2013届高考数学复习总结--最新3年高考2年模拟(3)不等式
- 格式:doc
- 大小:3.12 MB
- 文档页数:72
第三章:不等式1、不等式的基本性质①(对称性)a b b a >⇔> ②(传递性),a b b c a c >>⇒> ③(可加性)a b a c b c >⇔+>+(同向可加性)db c a d c b a +>+⇒>>, (异向可减性)db c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d>><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>⇒>∈>且⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>> 2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤ ②(基本不等式) 2a bab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号). ⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号).⑥0,2ba ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b<+≤-若则(当仅当a=b时取等号) ⑦ban b n a m a m b ab <++<<++<1其中(000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小.⑧220;a x a x a x a x a >>⇔>⇔<->当时,或 22.x a x a a x a <⇔<⇔-<<⑨绝对值三角不等式.a b a b a b -≤±≤+ 3、几个著名不等式①平均不等式:2211222a b a b ab a b --++≤≤≤+()a b R +∈,,(当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++③二维形式的三角不等式:22222211221212()()x y x y x x y y +++≥-+-1122(,,,).x y x y R ∈ ④二维形式的柯西不等式22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++ ⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和)当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)k k k <-211,(1)k k k >+2212(),21kk k k k k ==<++-*12(,1)1k N k k k k >∈>++等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->解集的步骤: 一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集. 规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解 ⑴2()0()(0)()f x f x a a f x a≥⎧>>⇔⎨>⎩⑵2()0()(0)()f x f x a a f x a≥⎧<>⇔⎨<⎩⑶2()0()0()()()0()0()[()]f x f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()()0()[()]f x f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()()()0()()f x f x g x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时, ()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化. 10、对数不等式的解法 ⑴当1a >时,()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有:①(0);x a a x a a ≤⇔-≤≤≥②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小. 14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤ ⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥ 15、线性规划问题⑴二元一次不等式所表示的平面区域的判断:法一:取点定域法:由于直线0Ax By C ++=的同一侧的所有点的坐标代入Ax By C ++后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取一特殊点00(,)x y (如原点),由00Ax By C ++的正负即可判断出0Ax By C ++>(或0)<表示直线哪一侧的平面区域.即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据0Ax By C ++>(或0)<,观察B 的符号与不等式开口的符号,若同号,0Ax By C ++>(或0)<表示直线上方的区域;若异号,则表示直线上方的区域.即:同号上方,异号下方.⑵二元一次不等式组所表示的平面区域: 不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.⑶利用线性规划求目标函数z Ax By =+(,A B 为常数)的最值: 法一:角点法:如果目标函数z Ax By =+ (x y 、即为公共区域中点的横坐标和纵坐标)的最值存在,则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应z 值,最大的那个数为目标函数z 的最大值,最小的那个数为目标函数z 的最小值 法二:画——移——定——求:第一步,在平面直角坐标系中画出可行域;第二步,作直线0:0l Ax By += ,平移直线0l (据可行域,将直线0l 平行移动)确定最优解;第三步,求出最优解(,)x y ;第四步,将最优解(,)x y 代入目标函数z Ax By =+即可求出最大值或最小值 . 第二步中最优解的确定方法:利用z 的几何意义:A z y x BB =-+,zB为直线的纵截距.①若0,B >则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最大值,使直线的纵截距最小的角点处,z 取得最小值;②若0,B <则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最小值,使直线的纵截距最小的角点处,z 取得最大值. ⑷常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x=或;y b z x a-=- ③“距离”型:22z x y =+或22;z x y =+ 22()()z x a y b =-+-或22()().z x a y b =-+- 在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.35. 利用均值不等式:()a b ab a b R a b ab ab a b 222222+≥∈+≥≤+⎛⎝ ⎫⎭⎪+,;;求最值时,你是否注 意到“,”且“等号成立”时的条件,积或和其中之一为定a b R ab a b ∈++()()值?(一正、二定、三相等)注意如下结论:当且仅当时等号成立。
