得22x =16182256++=(立方米)∴第二季度共用水56立方米29.解:由图像可得,慢车比快车晚2小时出发,快车比慢车早到18﹣14=4(小时),快车追上慢车时,快行驶了276千米,故答案为:2,4,276;(2)解:由图像可得,慢车的速度为:276÷6=46(千米/时),46×18=828(千米),答:A 、B 两地相距828千米.30.解:(1)在这个变化过程中,每月的乘车人数x 是自变量,每月的利润y 是因变量; 故答案为每月的乘车人数x ,每月的利润y ;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元, 当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元;故答案为3000;(4)设y 与x 的表达式为y=kx+b ,则依题意得:500300020000x b x b +=-⎧⎨+=⎩解得:24000k b =⎧⎨=-⎩ ∴y 与x 的表达式为24000y x =-;当5000y =时,500024000x =-.解得4500x =.答:5月乘车人数为4500人时,可获得利润5000元。
沪科版八年级数学上册《第十二章一次函数》单元检测卷及答案一、单选题(共10小题,满分40分)1.在平面直角坐标系中,若将一次函数21y x m =+-的图象向左平移3个单位后,得到一个正比例函数的图象,则m 的值为( )A .-5B .5C .-6D .62.如图直线l 1:y=ax+b ,与直线l 2:y=mx+n 交于点A (1,3),那么不等式ax+b <mx+n 的解集是( )A .x >3B .x <3C .x >1D .x <13.已知函数(13)y m x =-是正比例函数,且y 随x 的增大而增大,那么m 的取值范围是( ). A .13m > B .13m < C .1m > D .1m <4.正比例函数2y x =和一次函数5y kx =+(k 为常数,且0k ≠)的图象交于点(),2A m ,则关于x 的不等式25x kx <+的解集为( )A .1x <B .2x <C .1x >D .2x >5.如图,函数12y x =-与23y ax =+的图象相交于点()1,2A -,则关于x 的不等式23x ax ->+的解集是( )A .2x >B .2x <C .1x <-D .1x >-6.若点()12,y -、()22,y 都在一次函数3y x b =-+的图象上,则1y 与2y 的大小关系是( )A .12y y <B .12y y =C .12y y >D .大小关系不能确定7.若关于x 的一次函数y =(k ﹣2)x +3,y 随x 的增大而减小,且关于x 的不等式组26100x x k +≥⎧⎨+<⎩无解,则符合条件的所有整数k 的值之和是( )A .﹣3B .﹣2C .﹣1D .08.把两根木条AB 和AC 的一端按如图所示的方式固定在一起,木条AC 转动至AC '.在转动过程中,下面的量是常量的为( )A .AC 的长度B .BC 的长度 C .ABC 的面积D .BAC ∠的度数9.已知点()12,y -,()21,y -和()31,y 都在直线32y x =-+上,则1y ,2y 和3y 的值的大小关系是( ) A .312y y y << B .123y y y << C .312y y y >> D .123y y y >>10.直线()10y kx k =≠与直线()240y ax a =+≠在同一平面直角坐标系中的图象如图所示,则不等式4kx ax <+的解为( )A .1x <-B .1x >-C .1x >D .1x <二、填空题(共8小题,满分32分)11.如图,直线l 1:y =2x +b 与直线l 2:y =mx +n 相交于点P (1,3),则关于x ,y 的方程组2y x b y mx n =+⎧⎨=+⎩的解为 .12.下列对于一次函数132y x =--的说法,正确的有 (填写序号) ①图象经过二、三、四象限;①图象与两坐标轴围成的面积是6;①y 随x 的增大而减小;①当6x >-时0y <;①当3y >-时0x <.13.在平面直角坐标系中,横、纵坐标都是整数的点叫作整点.直线4y x =-+与坐标轴围成的三角形内(不包含边界)有 个整点,三角形的边上有 个整点.若直线4(0)y kx k =+>与坐标轴围成的三角形内(不包含边界)有且仅有6个整点,则k 的取值范围是 .14.快慢两车分别从相距360千米的甲、乙两地同时出发,匀速行驶,途中慢车因故障停留1小时,然后 以原速度的43倍继续向甲地行驶,到达甲地后停止行驶;快车匀速到达乙地后,立即按原路原速返回甲 地(快车掉头时间忽略不计),并且比慢车提前15分钟到达甲地,快慢两车之间的距离y (千米)与快 车行驶时间x (小时)之间的函数图象如图所示.则当两车第二次相遇时,两车距甲地还有 千米.15.下列函数关系是:①1y kx =+(k≠0);①2y x =;①21y x =+;①2y x x ,其中是一次函数的有 个.16.在平面直角坐标系xOy 中,一次函数(0y kx b k =+≠,k ,b 均为常数)与正比例函数12y x =-的图象如图所示,则关于x 的不等式12kx b x +>-的解集为 .17.如图,直线y=kx+b 经过A (﹣1,2)和B 70)两点,则不等式0<kx +b <﹣2x 的解集为 .18.若点()3,A a -,()2,B b 都在一次函数()216y k x =-++(k 为常数)的图象上,那么a 和b 的大小关系是:a b (选填“>”,“<”或“=”).三、解答题(共6小题,每题8分,满分48分)19.如图,在平面直角坐标系中,将直线12y x =向上平移1个单位得到直线1:l y kx b =+,1l 分别与x 轴、y 轴交于点A 、B ,直线23:4l y x m =-+分别与x 轴、y 轴交于点C 、D ,两直线交于点E ,且点E 的横坐标为4.(1)求直线1l 与直线2l 的解析式;(2)根据图象直接写出不等式34kx b x m +≥-+的解集;(3)求四边形OBEC 的面积.20.4月23日是世界读书日,某书店计划在“世界读书日”前夕,同时购进A ,B 两类图书,这两类图书的进价和售价如下表: 类型 进价(元/本) 售价(元/本)A36 38 B 45 50该书店计划用4500元购进这两类图书(每类图书都要购进),设购进A 类图书x 本,B 类图书y 本.(1)求y 关于x 的函数关系式;(2)进货时,A 类图书的购进数量不少于60本,若书店全部售完这些图书可获利W 元,求W 关于x 的函数关系式,并说明应该如何进货才能使书店所获利润最大,最大利润为多少元?21.已知:一次函数3y kx =+,当1x =时4y =;(1)求这个一次函数的解析式,并画出此函数的图象;(2)把此函数图象向上平移2个单位,直接写出所得的函数图象的解析式.22.如图,直线y =kx +6与x 轴、y 轴分别交于E 、F .点E 坐标为(-8,0),点A 的坐标为(-6,0). (1)求k 的值;(2)若点P (x ,y )是第二象限内的直线上的一个动点,当点P 运动过程中,试写出三角形OP A 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)探究:当P 运动到什么位置时,三角形OP A 的面积为9,并说明理由.23.