中考数学专题新概念型问题
- 格式:doc
- 大小:345.50 KB
- 文档页数:7
中考数学分类(含答案)新概念形一、1 .(2010 安徽蚌埠)S n =a 1 a 2a nnS 1 S 2S n ,称 T na 1 a 2,⋯⋯,,令 T,na n 列数的“理想数”。
已知 a 1 ,a 2 ,⋯⋯,a 500 的“理想数” 2004 ,那么 8 ,a 1 ,a 2 ,⋯⋯,a 500 的“理想数”A .200 4B .2006C .2008D .2010【答案】 C 2 .( 2010浙江杭州) 定 [ a,b,c ] 函数 yax 2 bx c 的特征数 , 下面 出特征数[2 m , 1 – m , –1 – m ]的函数的一些 :① 当 m = – 3 ,函数 象的 点坐 是 ( 1 , 8);33② 当 m > 0 ,函数 象截 x 所得的 段 度大于3;2③ 当 m < 0 ,函数在x > 1, y 随 x 的增大而减小;4④ 当 m0 ,函数 象 同一个点.其中正确的 有 A. ①②③④B. ①②④C. ①③④D. ②④【答案】 B3 .( 2010 浙江宁波)《几何原本》的 生, 志着几何学已成 一个有着 密理 系 和 科学方法的学科,它奠定了 代数学的基 . 它是下列哪位数学家的著作 (A) 欧几里得 (B)(C) 笛卡(D) 刘徽【答案】 A4 .(2010 山 ) 把一个 形先沿着一条直 行 称 ,再沿着与 条直 平行的方向平移, 我 把 的 形 叫做滑 称 .在自然界和日常生活中,大......量地存在 种 形 (如 甲) . 合 称 和平移 的有关性 ,你 在 滑 称 程中,两个 三角形(如 乙)的 点所具有的性 是 ( )......(A) 点 与 称 垂直 (B) 点 被 称 平分 (C) 点 被 称 垂直平分(D) 点 互相平行【答案】 Ba 1( a b)5 .( 2010 鄂尔多斯 )定义新运算: a ⊕b=a 且 ,则函数 y=3 ⊕x 的图象( a b b 0)b大致是【答案】 B6 .( 2010 四川达州) 在平面直角坐标系中,对于平面内任一点( m,n ),规定以下两种变换:① f (m, n) (m, n) ,如 f (2,1) (2, 1) ;② g(m, n)( m, n) ,如 g(2,1)( 2, 1) .按照以上变换有: f g 3,4f 3, 43,4 ,那么 gf 3,2等于A. (3,2)B. (3,-2 )C. (-3 ,2)D.(-3,-2)【答案】 A二、填空题1 .( 2010 安徽蚌埠) 若 x 表示不超过 x 的最大整数(如3,223 等),则3111_________________。
中考数学专题复习新定义问题学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、解答题1.在平面直角坐标系xOy 中,O 的半径为1,对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到O 的弦B C ''(,B C ''分别是,B C 的对应点),则称线段BC 是O 的以点A 为中心的“关联线段”.(1)如图,点112233,,,,,,A B C B C B C 的横、纵坐标都是整数.在线段112233,,B C B C B C 中,O 的以点A 为中心的“关联线段”是______________;(2)ABC 是边长为1的等边三角形,点()0,A t ,其中0t ≠.若BC 是O 的以点A 为中心的“关联线段”,求t 的值;(3)在ABC 中,1,2AB AC ==.若BC 是O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.2.在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34P P ,则这两条弦的位置关系是 ;在点1234,,,P P P P 中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线323y x =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.3.在⊙ABC 中,D ,E 分别是ABC 两边的中点,如果DE 上的所有点都在⊙ABC 的内部或边上,则称DE 为⊙ABC 的中内弧.例如,下图中DE 是⊙ABC 的一条中内弧.