数学高考二模知识点归纳高考数学是每个学生都需要面对的一项重要考试科目,掌握好数学的基础知识和解题思路对于取得高分至关重要。
为帮助同学们复习数学高考,下面将对数学高考二模的知识点进行归纳总结。
1. 函数与方程(1) 函数的定义及性质:函数的概念,一次函数、二次函数、绝对值函数、反比例函数等常见函数的性质。
(2) 方程的解法:一元一次方程、二元一次方程、一元二次方程等各种类型方程的解法和应用。
(3) 不等式:一元一次不等式、一元二次不等式的解法和应用。
2. 三角函数与解三角形(1) 三角函数的定义及性质:正弦函数、余弦函数、正切函数等基本三角函数的定义和相关性质。
(2) 三角方程与三角恒等式:解三角方程的方法和技巧,利用三角恒等式进行证明和计算。
(3) 三角形的性质与解法:平面直角坐标系中的三角形,三角形边长关系,三角形的面积等相关性质及解法。
3. 数列与数学归纳法(1) 数列的概念及性质:等差数列、等比数列等常见数列的性质和求和公式。
(2) 递推关系与通项公式:根据数列的递推关系确定通项公式,根据通项公式计算数列的和。
(3) 数学归纳法:数学归纳法的基本原理和应用,证明数学命题的正确性。
4. 概率与数理统计(1) 概率的基本概念:样本空间、随机事件、概率等概率基本概念的解释和计算。
(2) 排列组合与概率:计算排列组合问题与概率问题相结合的题目,应用组合数学的知识解题。
(3) 统计分布与统计量:正态分布、二项分布等常见统计分布的性质和应用,常见统计量的计算和解读。
5. 解析几何与空间几何(1) 坐标系与二维几何:直线、圆、抛物线等二维几何图形的性质和解析表示。
(2) 空间几何与向量:向量的概念与性质,点、线、面等空间几何图形的性质和解析表示。
(3) 空间几何中的运算与应用:向量的运算法则,利用向量解决平面和空间几何问题。
以上是数学高考二模的知识点归纳,希望同学们能够针对这些知识点进行有针对性的复习,并在复习过程中加强练习和巩固。
高三不等式知识点归纳总结不等式在高中数学中占有重要的地位,它是数学中一种常见的关系式。
在高三数学学习过程中,我们需要掌握并灵活运用各种不等式知识点,以提升解题能力。
本文将对高三不等式相关知识进行归纳总结,帮助大家系统地掌握不等式的内容。
一、基本不等式基本不等式是不等式的基础,它通过对大小关系的描述,为其他类型不等式的证明提供了依据。
常见的基本不等式有以下几种:1. 正数不等式:若a>0,则a的平方大于0,即a²>0;a与-b的乘积小于0,即ab<0。
2. 负数不等式:若a<0,则a的平方大于0,即a²>0;a与-b的乘积小于0,即ab>0。
3. 平方不等式:若a>b≥0,则a的平方大于b的平方,即a²>b²。
4. 平均不等式:若a1,a2,...,an为正数,则它们的算术平均大于等于它们的几何平均,即(a1+a2+...+an)/n≥(a1*a2*...*an)^(1/n)。
二、一元一次不等式一元一次不等式是形如ax+b>0或ax+b<0的不等式,其中a和b为常数。
我们可以通过移项和分析a的正负来求解不等式。
1. 求解步骤:a) 对不等式进行变形,将不等式变为ax>c的形式,其中c为常数。
b) 根据a的正负确定不等式的方向,若a>0,则不等式为单调递增,解集为x>c/a;若a<0,则不等式为单调递减,解集为x<c/a。
2. 注意事项:a) 在乘以或除以负数的过程中,需注意不等式方向的变化。
b) 当a为0时,不等式变为bx>c,若b>0,则不等式为恒成立;若b<0,则不等式无解。
三、一元二次不等式一元二次不等式是形如ax²+bx+c>0或ax²+bx+c<0的不等式,其中a、b和c为常数。
我们可以通过求解二次方程和分析a的正负来求解不等式。
2013年高考数学总结20xx年的高考已经结束,今年高考数学新课标卷总体难度偏低,在大家的预料之中。
今年上半年的备考复习与今年高考题吻合度非常高。
在高考复习中,我们始终保持明确的目标,清醒的头脑和有效的对策,对高考复习的课程资源作出正确的判断,恰当的取舍和合理的运用,研究近几年的高考卷,特别是新课标卷和海宁卷及山东卷和辽宁卷,搜集今年的各地优秀模拟卷,在繁茂芜杂的信息中找出高考命题的基本规律,在知识和能力、基本能力和创新意识、稳定和创新等诸多矛盾中达到平衡。
把课本内容、考纲要求、命题规律转化为教学方式中的高效复习策略。
1.下海游泳,提高解题能力:每天利用晚一时间让学生定时完成12道选择,4道填空和一道相当于高考17题难度的题。
提前5分钟发详细答案,学生自判,卷子由课代表收齐后交给老师。
第二天上课老师根据学生反馈情况进行必要、适当讲评。
学生通过自判,既能找出出错原因避免下次再犯,又能规范作答。
这样不但提高复习效率,而且提高学生的解题能力。
今年高考所有选择、填空题型我们全部复习到了。
2.立足课本,夯实基础:纵观近几年的全国和各地高考试题,可清楚地发现:高考命题始终坚持“源于课本、高于课本”的原则,以现行教材为依据求变、求新、求活。
所以在高考复习中立足课本,不失时机地回归课本,力求达到温故而知新。
(1)通过对课本例(习)题的回归,使学生清晰“双基”的基础上,牢固地掌握重要的数学思想方法。
今年高考第(9)题:函数f(x)=(1-cosx)sinx在[-π,π]的图像可以利用奇偶性和取特殊点,用排除法选出正确答案。
(2)通过对课本例(习)题的内在联系的提示,使学生深刻理解课本知识的同时更有效地形成知识网络和方法体系。
今年高考(20)已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4 (Ⅰ)求a,b的值(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值。
【3年高考2年模拟】第3章不等式第一部分三年高考荟萃2012年高考试题分类解析一、选择题1 .(2012天津文)设变量,x y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数32z x y =-的最小值为( ) A .5- B .4- C .2- D .32 .(2012浙江文)若正数x,y 满足x+3y=5xy,则3x+4y 的最小值是( )A .245B .285C .5D .63 .(2012辽宁文理)设变量x,y 满足,15020010⎪⎩⎪⎨⎧≤≤≤+≤≤-y y x y x 则2x +3y 的最大值为( )A .20B .35C .45D .554 .(2012辽宁理)若[0,)x ∈+∞,则下列不等式恒成立的是 ( )A .21xe x x ++… B211124x x <-+C .21cos 12x x -… D .21ln(1)8x x x +-…5 .(2012重庆文)不等式102x x -<+ 的解集是为 ( )A .(1,)+∞B .(,2)-∞-C .(-2,1)D .(,2)-∞-∪(1,)+∞6 .(2012重庆理)设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x ⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为 ( )A .34πB .35πC .47πD .2π7 .(2012重庆理)不等式0121≤+-x x 的解集为( ) A .⎥⎦⎤ ⎝⎛-1,21 B .⎥⎦⎤⎢⎣⎡-1,21 C .