已知直线l 1:y 1=2x +3与直线l 2:y 2=kx -1交于点A ,点A 的横坐标为-1,且直线l 1与x 轴交于点B ,与y 轴交于点D ,直线l 2与y 轴交于点C .(1)直线l 2对应的函数表达式;(2)连接BC ,求S △ABC .24.已知一次函数()134502y kx k k =++≠ (1)无论k 为何值,函数图像必过定点,求该点的坐标;(2)如图1,当k =-12时,该直线交x 轴,y 轴于A ,B 两点,直线l 2:y =x +1交AB 于点P ,点Q 是l 2上一点,若S ∆ABQ =6,求Q 点的坐标;(3)如图2,在第2问的条件下,已知D 点在该直线上,横坐标为1,C 点在x 轴负半轴,∠ABC =45︒,动点M 的坐标为(a ,a ),求CM+MD 的最小值.参考答案1.A2.D3.B4.A5.C6.C7.B8.A9.D10.B11.13x y =⎧⎨=⎩12.①①①①13. 3 123k 14≤< 14.4515.116.2x <17.﹣<x <﹣1 18.> 19.(1)11:12l y x =+ 23:64=-+l y x ; (2)4x ≥;(3)14.20.(1)41005y x =- (2)当购进A 类图书60本,B 类图书52本时书店所获利润最大,最大利润为380元21.(1)一次函数的解析式为3y x ;(2)5y x =+22.(1)34;(2)S 94=x +18 (-8<x <0);(3)(-4,3). 23.(1)y 2=-2x -1;(2)S △ABC =1.24.(1)(51342-,);(2)(3,4)或(-1,0);(3109。
北师大版八年级上册数学第四章《一次函数》单元测试卷(含答案)一、选择题(每题3分,共30分)1.下列两个变量之间不存在函数关系的是( )A.圆的面积S和半径r B.某地一天的气温T与时间t C.某班学生的身高y与学生的学号x D.一个正数的平方根与这个数2.一个正比例函数的图象经过点(-2,-4),则它的表达式为( )A.y=-2x B.y=2x C.y=-12x D.y=12x3.【教材P88习题T4改编】正比例函数y=x的图象向上平移2个单位长度,所得函数为( )A.y=x+2 B.y=x-2 C.y=2x D.y=x 24.一次函数y=mx+n的图象如图所示,则关于x的方程mx+n=0的解为( ) A.x=3B.x=-3C.x=4D.x=-45.已知点P(a,-3)在一次函数y=2x+9的图象上,则a的值为( ) A.-3 B.-6 C.15 D.36.关于函数y=-x2-1,下列说法错误的是( )A.当x=2时,y=-2B.y随x的增大而减小C.若(x1,y1),(x2,y2)为该函数图象上两点,x1>x2,则y1>y2D.图象经过第二、三、四象限7.【教材P98复习题T3变式】弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)间有如下关系(其中x≤12).下列说法不正确的是( )A.x与y都是变量,且x是自变量B.弹簧不挂物体时的长度为10 cmC.物体质量每增加1 kg,弹簧长度增加0.5 cmD.所挂物体质量为7 kg,弹簧长度为14.5 cm8.若直线y=-3x+m与两坐标轴所围成的三角形的面积是6,则m的值为( ) A.6 B.-6 C.±6 D.±39.【教材P99复习题T8变式】已知一次函数y=kx+b,y随着x的增大而减小,且kb>0,则这个函数的大致图象是( )10.【2020·铜仁】如图,在长方形ABCD中,AB=3,BC=4,动点P沿折线BCD 从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x 之间的函数关系的图象大致是( )二、填空题(每题3分,共24分)11.【2021·黑龙江】在函数y =1x -5中,自变量x 的取值范围是__________.12.若函数y =(m +1)x |m |是关于x 的正比例函数,则m =________. 13.直线y =3x +1与y 轴的交点坐标是__________.14.点⎝ ⎛⎭⎪⎫-12,m 和点(2,n )在直线y =2x +1上,则m 与n 的大小关系是__________.15.拖拉机油箱中有54 L 油,拖拉机工作时,每小时平均耗油6 L ,则油箱里剩下的油量Q (L)与拖拉机的工作时间t (h)之间的函数关系式是________________(写出自变量的取值范围).16.【教材P 90习题T 2改编】一次函数y =-2x +m 的图象经过点P (-2,3),且与x 轴、y 轴分别交于点A ,B ,则△AOB 的面积是________.17.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的表达式是____________.(第17题) (第18题)18.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法:①两人出发1小时后相遇;②赵明阳跑步的速度为8 km/h;③王浩月到达目的地时两人相距10 km;④王浩月比赵明阳提前1.5 h到目的地.其中错误的序号是________.三、解答题(每题11分,共66分)19.已知y-2与x成正比例,且x=2时,y=4.(1)求y与x之间的函数关系式;(2)若点M(m,3)在这个函数的图象上,求点M的坐标.20.已知一次函数y=(m-3)x+m-8中,y随x的增大而增大.(1)求m的取值范围;(2)如果这个一次函数又是正比例函数,求m的值;(3)如果这个一次函数的图象经过第一、三、四象限,试写一个m的值,不用写理由.21.如图,一次函数y=2x+b的图象与x轴交于点A(2,0),与y轴交于点B.(1)求b的值,(2)若直线AB上的点C在第一象限,且S△AOC=4,求点C的坐标.22.如图,一次函数y=kx+5的图象与y轴交于点B,与正比例函数y=32x的图象交于点P(2,a).(1)求k的值;(2)求△POB的面积.23.水龙头关闭不紧会持续不断地滴水,小明用可以显示水量的容器做实验,并根据实验数据绘制出容器内盛水量y(L)与滴水时间t(h)之间的函数关系图象(如图).请结合图象解答下面的问题:(1)容器内原有水多少升?(2)求y与t之间的函数表达式,并计算在这种滴水状态下一天的滴水量是多少升.24.某通信公司推出①②两种通信收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的收费金额y (元)与通信时间x (分钟)之间的函数关系如图所示.(1)有月租费的收费方式是________(填“①”或“②”),月租费是________元; (2)分别求出①②两种收费方式中,收费金额y (元)与通信时间x (分钟)之间的函数表达式;(3)请你根据用户通信时间的多少,给出经济实惠的选择建议.参考答案一、1.D 2.B 3.A 4.D 5.B 6.C 7.D 8.C 9.B 10.D二、11.x ≠5 12.1 13.