(1)如图,在Rt⊙ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出⊙ABC 的最长的中内弧DE ,并直接写出此时DE 的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在⊙ABC 中,D E ,分别是AB AC ,的中点. ⊙若12t =,求⊙ABC 的中内弧DE 所在圆的圆心P 的纵坐标的取值范围; ⊙若在⊙ABC 中存在一条中内弧DE ,使得DE 所在圆的圆心P 在⊙ABC 的内部或边上,直接写出t 的取值范围.4.对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ). 已知点A (2-,6),B (2-,2-),C (6,2-). (1)求d (点O ,ABC );(2)记函数y kx =(11x -≤≤,0k ≠)的图象为图形G ,若d (G ,ABC )1=,直接写出k 的取值范围;(3)T 的圆心为T (t ,0),半径为1.若d (T ,ABC )1=,直接写出t 的取值范围.5.在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点. (1)当⊙O 的半径为2时,⊙在点1231135,0,,,,02222P P P ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 中,⊙O 的关联点是_______________. ⊙点P 在直线y=-x 上,若P 为⊙O 的关联点,求点P 的横坐标的取值范围. (2)⊙C 的圆心在x 轴上,半径为2,直线y=-x+1与x 轴、y 轴交于点A 、B .若线段AB 上的所有点都是⊙C 的关联点,直接写出圆心C 的横坐标的取值范围.6.在平面直角坐标系xOy 中,点P 的坐标为(1x ,1y ),点Q 的坐标为(2x ,2y ),且12x x ≠,12y y ≠,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).⊙若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;⊙点C 在直线x=3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式; (2)⊙O 的半径为,点M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.7.在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.①分别判断点M(2,1),N(32,0),T(1,3)关于⊙O的反称点是否存在?若存在,求其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣33x+23与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C 的横坐标的取值范围.参考答案:1.(1)22B C ;(2)3t =±;(3)当min 1OA =时,此时3BC =;当max 2OA =时,此时62BC =. 【解析】 【分析】(1)以点A 为圆心,分别以112233,,,,,AB AC AB AC AB AC 为半径画圆,进而观察是否与O 有交点即可;(2)由旋转的性质可得AB C ''△是等边三角形,且B C ''是O 的弦,进而画出图象,则根据等边三角形的性质可进行求解;(3)由BC 是O 的以点A 为中心的“关联线段”,则可知,B C ''都在O 上,且1,2AB AB AC AC ''====,然后由题意可根据图象来进行求解即可.【详解】解:(1)由题意得:通过观察图象可得:线段22B C 能绕点A 旋转90°得到O 的“关联线段”,1133,B C B C 都不能绕点A 进行旋转得到; 故答案为22B C ;(2)由题意可得:当BC 是O 的以点A 为中心的“关联线段”时,则有AB C ''△是等边三角形,且边长也为1,当点A 在y 轴的正半轴上时,如图所示:设B C''与y轴的交点为D,连接OB',易得B C y''⊥轴,⊙12B D DC''==,⊙2232OD OB B D''=-=,2232AD AB B D''=-=,⊙3OA=,⊙3t=;当点A在y轴的正半轴上时,如图所示:同理可得此时的3OA=,⊙t3=-;(3)由BC是O的以点A为中心的“关联线段”,则可知,B C''都在O上,且1,2AB