[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121. D .[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121,8 .(2012四川文)若变量,x y 满足约束条件3,212,21200x y x y x y x y -≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,则34z x y =+的最大值是 ( )A .12B .26C .28D .339 .(2012四川理)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是 ( ) A .1800元 B .2400元 C .2800元 D .3100元 10 .(2012陕西文)小王从甲地到乙地的时速分别为a 和b(a<b),其全程的平均时速为v,则 ( ) A .B .C2a b+ D .v=2a b+ 11 .(2012山东文理)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是( )A .3[,6]2-B .3[,1]2--C .[1,6]-D .3[6,]2-12.(2012课标文)已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z x y =-+的取值范围是 ( ) A .(1-3,2) B .(0,2) C .(3-1,2)D .(0,1+3)13.(2012湖南文)设 a >b >1,0c < ,给出下列三个结论:①c a >c b;② c a <cb ; ③ log ()log ()b a ac b c ->-, 其中所有的正确结论的序号是__. ( )A .①B .① ②C .② ③D .①②③14.(2012广东文)(线性规划)已知变量x 、y 满足约束条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为( )A .3B .1C .5-D .6-15.(2012福建文)若直线2y x =上存在点(,)x y 满足约束条件30230x y x y x m+-≤⎧⎪⎪--≤⎨⎪≥⎪⎩,则实数m 的最大值为( )A .-1B .1C .32D .216.(2012安徽文)若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;则x y -的最小值是( )A .3-B .0C .32D .317 .(2012江西理)某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表 年产量/亩 年种植成本/亩 每吨售价 黄瓜 4吨 1.2万元 0.55万元 韭菜 6吨 0.9万元 0.3万元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为 ( ) A .50,0 B .30.0 C .20,30 D .0,5018 .(2012湖北理)设,,,,,a b c x y z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,则a b cx y z ++=++( )A .14B .13C .12 D .34 19 .(2012广东理)已知变量x 、y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为 ( )A .12B .11C .3D .1-20.(2012福建理)若函数2xy =图像上存在点(,)x y 满足约束条件30230x y x y x m+-≤⎧⎪⎪--≤⎨⎪≥⎪⎩,则实数m 的最大值为 ( )A .12B .1C .32D .221.(2012福建理)下列不等式一定成立的是( )A .21lg()lg (0)4x x x +>> B .1sin 2(,)sin x x k k Z xπ+≥≠∈ C .212||()x x x R +≥∈D .211()1x R x >∈+ 二、填空题22.(2012浙江文)设z=x+2y,其中实数x,y 满足102000x y x y x y -+≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩, 则z 的取值范围是_________.23.(2012四川文)设,a b 为正实数,现有下列命题:①若221a b -=,则1a b -<; ②若111b a-=,则1a b -<;③若|1=,则||1a b -<; ④若33||1a b -=,则||1a b -<.其中的真命题有____________.(写出所有真命题的编号)24.(2012江西文)不等式2902x x ->-的解集是___________. 25.(2012湖南文)不等式2560x x -+≤的解集为______。
2013高考必备基础知识: 不等式解法归纳+详细解答+高考真题(经典)一元一次不等式的解法:通过去分母、去括号、移项、合并同类项等步骤化为ax b >的形式,若0a >,则b x a>;若0a <,则b x a<;若0a =,则当0b <时,x R ∈;当0b ≥时,x ∈∅。
如已知关于x 的不等式0)32()(<-++b a x b a 的解集为)31,(--∞,则关于x 的不等式0)2()3(>-+-a b x b a 的解集为_______(答:{|3}x x <-)11. 一元二次不等式的解集(联系图象)。
尤其当0∆=和0∆<时的解集你会正确表示吗?设0a >,12,x x 是方程20ax bx c ++=的两实根,且12x x <,则其解集如解关于x 的不等式:01)1(2<++-x a ax 。
(答:当0a =时,1x >;当0a <时,1x >或1x a<;当01a <<时,11x a<<;当1a =时,x ∈∅;当1a >时,11x a<<)12. 对于方程02=++c bx ax 有实数解的问题。
首先要讨论最高次项系数a是否为0,其次若0≠a ,则一定有042≥-=∆ac b 。
对于多项式方程、不等式、函数的最高次项中含有参数时,你是否注意到同样的情形?如:(1)()()222210a x a x -+--<对一切R x ∈恒成立,则a 的取值范围是_______(答:(1,2]);(2)关于x 的方程()f x k =有解的条件是什么?(答:k D ∈,其中D 为()f x 的值域),特别地,若在[0,]2π内有两个不等的实根满足等式cos 221x x k +=+,则实数k 的范围是_______.(答:[0,1))13.一元二次方程根的分布理论。