(0,1) 14.m <n15.Q =54-6t (0≤t ≤9) 16.14 17.y =-x +3 18.③三、19.解:(1)设y -2=kx (k ≠0).把x =2,y =4代入,得k =1.故y 与x 之间的函数关系式是y =x +2. (2)因为点M (m ,3)在这个函数的图象上, 所以3=m +2,解得m =1.所以点M 的坐标为(1,3).20.解:(1)因为一次函数y =(m -3)x +m -8中,y 随x 的增大而增大,所以m -3>0. 所以m >3.(2)因为这个一次函数是正比例函数, 所以m -8=0,即m =8. (3)答案不唯一,如m =4.21.解:将A (2,0)的坐标代入y =2x +b ,得2×2+b =0,解得b =-4.(2)因为S △AOC =4,点A (2,0), 所以OA =2.所以12OA ·y c =4,解得y c =4.把y =4代入y =2x -4,得2x -4=4, 解得x =4.所以点C 的坐标为(4,4).22.解:(1)把点P (2,a )的坐标代入y =32x ,得a =3,所以点P 的坐标为(2,3).把点P (2,3)的坐标代入y =kx +5,得2k +5=3, 解得k =-1.(2)由(1)知一次函数表达式为y =-x +5. 把x =0代入y =-x +5,得y =5,所以点B的坐标为(0,5).所以S△POB=12×5×2=5.23.解:(1)根据图象可知,当t=0时,y=0.3,即容器内原有水0.3 L.(2)设y与t之间的函数表达式为y=kt+b.将点(0,0.3),(1.5,0.9)的坐标分别代入,得b=0.3,1.5k+b=0.9,解得k=0.4.所以y与t之间的函数表达式为y=0.4t+0.3.当t=24时,y=0.4×24+0.3=9.9,所以在这种滴水状态下一天的滴水量是9.9-0.3=9.6(L).24.解:(1)①;30(2)记有月租费的收费金额为y1(元),无月租费的收费金额为y2(元),则设y1=k1x+30,y2=k2x.将点(500,80)的坐标代入y1=k1x+30,得500k1+30=80,所以k1=0.1,则y1=0.1x+30.将点(500,100)的坐标代入y2=k2x,得500k2=100,所以k2=0.2,则y2=0.2x.所以①②两种收费方式中,收费金额y(元)与通信时间x(分钟)之间的函数表达式分别为y1=0.1x+30,y2=0.2x.(3)当收费相同,即y1=y2时,0.1x+30=0.2x,解得x=300.结合图象,可知当通信时间少于300分钟时,选择收费方式②更实惠;当通信时间超过300分钟时,选择收费方式①更实惠;当通信时间等于300分钟时,选择收费方式①②一样实惠.。
初二上册数学一次函数单元测试题一、填空题(每小题5分,共25分) 1、若函数28(3)my m x -=-是正比例函数,则常数m 的值是 。
2、已知一次函数2y kx =-,请你补充一个条件 ,使y 随x 的增大而减小。
3、从A 地向B 地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若通话t 分钟(t ≥3),则需付电话费y (元)与t (分钟)之间的函数关系式是 。
4、某市自来水公司为了鼓励市民节约用水,采取分段收费标准,某市居民每月交水费y (元)与水量x (吨)的函数关系如图所示,请你通过观察函数图象,回答自来水公司收费标准:若用水不超过5吨,水费为 元/吨;若用水超过5吨,超过部分的水费为 元/吨。
5、学校阅览室有能坐4 人的方桌,如果多于4 人,就把方桌拼成一行,2张方桌拼成一行能坐6 人,如图所示,请你结合这个规律,填写下表:二、选择题(每小题5分,共25分,每小题只有一个正确答案)6、下列各曲线中不能表示y 是x 的函数的是………………………………………( )A .B .C .D .7、若点A (2,4)在函数2y kx =-的图象上,则下列各点在此函数图象上的是( ) A .(0,-2) B .(32,0) C .(8,20) D .(12,12) 8、右图是温度计的示意图,左边的刻度表示摄氏温度,右边的刻度表示华氏温度,华氏温度y (°F )与摄氏温度(°C )x 之间的函数关系式为………( )A .9325y x =+ B .40y x =+ C .5329y x =+ D .5319y x =+9、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到了终点。
用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事相吻合的是………( )A .B .C .D . 10、如图OA 、AB 分别表示甲、乙两名同学运动的一次函数图象,图中s 和t 分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB 表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑12米;④8 秒钟后,甲超过了乙,其中正确的说法是……………………………………( ) A .①② B .②③④ C .②③ D .①③④三、解答题(此大题满分50分)11、(8分)已知一次函数图象经过(3,5)和(-4,-9)两点,(1)求此一次函数解析式;(2)若点在(a ,2)函数图象上,求a 的值。
八年级上册数学第四章单元测试一、选择题:本大题共12小题,每小题3分,共36分.在每小题列出的四个选项中,只有一个选项是符合题目要求的.1.根据函数的定义,下列图象中表示函数的是()2.在函数y=1x-2-x+2中,自变量x的取值范围是()A.x>-2 B.x≥-2C.x>-2且x≠2 D.x≥-2且x≠23.已知某一次函数的图象与直线y=-2x+1平行,且过点(2,8),那么此一次函数的表达式为()A.y=-2x-2 B.y=-2x+12C.y=-2x-6 D.y=-2x-124.对于一次函数y=-2x+4,下列结论正确的是()A.函数的图象不经过第三象限B.函数的图象与x轴的交点坐标是(-2,0)C.函数的图象向上平移4个单位长度后得到y=-2x的图象D.若两点A(1,y1),B(3,y2)在该函数图象上,则y1<y25.两直线y1=kx+b和y2=bx+k(k≠0且b≠0)在同一平面直角坐标系内的图象位置可能是()6.一次函数y=(m-1)x+m的图象必过一定点,此定点的坐标为() A.(-1,1) B.(1,1)C.(0,1) D.(1,-1)7.爷爷在离家2 900 m的公园锻炼后回家,离开公园走了20 min后,爷爷停下来与朋友聊天10 min ,接着又走了15 min 回到家中.下列图象中表示爷爷离家的距离y (m)与爷爷离开公园的时间x (min)之间的函数关系的是( )8.等腰三角形的周长是40 cm ,其腰长y (cm)与底边长x (cm)的函数表达式正确的是( )A .y =-2x +40(10<x <20)B .y =-0.5x +20(10<x <20) C. y =-0.5x +20(0<x <20) D .y =-2x +40(0<x <20)9.