AB AC AC''====,则有当以B'为圆心,1为半径作圆,然后以点A为圆心,2为半径作圆,即可得到点A的运动轨迹,如图所示:由运动轨迹可得当点A也在O上时为最小,最小值为1,此时AC'为O的直径,⊙90AB C''∠=︒,⊙30AC B''∠=︒,⊙cos303BC B C AC'''==⋅︒=;由以上情况可知当点,,A B O'三点共线时,OA的值为最大,最大值为2,如图所示:连接,OC B C''',过点C'作C P OA'⊥于点P,⊙1,2OC AC OA''===,设OP x=,则有2AP x=-,⊙由勾股定理可得:22222C P AC AP OC OP'''=-=-,即()222221x x--=-,解得:14x=,⊙154C P'=,⊙34B P OB OP ''=-=, 在Rt B PC ''中,2262B C B P C P ''''=+=, ⊙62BC =; 综上所述:当min 1OA =时,此时3BC =;当max 2OA =时,此时62BC =.【点睛】本题主要考查旋转的综合、圆的基本性质、三角函数及等边三角形的性质,熟练掌握旋转的性质、圆的基本性质、三角函数及等边三角形的性质是解题的关键. 2.(1)平行,P 3;(2)32;(3)233922d ≤≤【解析】 【分析】(1)根据圆的性质及“平移距离”的定义填空即可;(2)过点O 作OE⊙AB 于点E ,交弦CD 于点F ,分别求出OE 、OF 的长,由1d OE OF =-得到1d 的最小值;(3)线段AB 的位置变换,可以看作是以点A 32,2⎛⎫⎪⎝⎭为圆心,半径为1的圆,只需在⊙O内找到与之平行,且长度为1的弦即可.平移距离2d 的最大值即点A ,B 点的位置,由此得出2d 的取值范围. 【详解】解:(1)平行;P 3;(2)如图,线段AB 在直线323y x =+上,平移之后与圆相交,得到的弦为CD ,CD⊙AB ,过点O 作OE⊙AB 于点E ,交弦CD 于点F ,OF⊙CD ,令0y =,直线与x 轴交点为(-2,0),直线与x 轴夹角为60°,⊙2sin 603OE ︒==. 由垂径定理得:221322OF OC CD ⎛⎫=-= ⎪⎝⎭,⊙132d OE OF =-=;(3)线段AB的位置变换,可以看作是以点A32,2⎛⎫⎪⎝⎭为圆心,半径为1的圆,只需在⊙O 内找到与之平行,且长度为1的弦即可;点A到O的距离为2235222AO⎛⎫=+=⎪⎝⎭.如图,平移距离2d的最小值即点A到⊙O的最小值:53122-=;平移距离2d的最大值线段是下图AB的情况,即当A1,A2关于OA对称,且A1B2⊙A1A2且A1B2=1时.⊙B2A2A1=60°,则⊙OA2A1=30°,⊙OA2=1,⊙OM=12, A2M=32,⊙MA=3,AA2=22339 322⎛⎫+=⎪⎪⎝⎭,⊙2d的取值范围为:233922d≤≤.【点睛】本题考查圆的基本性质及与一次函数的综合运用,熟练掌握圆的基本性质、点与圆的位置关系、直线与圆的位置关系是解题的关键.3.(1)π;(2)⊙P的纵坐标1py≥或12Py≤;⊙02t<≤.【解析】【分析】(1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE为直径的半圆,DE的长即以DE为直径的圆周长的一半;(2)根据三角形中内弧定义可知,圆心一定在DE的中垂线上,,⊙当12t=时,要注意圆心P在DE上方的中垂线上均符合要求,在DE下方时必须AC与半径PE的夹角⊙AEP满足90°≤⊙AEP<135°;⊙根据题意,t的最大值即圆心P在AC上时求得的t值.【详解】解:(1)如图2,以DE 为直径的半圆弧DE ,就是△ABC 的最长的中内弧DE ,连接DE ,⊙⊙A=90°,AB=AC=22,D ,E 分别是AB ,AC 的中点,22114,42sin sin 4522︒∴=====⨯=AC BC DE BC B , ⊙弧DE 122ππ=⨯=; (2)如图3,由垂径定理可知,圆心一定在线段DE 的垂直平分线上,连接DE ,作DE 垂直平分线FP ,作EG⊙AC 交FP 于G ,⊙当12t =时,C (2,0),⊙D (0,1),E (1,1),1,12⎛⎫ ⎪⎝⎭F , 设1,2P m ⎛⎫ ⎪⎝⎭由三角形中内弧定义可知,圆心线段DE 上方射线FP 上均可,⊙m≥1, ⊙OA=OC ,⊙AOC=90°⊙⊙ACO=45°,⊙DE⊙OC⊙⊙AED=⊙ACO=45°作EG⊙AC 交直线FP 于G ,FG=EF=12根据三角形中内弧的定义可知,圆心在点G 