2013年高考数学总复习资料D当⎪⎩⎪⎨⎧-><120a a ,即a<-2时,不等式解为]2,1[a -.当⎪⎩⎪⎨⎧-=<120aa ,即a=-2时,不等式解为x=-1.综上:a=0时,x ∈(-∞,-1).a>0时,x ∈),2[]1,(+∞--∞a .-2<a<0时,x ∈]1,2[-a . a<-2时,x ∈]2,1[a -.a=-2时,x ∈{x|x=-1}.评述:通过上面三个例题的分析与解答,可以概括出分类讨论问题的基本原则为:10:能不分则不分; 20:若不分则无法确定任何一个结果; 30:若分的话,则按谁碍事就分谁.例4.已知函数f(x)=cos 2x+asinx-a 2+2a+5.有最大值2,求实数a 的取值.解:f(x)=1-sin 2x+asinx-a 2+2a+5.6243)2(sin 22++---=a a a x 令sinx=t, t ∈[-1,1].则6243)2()(22++---=a a a t t f (t ∈[-1,1]). (1)当12>a即a>2时,t=1,2533max=++-=a a y解方程得:22132213-=+=a a 或(舍). (2)当121≤≤-a 时,即-2≤a ≤2时,2a t =,262432max=++-=a a y,解方程为:34-=a 或a=4(舍). (3)当12-<a即a<-2时, t=-1时,y max =-a 2+a+5=2即 a 2-a-3=0 ∴ 2131±=a , ∵ a<-2, ∴ 2131±-=a 全都舍去.综上,当342213-=+=a a 或时,能使函数f(x)的最大值为2.例5.设{a n }是由正数组成的等比数列,S n是其前n 项和,证明:15.025.05.0log 2log log ++>+n n n S S S .证明:(1)当q=1时,S n =na 1从而 0)1()2(2121211212<-=+-+⋅=-⋅++a a n a n na S S S n n n(2)当q ≠1时,qq a S nn--=1)1(1, 从而.0)1()1()1)(1(2122121221212<-=-----=-⋅++++nn n n n n n q a q q a q q a S S S由(1)(2)得:212++<⋅n n nS S S .∵ 函数xy 5.0log =为单调递减函数.∴ 15.025.05.0log 2log log ++>+n n n S SS . 例6.设一双曲线的两条渐近线方程为2x-y+1=0, 2x+y-5=0,求此双曲线的离心率.分析:由双曲线的渐近线方程,不能确定其焦点位置,所以应分两种情况求解.解:(1)当双曲线的焦点在直线y=3时,双曲线的方程可改为1)3()1(222=---by a x ,一条渐近线的斜率为2=ab , ∴ b=2.∴555222==+==a aa b a c e .(2)当双曲线的焦点在直线x=1时,仿(1)知双曲线的一条渐近线的斜率为2=b a,此时25=e .综上(1)(2)可知,双曲线的离心率等于255或.评述:例5,例6,的分类讨论是由公式的限制条件与图形的不确定性所引起的,而例1-4是对于含有参数的问题而对参数的允许值进行的全面讨论.例7.解关于x 的不等式 1512)1(<+--x x a . 解:原不等式 012)1(55<⇔+--x x a 0)]2()1)[(2(022)1(012)1(<----⇔<--+-⇔<+--⇔a x a x x a x a x x a⎪⎩⎪⎨⎧>----<-⎪⎩⎪⎨⎧<---->-⎩⎨⎧<--=-⇔0)12)(2(01)3(0)12)(2(01)2(0)21)(2(01)1(a ax x a a a x x a x a 或或由(1) a=1时,x-2>0, 即 x ∈(2,+∞). 由(2)a<1时,012>--a a,下面分为三种情况.①⎩⎨⎧<<⇒⎪⎩⎪⎨⎧>--<012121a a aa a 即a<1时,解为)12,2(aa--.②0012121=⇒⎩⎨⎧=<⇒⎪⎩⎪⎨⎧=--<a a a aa a 时,解为∅.③ ⎪⎩⎪⎨⎧<--<2121a aa ⇒ ⎩⎨⎧><01a a 即0<a<1时,原不等式解为:)2,12(aa --.由(3)a>1时,aa --12的符号不确定,也分为3种情况.①⎩⎨⎧≤>⇒⎪⎩⎪⎨⎧≥-->012121a a a aa ⇒ a 不存在. ② ⇒⎩⎨⎧>>⇒⎪⎩⎪⎨⎧<-->012121a a a a a 当a>1时,原不等式的解为:),2()12,(+∞---∞ aa .综上:a=1时,x ∈(2,+∞).a<1时,x ∈)12,2(a a-- a=0时,x ∈∅.0<a<1时,x ∈)2,12(aa-- a>1时,x ∈),2()12,(+∞---∞ aa . 评述:对于分类讨论的解题程序可大致分为以下几个步骤:10:明确讨论的对象,确定对象的全体; 20:确定分类标准,正确分类,不重不漏; 30:逐步进行讨论,获得结段性结记; 40:归纳总结,综合结记. 课后练习:1.解不等式2)385(log 2>+-x x x2.解不等式1|)3(log ||log |3121≤-+x x3.已知关于x 的不等式052<--ax ax 的解集为M. (1)当a=4时,求集合M:(2)若3∈M ,求实数a 的取值范围.4.在x0y 平面上给定曲线y 2=2x, 设点A 坐标为(a,0), a ∈R ,求曲线上点到点A 距离的最小值d ,并写成d=f(a)的函数表达式.参考答案:1. ),(),(∞+235321 2.]4943[, 3. (1) M 为),(),(2452 ∞- (2)),9()35,(+∞-∞∈ a 4. ⎪⎩⎪⎨⎧<≥-==时当时当1||112)(a a a a a f d .2006年高三数学第三轮总复习函数押题针对训练复习重点:函数问题专题,主要帮助学生整理函数基本知识,解决函数问题的基本方法体系,函数问题中的易错点,并提高学生灵活解决综合函数问题的能力。
【3年高考2年模拟】第3章不等式第一部分三年高考荟萃2012年高考试题分类解析一、选择题错误!未指定书签。
.(2012天津文)设变量,x y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数32z x y =-的最小值为( )A .5-B .4-C .2-D .3错误!未指定书签。
.(2012浙江文)若正数x,y 满足x+3y=5xy,则3x+4y 的最小值是( )A .245B .285C .5D .6错误!未指定书签。
.(2012辽宁文理)设变量x,y 满足,15020010⎪⎩⎪⎨⎧≤≤≤+≤≤-y y x y x 则2x +3y 的最大值为( )A .20B .35C .45D .55错误!未指定书签。
.(2012辽宁理)若[0,)x ∈+∞,则下列不等式恒成立的是 ( )A .21x e x x ++…B .21111241x x x<-++C .21cos 12x x -…D .21ln(1)8x x x +-…错误!未指定书签。
.(2012重庆文)不等式102x x -<+ 的解集是为 ( )A .(1,)+∞B .(,2)-∞-C .(-2,1)D .(,2)-∞-∪(1,)+∞错误!未指定书签。
.(2012重庆理)设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x ⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为 ( )A .34π B .35π C .47πD .2π错误!未指定书签。
.(2012重庆理)不等式0121≤+-x x 的解集为( )A .⎥⎦⎤ ⎝⎛-1,21B .⎥⎦⎤⎢⎣⎡-1,21C .[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121.D .[)+∞⋃⎥⎦⎤⎝⎛-∞-,121, 错误!未指定书签。
.(2012四川文)若变量,x y 满足约束条件3,212,21200x y x y x y x y -≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,则34z x y=+的最大值是 ( )A .12B .26C .28D .33错误!未指定书签。