某快递公司每天上午9:00-10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间x (分)之间的函数图象如图所示,那么当甲、乙两仓库快件数量相同时,此时的时刻为( )A .9:15B .9:20C .9:25D .9:3010.8个边长为1的正方形如图摆放在平面直角坐标系中,若经过原点的一条直线l 将这8个正方形分成面积相等的两部分,则该直线l 的函数表达式为( ) A .y =35x B .y =34x C .y =910x D .y =x(第9题) (第10题) (第12题)11.已知过点(2,-3)的直线y =ax +b (a ≠0)不经过第一象限,设s =a +2b ,则s的取值范围是( )A .-5≤s ≤-32B .-6<s ≤-32 C .-6≤s ≤-32 D .-7<s ≤-3212.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80 km/h 的速度行驶1 h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1 h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km)与乙车行驶时间x (h)之间的函数关系如图所示.下列说法:①乙车的速度是120 km/h ;②m =160;③点H 的坐标是(7,80);④n =7.4. 其中说法正确的有( )A .1个B .2 个C .3个D .4个 二、填空题:本大题共6小题,每小题4分,共24分. 13.如果函数y =(m -1)x m2-3是正比例函数,且y 的值随x 值的增大而增大,那么m 的值是________.14.一次函数y =kx +b 的图象如图所示,当y <5时,x 的取值范围是____________.(第14题) (第18题)15.点⎝ ⎛⎭⎪⎫-12,m 和点(2,n )在直线y =2x +b 上,则m 与n 的大小关系是________.16.2021年5月15日7时18分,“天问一号”火星探测器成功在火星着陆,开启了中国人自主探测火星之旅.已知华氏温度f (℉)与摄氏温度c (℃)之间的关系满足下表:c /℃ … -10 0 10 20 30 … f /℉…1432506886…____________℉.17.某直线与x 轴交于点A (-4,0),与y 轴交于点B ,若点B 到x 轴的距离为2,则该直线对应的函数表达式为__________________.18.如图①所示,在长方形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y .如果y 关于x 的函数图象如图②所示,那么△ABC的面积是________.三、解答题(一):本大题共2小题,每小题8分,共16分.19.已知y与x-1成正比例,且当x=3时,y=4.(1)求y与x之间的函数表达式;(2)求当x=-5时y的值.20.拖拉机开始工作时,油箱中有油40 L,如果工作1 h耗油4 L,求:(1)油箱中的余油量Q(L)与工作时间t(h)的函数关系式及自变量的取值范围;(2)当工作5 h时油箱的余油量.四、解答题(二):本大题共2小题,每小题10分,共20分.21.如图,在平面直角坐标系中,直线l经过原点O和点A(6,4),经过点A的另一条直线交x 轴于点B (12,0). (1)求直线l 对应的函数表达式;(2)若直线l 上有一点P ,使得S △ABP =13S △AOB ,求出点P 的坐标.22.甲、乙两车分别从A ,B 两地同时出发,沿同一条公路相向而行,乙车出发2 h 后休息,与甲车相遇后,继续行驶.设甲、乙两车与B 地的距离分别为y甲(km),y 乙(km),甲车行驶的时间为x (h),y 甲,y 乙与x 之间的函数图象如图所示,结合图象解答下列问题. (1)乙车休息了________h ;(2)已知乙车与甲车相遇后y 乙仍是x 的正比例函数,求乙车与甲车相遇后y 乙与x 的函数表达式,并写出自变量x 的取值范围; (3)当甲、乙两车相距40 km 时,求x 值.五、解答题(三):本大题共2小题,每小题12分,共24分.23.某大型商场为了提高销售人员的积极性,对原有的薪酬计算方式进行了修改,设销售人员一个月的销售量为x (件),销售人员的薪酬为y (元),原有的薪酬y1(元)计算方式采用的是底薪+提成,且y1=k1x+b1,已知每销售一件商品另外获得15元的提成.修改后的薪酬y2(元)计算方式为y2=k2x+b2.根据图象回答下列问题:(1)分别求y1、y2与x之间的函数表达式,并说明b1和b2的实际意义;(2)求两个函数图象的交点F的坐标,并说明交点F的实际意义;(3)请根据函数图象判断哪种薪酬计算方式更适合销售人员.24.如图,直线y=-2x+8分别与x轴,y轴交于A,B两点,点C在线段AB 上,过点C作CD⊥x轴于点D,CD=2OD,点E在线段OB上,且AE=BE.(1)点C的坐标为________,点E的坐标为________;(2)若直线m经过点E,且将△AOB分成面积比为1:2的两部分,求直线m的函数表达式;(3)若点P在x轴上运动,当PC+PE取最小值时,求点P的坐标及PC+PE的最小值.答案一、1.C2.D3.B4.A5.A6.A点拨:将一次函数y=(m-1)x+m变形为m(x+1)-x-y=0,令x+1=0,则-x-y=0,解得x=-1,y=1,故一次函数y=(m-1)x+m的图象必过定点(-1,1).7.B8.C点拨:根据三角形周长的定义可得x+2y=40,所以y=-0.5x+20.又由三角形三边关系,得x<2y,x>y-y,所以x<2(-0.5x+20),x>0,即x<20,x>0,所以0<x<20.9.B10.C11.B点拨:因为直线y=ax+b(a≠0)不经过第一象限,所以a<0,b≤0.因为直线y=ax+b(a≠0)过点(2,-3),所以2a+b=-3,所以a=-b-32,b=-2a-3,所以s=a+2b=-b-32+2b=32b-32≤-32,s=a+2b=a+2(-2a-3)=-3a-6>-6,所以s的取值范围是-6<s≤-32.故选B.12.D二、13.214.x>015.m<n16.-67点拨:由表中数据可得,f=32+18×c10=32+1.8c,当c=-55时,f=32+1.8×(-55)=-67.所以换算成华氏温度约为-67℉.17.y =12x +2或y =-12x -2 18.10三、19.解:(1)设y =k (x -1),把x =3,y =4代入,得(3-1)k =4, 解得k =2,所以y =2(x -1),即y =2x -2. (2)当x =-5时,y =2×(-5)-2=-12.20.解:(1)由题意可知Q =40-4t (0≤t ≤10).(2)把t =5代入Q =40-4t , 得Q =40-4×5=20.所以当工作5 h 时油箱的余油量为20 L . 四、21.解:(1)设直线l 对应的函数表达式为y =kx ,把(6,4)代入,得4=6k , 解得k =23.所以直线l 对应的函数表达式为y =23x .(2)因为A (6,4),B (12,0), 所以S △AOB =12×12×4=24.当S △ABP =13S △AOB =8时,分两种情况, 设点P 的坐标为⎝ ⎛⎭⎪⎫x ,23x .