的下方(含点G )直线FP 上时也符合要求; 12∴m 综上所述,12m或m≥1. ⊙图4,设圆心P 在AC 上,⊙P 在DE 中垂线上,⊙P 为AE 中点,作PM⊙OC 于M ,则PM=323,2⎛⎫∴ ⎪⎝⎭P t , ⊙DE⊙BC⊙⊙ADE=⊙AOB=90°,222221(2)41∴=+=+=+AE AD DE t t⊙PD=PE ,⊙⊙AED=⊙PDE⊙⊙AED+⊙DAE=⊙PDE+⊙ADP=90°,⊙⊙DAE=⊙ADP12∴===AP PD PE AE 由三角形中内弧定义知,PD≤PM1322∴AE ,AE≤3,即2413+t ,解得:2t02>∴<t t【点睛】此题是一道圆的综合题,考查了圆的性质,弧长计算,直角三角形性质等,给出了“三角形中内弧”新定义,要求学生能够正确理解新概念,并应用新概念解题.4.(1)2;(2)10k -≤<或01k <≤;(3)4t =-或0422t -≤≤或422t =+.【解析】【详解】分析:(1)画出图形,根据“闭距离”的概念结合图形进行求解即可.(2)分0k <和0k >两种情况,画出示意图,即可解决问题.(3)画出图形,直接写出t的取值范围.详解:(1)如下图所示:⊙B(2-,2-),C(6,2-)⊙D(0,2-)⊙d(O,ABC)2OD==(2)10k-≤<或01k<≤(3)4t=-或0422t≤≤-或422t=+.点睛:属于新定义问题,考查点到直线的距离,圆的切线的性质,认真分析材料,读懂“闭距离”的概念是解题的关键.5.(1)⊙P 2、P 3,⊙-322≤x≤-22或22 ≤x≤322;(2)-2≤x≤1或2≤x≤22 . 【解析】【详解】试题分析:(1)⊙由题意得,P 只需在以O 为圆心,半径为1和3两圆之间即可,由23,OP OP 的值可知23,P P 为⊙O 的关联点;⊙满足条件的P 只需在以O 为圆心,半径为1和3两圆之间即可,所以P 横坐标范围是-322 ≤x≤-22 或22 ≤x≤322; (2).分四种情况讨论即可,当圆过点A , CA=3时;当圆与小圆相切时;当圆过点 A ,AC=1时;当圆过点 B 时,即可得出.试题解析:(1)12315,01,22OP P OP ===, 点1P 与⊙的最小距离为32,点2P 与⊙的最小距离为1,点3P 与⊙的最小距离为12, ⊙⊙的关联点为2P 和3P .⊙根据定义分析,可得当直线y=-x 上的点P 到原点的距离在1到3之间时符合题意; ⊙ 设点P 的坐标为P (x ,-x) ,当OP=1时,由距离公式可得,OP=22(0)(0)1x x -+--= ,解得22x =± ,当OP=3时,由距离公式可得,OP=22(0)(0)3x x -+--= ,229x x +=,解得322x =±, ⊙ 点的横坐标的取值范围为-322 ≤x≤-22 或22 ≤x≤322(2)⊙y=-x+1与轴、轴的交点分别为A、B两点,⊙ 令y=0得,-x+1=0,解得x=1,令得x=0得,y=0,⊙A(1,0) ,B (0,1) ,分析得:如图1,当圆过点A时,此时CA=3,⊙ 点C坐标为,C ( -2,0)如图2,当圆与小圆相切时,切点为D,⊙CD=1 ,又⊙直线AB所在的函数解析式为y=-x+1,⊙ 直线AB与x轴形成的夹角是45°,⊙ RT⊙ACD中,CA=2,⊙ C点坐标为(1-2,0)⊙C点的横坐标的取值范围为;-2≤cx≤1-2,如图3,当圆过点A时,AC=1,C点坐标为(2,0)如图4,当圆过点B 时,连接BC ,此时BC =3,在Rt⊙OCB中,由勾股定理得OC=23122-=,C点坐标为(22,0).⊙ C点的横坐标的取值范围为2≤cx≤22;⊙综上所述点C的横坐标的取值范围为-322≤cx≤-22或22≤cx≤322.【点睛】本题考查了新定义题,涉及到的知识点有切线,同心圆,一次函数等,能正确地理解新定义,正确地进行分类讨论是解题的关键.6.(1)⊙2;⊙1y x =- 或1y x =-+;(2)1≤m≤5 或者51m -≤≤-.【解析】【详解】试题分析:(1)⊙易得S=2;⊙得到C 的坐标可以为(3,2)或者(3,-2),设AC 的表达式为y=kx+b ,将A 、C 分别代入AC 的表达式即可得出结论;(2)若⊙O 上存在点N ,使MN 的相关矩形为正方形,则直线MN 的斜率k=±1,即过M 点作k=±1的直线,与⊙O 相切,求出M 的坐标,即可得出结论.