【3年高考2年模拟年模拟】】第3章不等式第一部分章不等式第一部分三年高考荟萃三年高考荟萃 2012年高考试题分类解析年高考试题分类解析一、选择题1 .(2012天津文)设变量,x y 满足约束条件≤−≥+−≥−+01042022x y x y x ,则目标函数32z x y =−的最小值为 ( ) A.5− B.4− C.2− D.3 2 .(2012浙江文)若正数x,y 满足x+3y=5xy,则3x+4y 的最小值是( )A.245B.285C.5 D.63 .(2012辽宁文理)设变量x,y 满足,15020010≤≤≤+≤≤−y y x y x 则2x +3y 的最大值为( )A.20B.35C.45D.554 .(2012辽宁理)若[0,)x ∈+∞,则下列不等式恒成立的是( )A.21xe x x ++211124x x <−+C.21cos 12x x −D.21ln(1)8x x x +−5 .(2012重庆文)不等式102x x −<+ 的解集是为 ( )A.(1,)+∞B.(,2)−∞−C.(-2,1)D.(,2)−∞−∪(1,)+∞6 .(2012重庆理)设平面点集{}221(,)()(0,(,)(1)(1)1A x y y x y B x y x y x=−−≥=−+−≤,则A B I 所表示的平面图形的面积为 ( )A.34π B.35π C.47πD.2π7 .(2012重庆理)不等式0121≤+−x x 的解集为( )A.−1,21 B.−1,21 C .[)+∞∪−∞−,121.A-PDF WORD TO PDF DEMO: Purchase from to remove the watermarkD.[)+∞∪−∞−,121,8 .(2012四川文)若变量,x y 满足约束条件3,212,21200x y x y x y x y −≥− +≤+≤ ≥ ≥ ,则34z x y =+的最大值是( )A.12 B.26 C.28 D.33 9 .(2012四川理)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是 ( ) A.1800元 B.2400元 C.2800元 D.3100元 10 .(2012陕西文)小王从甲地到乙地的时速分别为a 和b(a<b),其全程的平均时速为v,则( )<v<2a b+ D.v=2a b+ 11 .(2012山东文理)设变量,x y 满足约束条件22,24,41,x y x y x y +≥+≤−≥− 则目标函数3z x y =−的取值范围是 ( )A.3[,6]2−B.3[,1]2−−C.[1,6]−D.3[6,]2−12.(2012课标文)已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z x y =−+的取值范围是 ( ) A.(1-3,2) B.(0,2) C.(3-1,2) D.(0,1+3)13.(2012湖南文)设 a >b >1,0c < ,给出下列三个结论:① c a >c b;② c a <cb ; ③ log ()log ()b a ac b c −>−, 其中所有的正确结论的序号是__.( )A.①B.① ②C.② ③D.①②③14.(2012广东文)(线性规划)已知变量x 、y 满足约束条件1110x y x y x +≤−≤ +≥,则2z x y =+的最小值为 ( )A.3B.1C.5−D.6−15.(2012福建文)若直线2y x =上存在点(,)x y 满足约束条件30230x y x y x m+−≤−−≤ ≥ ,则实数m 的最大值为 ( )A.-1B.1C.32D.216.(2012安徽文)若,x y 满足约束条件:02323x x y x y ≥+≥ +≤;则x y −的最小值是( )A.3−B.0C.32D.317 .(2012江西理)某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表 年产量/亩 年种植成本/亩 每吨售价 黄瓜 4吨 1.2万元 0.55万元 韭菜 6吨 0.9万元 0.3万元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为 ( ) A.50,0 B.30.0 C.20,30 D.0,50 18 .(2012湖北理)设,,,,,a b c x y z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,则a b cx y z++=++( )A.14 B.13C.12D.3419 .(2012广东理)已知变量x 、y 满足约束条件211y x y x y ≤+≥ −≤,则3z x y =+的最大值为( )A.12B.11C.3D.1−20.(2012福建理)若函数2xy =图像上存在点(,)x y 满足约束条件30230x y x y x m+−≤ −−≤ ≥ ,则实数m的最大值为 ( )A.12 B.1C.32D.221.(2012福建理)下列不等式一定成立的是( )A.21lg()lg (0)4x x x +>> B.1sin 2(,)sin x x k k Z xπ+≥≠∈ C.212||()x x x R +≥∈ D.211()1x R x >∈+ 二、填空题22.(2012浙江文)设z=x+2y,其中实数x,y 满足102000x y x y x y −+≥ +−≤≥ ≥ , 则z 的取值范围是_________.23.(2012四川文)设,a b 为正实数,现有下列命题:①若221a b −=,则1a b −<; ②若111b a−=,则1a b −<; ③若||1=,则||1a b −<; ④若33||1a b −=,则||1a b −<.其中的真命题有____________.(写出所有真命题的编号)24.(2012江西文)不等式2902x x −>−的解集是___________.25.(2012湖南文)不等式2560x x −+≤的解集为______。
【3年高考2年模拟】第3章不等式第一部分三年高考荟萃2012年高考试题分类解析一、选择题1 .(2012天津文)设变量,x y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数32z x y =-的最小值为( ) A .5-B .4-C .2-D .32 .(2012浙江文)若正数x,y 满足x+3y=5xy,则3x+4y 的最小值是( )A .245B .285C .5D .63 .(2012辽宁文理)设变量x,y 满足,15020010⎪⎩⎪⎨⎧≤≤≤+≤≤-y y x y x 则2x +3y 的最大值为( )A .20B .35C .45D .554 .(2012辽宁理)若[0,)x ∈+∞,则下列不等式恒成立的是( )A .21x e x x ++…B .21111241x x x<-++C .21cos 12x x -… D .21ln(1)8x x x +-… 5 .(2012重庆文)不等式102x x -<+ 的解集是为 ( )A .(1,)+∞B .(,2)-∞-C .(-2,1)D .(,2)-∞-∪(1,)+∞6 .(2012重庆理)设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x ⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为( )A .34πB .35πC .47πD .2π 7 .(2012重庆理)不等式0121≤+-x x 的解集为 ( )A .⎥⎦⎤⎝⎛-1,21 B .⎥⎦⎤⎢⎣⎡-1,21 C .[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121.D .