①如图①,当点P 在线段OA 上时,连接BP , 则S △BOP =S △AOB -S △ABP =24-8=16, 即12×12×23x =16. 解得x =4, 则P ⎝ ⎛⎭⎪⎫4,83;②如图②,当点P 在线段OA 的延长线上时,连接BP ,则S △BOP =S △AOB +S △ABP =24+8=32, 即12×12×23x =32. 解得x =8, 则P ⎝ ⎛⎭⎪⎫8,163.故点P 的坐标为⎝ ⎛⎭⎪⎫4,83或⎝ ⎛⎭⎪⎫8,163.22.解:(1)0.5(2)设乙车与甲车相遇后y 乙与x 的函数表达式为y 乙=k 2x ,把(5,400)代入,得5k 2=400. 解得k 2=80.所以y 乙=80x (2.5≤x ≤5).(3)设乙车与甲车相遇前y 乙与x 的函数表达式为y 乙=k 3x ,把(2,200)代入,得2k 3=200. 解得k 3=100.所以乙车与甲车相遇前y 乙与x 的函数表达式为y 乙=100x (0≤x ≤2). 设y 甲与x 的函数表达式为y 甲=k 1x +b 1. 把(0,400),(5,0)代入, 得b 1=400,5k 1+b 1=0, 解得k 1=-80,所以y 甲=-80x +400(0≤x ≤5). 当0≤x ≤2时,y 甲-y 乙=40, 即-80x +400-100x =40. 解得x =2.当2.5≤x ≤5时,y 乙-y 甲=40,即80x-(-80x+400)=40.解得x=11 4.所以当甲、乙两车相距40 km时,x=2或x=11 4.五、23.解:(1)因为y1=k1x+b1的图象过点(0,3 000),所以b1=3 000,又因为每销售一件商品另外获得15元的提成,所以k1=15,所以y1=15x+3 000.因为y2=k2x+b2的图象过点(100,3 000),(0,0),所以b2=0,100k2=3 000,解得k2=30,所以y2=30x.所以b1的实际意义是底薪为3 000元,b2的实际意义是底薪为0元.(2)令y1=y2,即15x+3 000=30x,解得x=200,所以y1=y2=6 000.所以F(200,6 000),所以交点F的实际意义是当销售人员一个月的销售量为200件时,销售人员通过两种薪酬计算方式所得的薪酬相等,为6 000元.(3)结合函数图象可知,当0<x<200时,原有的薪酬计算方式更适合销售人员;当x=200时,两种薪酬计算方式对销售人员一样;当x>200时,修改后的薪酬计算方式更适合销售人员.24.解:(1)(2,4);(0,3)(2)设直线m的函数表达式为y=kx+3,根据k值的不同,可分为两种情况讨论:①当k>0时,如图①,设直线m交AB于点F,过点F作FH⊥y轴于点H.当S△BEF=11+2S△AOB时,易知B (0,8),E (0,3),所以BE =5, 所以5FH 2=13×4×82,解得FH =3215.将x =3215代入y =-2x +8,得y =5615.将点F ⎝ ⎛⎭⎪⎫3215,5615的坐标代入y =kx +3, 得k =1132,所以直线m 的函数表达式为y =1132x +3;②当k <0时,如图②,设直线m 交OA 于点N .当S △OEN =11+2S △AOB时,易知OE =3, 所以3ON 2=13×4×82,解得ON =329.将点N ⎝ ⎛⎭⎪⎫329,0的坐标代入y =kx +3, 得k =-2732,所以直线m 的函数表达式为y =-2732x +3.综上,直线m 的函数表达式为y =1132x +3或y =-2732x +3.(3)作点E 关于x 轴的对称点E ′,连接 CE ′交x 轴于点P ,此时PC +PE取最小值.易知点E ′的坐标为(0,-3), 设直线CE ′的函数表达式为y =nx -3,将点C (2,4)的坐标代入,得n =72,所以y =72x -3.将y =0代入y =72x -3,得x =67,所以点P 的坐标为⎝ ⎛⎭⎪⎫67,0, 作E ′G ⊥CD 交CD 延长线于点G ,易知E ′G =OD =2,CG =7,所以PC +PE 的最小值=CE ′=22+72=53.。
《第4章一次函数》一、选择题1.下列图象中,表示y是x的函数的个数有()A.1个B.2个C.3个D.4个2.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=﹣2x+24(0<x<12) B.y=﹣x+12(0<x<24)C.y=2x﹣24(0<x<12)D.y=x﹣12(0<x<24)3.一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而增大,则m=()A.﹣1 B.3 C.1 D.﹣1或34.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6) B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6)D.(2,3),(﹣4,6)5.对于函数y=﹣x+3,下列说法错误的是()A.图象经过点(2,2)B.y随着x的增大而减小C.图象与y轴的交点是(6,0)D.图象与坐标轴围成的三角形面积是96.关于x的一次函数y=kx+k2+1的图象可能正确的是() A.B. C.D.7.P1(x1,y1),P2(x2,y2)是一次函数y=﹣2x+5图象上的两点,且x1<x2,则y1与y2的大小关系是()A.y1<y2 B.y1=y2C.y1>y2 D.y1>y2>08.已知一次函数y=x+m和y=﹣x+n的图象都经过点A(﹣2,0),且与y轴分别交于B,C两点,那么△ABC的面积是()A.2 B.3 C.4 D.69.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.810.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,点B2013的坐标为()A.(42012×,42012) B.(24026×,24026)C.(24026×,24024)D.(44024×,44024)二、填空题11.将直线y=2x向上平移1个单位长度后得到的直线是.12.函数y=中,自变量x的取值范围是.13.一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是.14.直线y=3x﹣m﹣4经过点A(m,0),则关于x的方程3x﹣m﹣4=0的解是.15.已知某一次函数的图象经过点A(0,2),B(1,3),C(a,1)三点,则a的值是.16.某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图所示,那么乙播种机参与播种的天数是天.17.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是.18.如果直线l与直线y=﹣2x+1平行,与直线y=﹣x+2的交点纵坐标为1,那么直线l的函数解析式为.三、解答题(共66分)19.已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k、b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a 的值.20.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0。
初二上册数学一次函数单元测试题一、填空〔每小5分,共25分〕1、假设函数y(3m)x m28是正比例函数,常数m的是。
2、一次函数y kx2,你充一个条件,使y随x的增大而减小。
3、从A地向B地打途,按收,3分内收元,以后每超1分加收1元,假设通t分〔t 3〕,需付y〔元〕与〔t分〕之的函数关系式是。
4、某市自来水公司了鼓励市民用水,采取分段收准,某市居民每月交水y〔元〕与水量x〔吨〕的函数关系如所示,你通察函数象,答复自来水公司收准:假设用水不超5吨,水元/吨;假设用水超5吨,超局部的水元/吨。
5、学校室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2方桌拼成一行能坐6人,如所示,你合个律,填写下表:拼成一行的桌子数1234⋯⋯n 人数468⋯⋯二、〔每小5分,共25分,每小只有一个正确答案〕6、以下各曲中不能表示y是x的函数的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔〕1A .B .C .D .7、假设点A 〔2,4〕在函数ykx 2的象上,以下各点在此函数象上的是〔〕31 1A .〔0,-2〕B .〔2,0〕C .〔8,20〕D .〔2,2〕8、右是温度的示意,左的刻度表示氏温度,右的刻度表示°°〕氏温度,氏温度y 〔F 〕与氏温度〔C 〕x 之的函数关系式⋯⋯⋯〔A .9B .y5x32y x40C .y5x32D .y5x31999、“兔跑〞述了的故事:先的兔子看着慢爬行的,傲起来,睡了一,当它醒来,快到点了,于是急忙追赶,但已晚,先到了点。
用S 1、S 2分表示和兔子所行的路程,t ,以下象中与故事相 吻合的是⋯⋯⋯〔 〕A .B .C .D . 10、如OA 、AB 分表示甲、乙两名同学运的一次函数象,中s 和t 分表示运路程和,甲的速度比乙快,以下法:①射AB 表示甲的路程与的函数关系;②甲的速度比乙快米/秒; ③甲乙先跑12米;④8秒后,甲超了乙,其中正确的法是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔〕 A .①② B .②③④ C .②③ D .①③④三、解答〔此大分50分〕11、〔8分〕一次函数象〔3,5〕和〔-4,-9〕两点,〔1〕求此一次函数解析式;〔2〕假设点在〔a ,2〕函数象上,求a 的。
第 十二 章 一次函数(时间:120分钟满分:150分)题 号一二三四五六七八总 分得 分一、选择题(本大题共10 小题,每小题4分,满分40 分)1.函数 y =x−3x中,自变量x 的取值范围是 ( )A. x≠0B. x≥3C. x≥3且x≠0D. x>3且x≠02.若正比例函数的图象经过点(-1,2),则这个图象必经过点 ( )A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)3.函数 y =k (x−k )(k <0)的图象不经过 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函数y =−x +3,,当x=a 时,y=5;当x=b 时,y=-5;当x=c 时,y =3,则a ,b ,c 的大小关系是( )A.a >b >cB. a>c>bC. b>a>cD. b>c>a5.直线 y =2x 向下平移2 个单位得到的直线是 ( ) A.y =2x (x +2) B.y =2(x−2) C.y =2x−2 D.y =2x +26.如图,在下列平面直角坐标系中,一次函数 y =12kx−2k 的图象只可能是( )7.如图,下列方程组的解可以用两直线 l₁,l₂的交点坐标表示的是 ( )A.{x−y =1,2x−y =1 B.{x−y =−1,2x−y =1 C.{x−y =3,2x−y =1 D.{x−y =−3,2x−y =−18.如图,函数 y 1=|x|,y 2=13x +43.当 y₁>y₂时,x 的取值范围是 ( )A. x< -1B.−1<x <2C.x <−1或x>2D.x >29.小高从家门口骑车去单位上班,先走平路到达点 A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 ( )A.12 分钟B.15分钟C.25分钟D.27 分钟10.如图,在平面直角坐标系中,在边长为1 的正方形ABCD 的边上有一动点 P 沿A→B→C→D→A 运动一周,则点 P 的纵坐标y 与点 P 走过的路程s 之间的函数关系用图象表示大致是 ( )二、填空题(本大题共4 小题,每小题5分,满分20分)11.已知一次函数 y =(4m +1)x−(m +1),,当m 满足 时,直线在y 轴上的截距小于0.12.一次函数 y =2x−6的函数值为0,则 x =.13.甲、乙两人以相同路线前往距离单位10 千米的培训中心参加学习.图中 l 甲,l 乙分别表示甲、乙两人前往目的地所走的路程s(千米)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/时;③乙的平均速度为1507千米/时;④乙出发6分钟后追上甲.其中正确的有 .(填所有正确的序号)14.已知一次函数 y =ax +b (a ,b 是常数),x 与y 的部分对应值如下表:x -2-10123y642-2-4那么方程ax+b=0的解是 ;不等式。
八年级数学上册《第四章一次函数》单元测试卷及答案-北师大版学校:___________班级:___________姓名:___________考号:___________一、选择题(本大题共有10个小题,每小题3分,共30分)1.函数y=x-1的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.自行车发生故障时离家距离为1000米B.学校离家的距离为2000米C .到达学校时共用时间20分钟D .修车时间为15分钟一次函数2y x m =-+的图象经过点P (2-,3),且与x 轴、y 轴分别交于点A 、B则AOB ∆的面积是( )A .12 B .14 C .4 D .85.一次函数y kx b =+满足0kb <,且y 随x 的增大而减小,则此函数的图像一定不经过() A .第一象限 B .第二象限 C .第三象限 D .第四象限6.一次函数y =kx +b 的图象如图所示,则方程kx +b =0的解为( )A .x =2B .y =2C .x =-1D .y =-17.如图,直线l 是一次函数y=kx+b 的图象,若点A (3,m )在直线l 上,则m 的值是()A .﹣5B .32C .52 D .78.如图,直线AB 对应的函数表达式是( )A .332y x =-+B .332y x =+C .233y x =-+D .233y x =+ 9.同一平面直角坐标系中,函数y ax b =+与y bx a =+的图象大致是( )A. B. C. D.10 .