[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121,8 .(2012四川文)若变量,x y 满足约束条件3,212,21200x y x y x y x y -≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,则34z x y =+的最大值是( )A .12B .26C .28D .339 .(2012四川理)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是 ( ) A .1800元 B .2400元C .2800元D .3100元 10 .(2012陕西文)小王从甲地到乙地的时速分别为a 和b(a<b),其全程的平均时速为v,则( )A .a<v<abB .v=abC .ab <v<2a b+ D .v=2a b+ 11 .(2012山东文理)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是 ( )A .3[,6]2-B .3[,1]2--C .[1,6]-D .3[6,]2-12.(2012课标文)已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z x y =-+的取值范围是 ( ) A .(1-3,2) B .(0,2) C .(3-1,2) D .(0,1+3)13.(2012湖南文)设 a >b >1,0c < ,给出下列三个结论:①c a >c b;② c a <cb ; ③ log ()log ()b a ac b c ->-, 其中所有的正确结论的序号是__. ( )A .①B .① ②C .② ③D .①②③14.(2012广东文)(线性规划)已知变量x 、y 满足约束条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为 ( )A .3B .1C .5-D .6-15.(2012福建文)若直线2y x =上存在点(,)x y 满足约束条件30230x y x y x m+-≤⎧⎪⎪--≤⎨⎪≥⎪⎩,则实数m 的最大值为( )A .-1B .1C .32D .216.(2012安徽文)若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;则x y -的最小值是( )A .3-B .0C .32D .317 .(2012江西理)某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表年产量/亩 年种植成本/亩 每吨售价 黄瓜 4吨 1.2万元 0.55万元 韭菜 6吨 0.9万元 0.3万元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为 ( ) A .50,0 B .30.0 C .20,30 D .0,50 18 .(2012湖北理)设,,,,,a b c x y z是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,则a b cx y z++=++( )A .14 B .13C .12D .3419 .(2012广东理)已知变量x 、y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )A .12B .11C .3D .1-20.(2012福建理)若函数2xy =图像上存在点(,)x y 满足约束条件30230x y x y x m+-≤⎧⎪⎪--≤⎨⎪≥⎪⎩,则实数m的最大值为 ( )A .12B .1C .32D .221.(2012福建理)下列不等式一定成立的是( )A .21lg()lg (0)4x x x +>> B .1sin 2(,)sin x x k k Z xπ+≥≠∈ C .212||()x x x R +≥∈D .211()1x R x >∈+ 二、填空题22.(2012浙江文)设z=x+2y,其中实数x,y 满足102000x y x y x y -+≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩, 则z 的取值范围是_________.23.(2012四川文)设,a b 为正实数,现有下列命题:①若221a b -=,则1a b -<; ②若111b a-=,则1a b -<; ③若||1a b -=,则||1a b -<; ④若33||1a b -=,则||1a b -<.其中的真命题有____________.(写出所有真命题的编号)24.(2012江西文)不等式2902x x ->-的解集是___________. 25.(2012湖南文)不等式2560x x -+≤的解集为______。
26.(2012湖北文)若变量,x y 满足约束条件1133x y x y x y -≥-⎧⎪⎪+≥⎨⎪-≤⎪⎩,则目标函数23z x y =+的最小值是________.27.(2012大纲文)若函数1030330x y y x y x y -+≥⎧⎪=+-≤⎨⎪+-≥⎩,则3z x y =-的最小值为_____.28.(2012新课标理)设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y =-的取值范围为_______29.(2012浙江理)设a ∈R,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =______________. 30.(2012上海春)若不等式210x kx k -+->对(1,2)x ∈恒成立,则实数k 的取值范围是______.31.(2012陕西理)设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为___________.32.(2012江苏)已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,xy1 -1则ba的取值范围是____. 33.(2012江苏)已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为____.34.(2012大纲理)若,x y 满足约束条件1030330x y x y x y -+≥⎧⎪⎪+-≤⎨⎪+-≥⎪⎩,则3z x y =-的最小值为_________________.35.(2012安徽理)若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;则x y -的取值范围为_____参考答案一、选择题1. 【解析】做出不等式对应的可行域如图,由y x z 23-=得223z x y -=,由图象可知当直线223zx y -=经过点)2,0(C 时,直线223zx y -=的截距最大,而此时y x z 23-=最小为423-=-=y x z ,选B.2. 【答案】C【命题意图】本题考查了基本不等式证明中的方法技巧. 【解析】x+3y=5xy,135y x +=, 113131213(34)()()555x y x y y x y x +⋅+=++≥ 113236555⨯⨯+=. 3. 【答案】D【解析】画出可行域,根据图形可知当x=5,y=15时2x +3y 最大,最大值为55,故选D【点评】本题主要考查简单线性规划问题,难度适中.该类题通常可以先作图,找到最优解求出最值,也可以直接求出可行域的顶点坐标,代入目标函数进行验证确定出最值. 