如图,一辆汽车和一辆摩托车分别从A ,B 两地去同一城市l 1 ,l 2分别表示汽车、摩托车离A 地的距离s (km )随时间t (h )变化的图象,则下列结论:①摩托车比汽车晚到1 h ;②A ,B 两地的距离为20 km ;③摩托车的速度为45 km/h ,汽车的速度为60 km/h ;④汽车出发1 h 后与摩托车相遇,此时距离B 地40 km ;⑤相遇前摩托车的速度比汽车的速度快.其中正确的结论有( )A .2个B .3个C .4个D .5个二、填空题(本大题共有8个小题,每小题3分,共24分)11.若函数1(2)n y m x n -=-+是一次函数,则m ,n 应满足的条件是_____________已知油箱中有油25升,每小时耗油5升则剩油量P (升)与耗油时间t (小时)之间的函数关系式为________13.已知一次函数21y x =+的图像经过111(,)P x y ,222(,)Px y 两点 若12x x <,则1y 2y .(填”>”,”<”或”=”)14.一次函数y =(k -2)x +b 的图象如图所示,则k 的取值范围是_______一次函数y kx b =+满足0kb <,且y 随x 的增大而减小则此函数的图像一定不经过_________如图,在平面直角坐标系中,点A 的坐标为(0,6),将△OAB 沿x 轴向左平移得到△O ′A ′B ′点A 的对应点A ′落在直线34y x =-上,则点B 与其对应点B ′间的距离为 .甲、乙两工程队分别同时开挖两条600米长的管道所挖管道长度y (米)与挖掘时间x (天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有 .(在横线上填写正确的序号)18.正方形111A B C O 、2221A B C C 和3332A B C C …按如图所示的方式放置.点1A 、2A 和3A …和点1C 、2C 和3C …分别在直线1y x =+和x 轴上,则点n B 的坐标是 .(n 为正整数)三、解答题(本大题共有7个小题,共46分)19.已知y 是23x +的正比例函数,且当1x =时5y =-.(1)求y 与x 的函数关系式.(2)若点(,2)a 在该函数的图象上,求a 的值.20.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y (元)与租书时间x (天)之间的关系如下图所示.(1)分别写出用租书卡和会员卡租书金额y (元)与租书时间x (天)之间的关系式.(2)两种租书方式每天的收费是多少元?(x <100)21.如图,直线AC 与x 轴的负半轴交于点C ,与y 轴交于点A .直线AB 与x 轴交于点()2,0B ,与y 轴交于点()0,4A .(1)求直线AB 的函数表达式;(2)若7ABC S =△,求点C 的坐标.22.如图,已知一次函数y kx b =+ 的图象经过A (-2,-1),B (1,3)两点并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式;(2)求△AOB 的面积.23 .在一次蜡烛燃烧实验中乙两根蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间的关系如图所示请根据图象所提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是__________,从点燃到燃尽所用的时间分别是________;(2)分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式;(3)燃烧多长时间,甲、乙两根蜡烛的高度相同?(不考虑都燃尽时的情况)24.如图,已知直线y=-2x+6与x轴交于点A,与y轴交于点B.(1)点A的坐标为________,点B的坐标为________.(2)求△AOB的面积.(3)直线AB上是否存在一点C(点C与点B不重合),使△AOC的面积等于△AOB的面积?若存在,求出点C的坐标;若不存在,请说明理由.如图,在平面直角坐标系中,过点B(6,0)的直线AB与y轴相交于点C(0,6)与直线OA相交于点A且点A的纵坐标为2,动点P沿路线O A C→→运动.(1)求直线BC的解析式;(2)在y轴上找一点M,使得△MAB的周长最小,则点M的坐标为______;(请直接写出结果)(3)当△OPC的面积是△OAC的面积的14时,求出这时P的坐标.参考答案一、选择题(本大题共有10个小题,每小题3分,共30分)1D 2A 3D 4B 5C 6C 7C 8A 9B 10B二、填空题(本大题共有8个小题,每小题3分,共24分)11.【答案】m ≠2且n=2 12.【答案】B .P =25-5t 13.【答案】< 14.【答案】k <215.【答案】第三象限 16.【答案】8 17.【答案】①②④ 18.【答案】1(21,2)n n --四、解答题(本大题共有7个小题,共46分)19.解:(1)设(23)y k x =+.∵当1x =时5y =-∴5(213)k -=⨯+∴1k =-∴23y x =--.(2)∵点(,2)a 在23y x =--的图象上∴232a --=.∴ 2.5a =-.20.解:(1)观察图象可知,用租书卡设其函数关系式为y=kx∵函数图象经过点(0,0)和(100,50)∴50=k •100解得k=12,即:函数关系式为y=12x ;用会员卡租书可设其函数关系式为y=ax+b∵图象经过点(0,20)和(100,50)∴2010050b a b =⎧⎨+=⎩解得:31020a b ⎧=⎪⎨⎪=⎩ 即:函数关系式为y=310x+20; (2)用租书卡的方式租书,每天租书的收费为50÷100=0.5元; 用会员卡的方式租书,每天租书的收费为(50-20)÷100=0.3元21.解:(1)设直线AB 的函数表达式为()0y kx b k =+≠ 因为直线AB 经过()0,4A 和()2,0B所以420b k b =⎧⎨+=⎩,所以24k b =-⎧⎨=⎩ 所以直线AB 的函数表达式为24y x =-+.(2)由点C 在x 轴的负半轴上,可设点C 的坐标为(),0a 则OC a a ==-因为()0,4A ,()2,0B 所以4OA =,OB=2因为7ABC S =△,所以172BC OA ⋅= 所以72BC = 所以32OC BC OB =-=,即32a -=,所以32a =- 所以点C 的坐标为3,02⎛⎫- ⎪⎝⎭.22.解:(1)把A (-2,-1),B (1,3)代入y =kx +b ,得 213k b k b -+=-⎧⎨+=⎩解得4353k b ⎧=⎪⎪⎨⎪=⎪⎩∴一次函数解析式为4533y x =+; (2)把x =0代入4533y x =+得53y = 所以D 点坐标为(0,53) 所以△AOB 的面积=S △AOD +S △BOD 1515=2+12323⨯⨯⨯⨯5=2.23 .解:(1)30 cm ,25 cm 2 h ,2.5 h(2)设甲蜡烛燃烧时,y 甲与x 之间的函数关系式为y 甲=k 1x+b 1. 由图可知,函数的图象过点(0,30),(2,0)则b 1=30,2k 1+b 1=0,将b 1=30代入2k1+b 1=0解得k 1=-15.所以y 甲=-15x +30;设乙蜡烛燃烧时,y 乙与x 之间的函数关系式为y 乙=k2x+b2. 由图可知,函数的图象过点(0,25),(2.5,0)则b 2=25,2.5k2+b 2=0,将b2=25代入2.5k2+b2=0解得k2=-10.所以y乙=-10x+25.(3)由题意,得-15x+30=-10x+25,解得x=1,即当蜡烛燃烧1 h,甲、乙两根蜡烛的高度相同.24.解:(1)当y=0时,-2x+6=0解得x=3,则A点的坐标为(3,0);当x=0时,y=-2x+6=6,则B点的坐标为(0,6).(2)S△AOB=12×3×6=9.(3)存在.理由如下:设点C的坐标为(t,-2t+6). 因为△AOC的面积等于△AOB的面积所以12×3×|-2t+6|=9解得t1=6,t2=0(与点B重合,舍去). 所以点C的坐标为(6,-6).25.解:(1)设直线BC的解析式是y=kx+b根据题意得:606bk b ⎧⎨+⎩==解得16k b -⎧⎨⎩== 则直线BC 的解析式是:y=-x+6;(2)如图,作点B (6,0)关于y 轴的对称点B'∴B'(-6,0)连接AB'交y 轴于M ,此时MA+MB 最小,得到△MAB 的周长最小 设直线AB'的解析式为y=mx+n∵A (4,2)∴4260m n m n +⎧⎨-+⎩== ∴1565m n ⎧⎪⎪⎨⎪⎪⎩== ∴直线AB'的解析式为y=1655x + 令x=0∴y=65∴M (0,65) (3)设OA 的解析式是y=ax ,则4a=2解得:a=12则直线的解析式是:y=12x ①当P在OA上时∵当△OPC的面积是△OAC的面积的14时∴P的横坐标是14×4=1在y=12x中,当x=1时,y=12,则P的坐标是(1,12);②当P在AC上时∵△OPC的面积是△OAC的面积的1 4∴CP:AP=1:5∵A(4,2)∴在y=-x+6中,当x=1时,y=5,则P的坐标是(1,5)∴P的坐标是:P1(1,12)或P2(1,5).。
初二上册数学一次函数单元测试题
一、填空题(每小题5分,共25分) 1、若函数2
8
(3)m
y m x -=-是正比例函数,则常数m 的值是 。
2、已知一次函数2y kx =-,请你补充一个条件 ,使y 随x 的增大而减小。
3、从A 地向B 地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若通话t 分钟(t ≥3),则需付电话费y (元)与t (分钟)之间的函数关系式是 。
4、某市自来水公司为了鼓励市民节约用水,采取分段收费标准,某市居民每月交水费y (元)与水量x (吨)的函数关系如图所示,请你通过观察函数图象,回答自来水公司收费标准:若用水不超过5吨,水费为 元/吨;若用水超过5吨,超过部分的水费为 元/吨。
5、学校阅览室有能坐4 人的方桌,如果多于4 人,就把
方桌拼成一行,2张方桌拼成一行能坐6 人,如图所示,请你结合这个规律,填写下表:
拼成一行的桌子数
1 2 3 4 …… n 人 数
4
6
8
……
二、选择题(每小题5分,共25分,每小题只有一个正确答案)
6、下列各曲线中不能表示y 是x 的函数的是………………………………………( )
A .
B .
C .
D .
7、若点A (2,4)在函数2y kx =-的图象上,则下列各点在此函数图象上的是( ) A .(0,-2) B .(32,0) C .(8,20) D .(12,1
2) 8、右图是温度计的示意图,左边的刻度表示摄氏温度,右边的刻度表示华氏温度,华氏温度y (°F )与摄氏温度(°C )x 之间的函数关系式为………( )
A .9
325y x =
+ B .40y x =+ C .5329y x =+ D .5
319
y x =+
9、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲
起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到了终点。
用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事相吻合的是………( )
A .
B .
C .
D . 10、如图OA 、AB 分别表示甲、乙两名同学运动的一次函数图象,图中s 和t 分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB 表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑12米;④8 秒钟后,甲超过了乙,其中正确的说法是……………………………………( ) A .①② B .②③④ C .②③ D .①③④
三、解答题(此大题满分50分)
11、(8分)已知一次函数图象经过(3,5)和(-4,-9)两点,(1)求此一次函数解析式;(2)若点在(a ,2)函数图象上,求a 的值。
12、(8分)画出函数26y x =+的图象,利用图象:(1)求方程260x +=的解;(2)求不等式26x +>0的解;(3)若13y -≤≤,求x 的取值范围。
13、(10分)小强骑自行车去郊游,右图表示他离家的距离y (千米)与所用的时间x (小时)之间关系的函数图象,小强9点离开家,15点回家,根据这个图象,请你回答下列问
题:
(1)小强到离家最远的地方需要几小时?此时离家多远?
(2)何时开始第一次休息?休息时间多长? (3)小强何时距家21km ?(写出计算过程)
14、(8分)网络时代的到来,很多家庭都接入了网络,电信局规定了拨号入网的两种收费方式,用户可以任选其一:A :计时制:0.05元/分;B :全月制:54元/月(限一部个人住宅电话入网)。
此外B 种上网方式要加收通信费0.02元/分.
(1)某用户某月上网的时间为x 小时,两种收费方式的费用分别为y 1(元)、y 2(元),写出y 1、y 2与x 之间的函数关系式。
(2)在上网时间相同的条件下,请你帮该用户选择哪种方式上网更省钱?
15、(12分)某服装厂现有A 种布料70m ,B 种布料52m ,现计划用这两种布料生产M 、N 两种型号的时装80套。
已知做一套M 型号的时装需要A 种布料0.6m ,B 种布料0.9m,可获利45元;做一套N 型号的时装需要A 种布料1.1m ,B 种布料0.4 m ,可获利50元。
若设生产N 型号的时装套数为x ,用这批布料生产这两种型号的时装所获的总利润为y 元。
(1)求y 与x 的函数关系式,并求出x 的取值范围;
(2)该服装厂在生产这批时装中,当生产N 型号的时装多少套时,所获利润最大?最大利润是多少?
四、附加题(此大题满分20分)
16、如图,直线6y kx =+与x 轴y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0)。
(1)求k 的值;
(2)若点P (x ,y )是第二象限内的直线上的一个动
点,在点P 的运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;
(3)探究:当点P 运动到什么位置时,△OPA 的面积为27
8,并说明理由。