4. 【答案】C【解析】设2211()cos (1)cos 122f x x x x x =--=-+,则()()sin ,g x f x x x '==-+ 所以()c g x x '=-+≥,所以当[0x ∈+∞时,()()()(0)0,g x g x f x g '==为增函数,所以≥ 同理21()(0)0cos (1)02f x f x x =∴--≥,≥,即21cos 12x x -…,故选C【点评】本题主要考查导数公式,以及利用导数,通过函数的单调性与最值来证明不等式,考查转化思想、推理论证能力、以及运算能力,难度较大. 5. 【答案】:C【解析】:10(1)(2)0212x x x x x -<⇒-+<⇒-<<+ 【考点定位】本题考查解分式不等式时,利用等价变形转化为整式不等式解. 6. 【答案】D【考点定位】本小题主要考查二元一次不等式(组)与平面区域,圆的方程等基础知识,考查运算求解能力,考查数形结合思想,化归与转化思想,属于基础题.22=+y x 14-=-y x42=+y xO7. 【答案】A【解析】(1)(21)01101212210x x x x x x -+≤⎧-⎪≤⇒⇒<≤⎨++≠⎪⎩ 【考点定位】本题主要考查了分式不等式的解法,解题的关键是灵活运用不等式的性质,属于基础试题,属基本题.8. [答案]C[解析]目标函数34z x y =+可以变形为443z x y +-=,做函数x y 43-=的平行线,当其经过点B(4,4)时截距最大时,即z 有最大值为34z x y =+=284443=⨯+⨯.[点评]解决线性规划题目的常规步骤:一列(列出约束条件)、 二画(画出可行域)、三作(作目标函数变形式的平行线)、 四求(求出最优解). 9. [答案]C[解析]设公司每天生产甲种产品X 桶,乙种产品Y 桶,公司共可获得 利润为Z 元/天,则由已知,得 Z=300X+400Y且⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00122122Y X Y X Y X 画可行域如图所示,目标函数Z=300X+400Y 可变形为 Y=400zx 43+-这是随Z 变化的一族平行直线 解方程组⎩⎨⎧=+=+12y 2x 12y x 2 ⎩⎨⎧==∴4y 4x 即A(4,4) 280016001200max =+=∴Z[点评]解决线性规划题目的常规步骤:一列(列出约束条件)、二画(画出可行域)、三作(作目标函数变形式的平行线)、四求(求出最优解).10. 解析:设从甲地到乙地距离为s ,则全程的平均时速2211s v s s a ba b==++,因为a b <,221111a ab a aa b==<<++,故选A.11. 解析:作出可行域,直线03=-y x ,将直线平移至点)0,2(处有最大值,点)3,21(处有最小值,即623≤≤-z .答案应选A.12. 【命题意图】本题主要考查简单线性规划解法,是简单题.【解析】有题设知C(1+3,2),作出直线0l :0x y -+=,平移直线0l ,有图像知,直线:l zx y =-+过B点时,max z =2,过C时,min z =13-,∴z x y =-+取值范围为(1-3,2),故选A.13. 【答案】D【解析】由不等式及a >b >1知11a b<,又0c <,所以c a >cb ,①正确;由指数函数的图像与性质知②正确;由a >b >1,0c <知11a c b c c ->->->,由对数函数的图像与性质知③正确.【点评】本题考查函数概念与基本初等函数Ⅰ中的指数函数的图像与性质、对数函数的图像与性质,不等关系,考查了数形结合的思想.函数概念与基本初等函数Ⅰ是常考知识点.14. 解析:C.画出可行域,可知当代表直线过点A 时,取到最小值.联立11x y x =-⎧⎨=-⎩,解得12x y =-⎧⎨=-⎩,所以2z x y =+的最小值为5-. 15. 【答案】B【解析】30x y +-=与2y x =的交点为(1,2),所以只有1m ≤才能符合条件,B 正确.【考点定位】本题主要考查一元二次不等式表示平面区域,考查分析判断能力.逻辑推理能力和求解能力. 16. 【解析】选A【解析】x y -的取值范围为[3,0]-约束条件对应ABC ∆边际及内的区域:3(0,3),(0,),(1,1)2A B C 则[3,0]t x y =-∈-17. B 【解析】本题考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及实践能力.设黄瓜和韭菜的种植面积分别为x,y 亩,总利润为z 万元,则目标函数为(z x=⨯.线性约束条件为 50,1.20.954,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩即50,43180,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩作出不等式组50,43180,0,0x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩表示的可行域,易求得点()()()0,50,30,20, 0,45A B C .平移直线0.9z x y =+,可知当直线0.9z x y =+经过点()30,20B ,即30,20x y ==时,z 取得最大值,且max 48z =(万元).故选B.【点评】解答线性规划应用题的一般步骤可归纳为:(1)审题——仔细阅读,明确有哪些限制条件,目标函数是什么? (2)转化——设元.写出约束条件和目标函数;(3)求解——关键是明确目标函数所表示的直线与可行域边界直线斜率间的关系; (4)作答——就应用题提出的问题作出回答.体现考纲中要求会从实际问题中抽象出二元线性规划.来年需要注意简单的线性规划求最值问题.18. 考点分析:本题主要考察了柯西不等式的使用以及其取等条件.解析:由于222222)())((2cz by ax z y x c b a ++≥++++ 等号成立当且仅当,t zcy b x a ===则a=t x b=t y c=t z ,10)(2222=++z y x t 所以由题知2/1=t ,又2/1,==++++++++===t zy x c b a z y x c b a z c y b x a 所以,答案选C. 19. 解析:B.画出可行域,可知当代表直线过点A 时,取到最大值.联立21y y x =⎧⎨=-⎩,解得32x y =⎧⎨=⎩,所以3z x y =+的最大值为11. 20. 【答案】B【解析】30x y +-=与2y x =的交点为(1,2),所以只有1m ≤才能符合条件,B 正确. 【考点定位】本题主要考查一元一次不等式组表示平面区域,考查分析判断能力、逻辑推理能力和求解计算能力21. 【答案】C【解析】由基本不等式得212||()x x x R +≥∈,答案C 正确.【考点定位】此题主要考查基本不等式和均值不等式成立的条件和运用,考查综合运用能力,掌握基本不等式的相关内容是解本题的关键.二、填空题 22. 【答案】72【命题意图】本题主要考查线性规划的求解范围问题.只要作图正确,表示出区域,然后借助于直线平移大得到最值.【解析】利用不等式组,作出可行域,可知区域表示的四边形,但目标函数过点(0,0)时,目标函数最小,当目标函数过点13,22⎛⎫⎪⎝⎭时最大值为72.23. [答案] ①④[解析]若a,b 都小于1,则a-b<1若a,b 中至少有一个大于等于1, 则a+b>1,由a 2-b 2=(a+b)(a-b)=1 ,所以,a-b<1 故①正确.对于|a 3-b 3|=|(a-b)(a 2+ab+b 2)|=1,若a,b 中至少又一个大于等于1,则a 2+ab+b 2>1,则|a-b|<1 若a,b 都小于1,则|a-b|<1,所以④正确. 综上,真命题有 ① ④ .[点评]此类问题考查难度较大,要求对四个备选项都要有正确的认识,需要考生具备扎实的数学基础,平时应多加强这类题的限时性练习.24. 【答案】(3,2)(3,)-⋃+∞【解析】不等式可化为(3)(2)(3)0x x x +-->采用穿针引线法解不等式即可. 【考点定位】本题考查将分式不等式等价转化为高次不等式,考查高次不等式的解法.25. 【答案】{}23x x ≤≤【解析】由x 2-5x+6≤0,得(3)(2)0x x --≤,从而的不等式x 2-5x+6≤0的解集为{}23x x ≤≤.【点评】本题考查一元二次不等式的解法,考查简单的运算能力.26. 2 【解析】作出不等式组1,1,33x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩所表示的可行域(如下图的ABM ∆及其内部).目标函数23z x y=+在ABM∆的三个端点()()()2,3,0,1,1,0A B M 处取的值分别为13,3,2,比较可得目标函数23z x y =+的最小值为2.【点评】本题考查线性规划求解最值的应用.运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值;在哪个端点,目标函数取得最小值. 来年需注意线性规划在生活中的实际应用.27.答案:1-【命题意图】本试题考查了线性规划最优解的求解的运用.常规题型,只要正确作图,表示出区域,然后借助于直线平移法得到最值.【解析】做出做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)1,0(C 时,直线z x y -=3的截距最 大,此时z 最小,最小值为1-3=-=y x z .28. 【解析】2zx y =-的取值范围为[3,3]-约束条件对应四边形OABC 边际及内的区域:(0,0),(0,1),(1,2),(3,0)O A B C 则2[3,3]z x y =-∈-29. 【解析】本题按照一般思路,则可分为一下两种情况:(A )2(1)1010a x x ax ≤⎧⎨≤⎩----, 无解;(B )2(1)1010a x x ax ≥⎧⎨≥⎩----, 无解.因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在x >0的整个区间上,我们可以将其分成两个区间(为什么是两个?),在各自的区间内恒正或恒负.(如下答图)我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,—1).考查函数y 1=(a -1)x -1:令y =0,得M (11a -,0),还可分析得:a >1;考查函数y 2=x 2-ax -1:显然过点M (11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:302a or =,舍去0a =,得答案:32a =.【答案】32a =30. (,2]-∞31.解析:1,0()2,0x y f x x x ⎧>⎪'==⎨⎪-≤⎩,(1)1f '=,曲线()y f x =及该曲线在点(1,0)处的切线方程为1y x =-,围成的封闭区域为三角形,2z x y =-在点(0,1)-处取得最大值2.32. 【答案】[] 7e ,. 【考点】可行域.【解析】条件4ln 53ln b c a a c c c a c b -+-≤≤≥,可化为:354a c a bc c a bc cb e c⎧⋅+≥⎪⎪⎪+≤⎨⎪⎪⎪≥⎩.设==a bx y c c,,则题目转化为: 已知x y ,满足35400xx y x y y e x >y >+≥⎧⎪+≤⎪⎨≥⎪⎪⎩,,求y x 的取值范围. 作出(x y ,)所在平面区域(如图).求出=x y e 的切 线的斜率e ,设过切点()00P x y ,的切线为()=0y ex m m +≥,则00000==y ex m m e x x x ++,要使它最小,须=0m . ∴yx的最小值在()00P x y ,处,为e .此时,点()00P x y ,在=x y e 上,A B 之间. 当(x y ,)对应点C 时, =45=205=7=7=534=2012y x y x yy x y x y xx --⎧⎧⇒⇒⇒⎨⎨--⎩⎩, ∴yx的最大值在C 处,为7. ∴yx的取值范围为[] 7e ,,即b a 的取值范围是[] 7e ,. 33. 【答案】9.【考点】函数的值域,不等式的解集.【解析】由值域为[0)+∞,,当2=0x ax b ++时有240a b =-=V ,即24a b =, ∴2222()42a a f x x ax b x ax x ⎛⎫=++=++=+ ⎪⎝⎭. ∴2()2a f x x c ⎛⎫=+< ⎪⎝⎭解得2a c x c -<+<,22a a c x c --<<-.∵不等式()f x c <的解集为(6)m m +,,∴()()2622aa c c c ----==,解得9c =.34. 答案:1-【命题意图】本试题考查了线性规划最优解的求解的运用.常规题型,只要正确作图,表示出区域,然后借助于直线平移法得到最值.【解析】做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)1,0(C 时,直线z x y -=3的截距最 大,此时z 最小,最小值为1-3=-=y x z .35. 【解析】x y -的取值范围为_____[3,0]-约束条件对应ABC ∆边际及内的区域:3(0,3),(0,),(1,1)2A B C 则[3,0]t x y =-∈-2011年高考题一、选择题1.(重庆理7)已知a >0,b >0,a+b=2,则y=14a b +的最小值是A .72B .4C . 92 D .5【答案】C2.(浙江理5)设实数,x y 满足不等式组250270,0x y x y x +-⎧⎪+-⎨⎪⎩>>≥,y ≥0,若,x y 为整数,则34x y +的最小值是A .14B .16C .17D .19【答案】B3.(全国大纲理3)下面四个条件中,使a b >成立的充分而不必要的条件是A .1a b +>B .1a b ->C .22a b >D .33a b >【答案】A4.(江西理2)若集合{},{}x A x x B xx -2=-1≤2+1≤3=≤0,则A B ⋂=A . {}x x -1≤<0B .{}x x 0<≤1C . {}x x 0≤≤2 D .{}x x 0≤≤1【答案】B5.(辽宁理9)设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是 (A )1[-,2] (B )[0,2] (C )[1,+∞) (D )[0,+∞)【答案】D6.(湖南理7)设m >1,在约束条件1y xy mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z=x+my 的最大值小于2,则m 的取值范围为A .(1,12+)B .(12+,+∞)C .(1,3 )D .(3,+∞)【答案】A7.(湖北理8)已知向量a=(x+z,3),b=(2,y-z ),且a ⊥ b .若x,y 满足不等式1x y +≤,则z 的取值范围为 A .[-2,2] B .[-2,3] C .[-3,2] D .[-3,3]【答案】D8.(广东理5)。