试题解析:(1)⊙S=2×1=2;⊙C 的坐标可以为(3,2)或者(3,-2),设AC 的表达式为y=kx+b ,将A 、C分别代入AC 的表达式得到:0{23k b k b =+=+或0{23k b k b=+-=+,解得:1{1k b ==-或1{1k b =-=,则直线AC 的表达式为1y x =- 或1y x =-+;(2)若⊙O 上存在点N ,使MN 的相关矩形为正方形,则直线MN 的斜率k=±1,即过M 点作k=±1的直线,与⊙O 有交点,即存在N ,当k=-1时,极限位置是直线与⊙O 相切,如图1l 与2l ,直线1l 与⊙O 切于点N ,ON=2,⊙ONM=90°,⊙1l 与y 交于1P (0,-2).1M (1m ,3),⊙13(2)0m --=-,⊙1m =-5,⊙1M (-5,3);同理可得2M (-1,3); 当k=1时,极限位置是直线3l 与4l (与⊙O 相切),可得3M (1,3), 4M (5,3). 因此m 的取值范围为1≤m≤5或者51m -≤≤-.考点:一次函数,函数图象,应用数学知识解决问题的能力.7.(1)①见解析;②0<x <2;(2)圆心C 的横坐标的取值范围是2≤x≤8.【解析】【详解】试题分析:(1) ⊙根据反称点的定义画图得出结论;⊙⊙CP≤2r =2 CP 2≤4, P (x ,-x +2), CP 2=x 2+(-x +2)2=2x 2-4x +4≤,2x 2-4x≤0, x (x -2)≤0,⊙0≤x≤2,把x =2和x=0代入验证即可得出,P (2,0),P′(2,0)不符合题意P (0,2),P′(0,0)不符合题意,⊙0<x <2(2)求出A ,B 的坐标,得出OA 与OB 的比值,从而求出⊙OAB=30°,设C (x ,0) ⊙当C 在OA 上时,作CH⊙AB 于H ,则CH≤CP≤2r =2,⊙AC≤4,得出 C 点横坐标x≥2. (当x =2时,C 点坐标(2,0),H 点的反称点H′(2,0)在圆的内部);⊙当C 在A 点右侧时,C 到线段AB 的距离为AC 长,AC 最大值为2,⊙C 点横坐标x≤8,得出结论.试题解析: (1)解:⊙M (2,1)不存在,3,02N ⎛⎫ ⎪⎝⎭存在,反称点1,02N ⎛⎫' ⎪⎝⎭(1,3)T 存在,反称点T′(0,0)⊙⊙CP≤2r =2 CP 2≤4, P (x ,-x +2), CP 2=x 2+(-x +2)2=2x 2-4x +4≤4 2x 2-4x≤0, x (x -2)≤0,⊙0≤x≤2,当x =2时,P (2,0),P′(2,0)不符合题意当x =0时,P (0,2),P′(0,0)不符合题意,⊙0<x <2 (2)解:由题意得:A (6,0),()0,23B ,⊙3OA OB=,⊙⊙OAB =30°,设C (x ,0)⊙当C 在OA 上时,作CH⊙AB 于H ,则CH≤CP≤2r =2,⊙AC≤4, C 点横坐标x≥2. (当x =2时,C 点坐标(2,0),H 点的反称点H′(2,0)在圆的内部)⊙当C 在A 点右侧时,C 到线段AB 的距离为AC 长,AC 最大值为2,⊙C 点横坐标x≤8 综上所述:圆心C 的横坐标的取值范围2≤x≤8.考点:定义新运算;一次函数的图象和性质;二次函数的图象和性质;圆的有关性质,解直角三角形;答案第15页,共15页。
数学中考复习——新概念型一、定义新的运算或新的法则例1 现定义运算“★”:对于任意实数,a b ,都有a ★b 23a a b =-+,如3★5=23335-⨯+. (1)计算2★4=_________; (2)若x ★2=6,则x=_________.例2 若分式b a 满足11b a a =+,则称11a +是b a 的 “带分式”,记作《11a 》. (1)分式1x x+的“带分式”是_______________________. (2)计算:《111x -》221x x --.练习:1.规定一种新运算a ※b=a 2-2b,如1※2=-3,则2※(-2)= . 2.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a ≥b 时,a *b =2b ;当a <b 时,a *b =a ,则当2x =时,(1*)(3x x ⋅-*)x =____________________.3. 已知2222211211,c x b x a y c x b x a y ++=++=且满足)1,0(212121≠===k k c c b b a a .则称抛物线21,y y 互为“友好抛物线”,则下列关于“友好抛物线”的说法不正确的是( )A 、y 1,y 2开口方向,开口大小不一定相同B 、因为y 1,y 2的对称轴相同C 、如果y 2的最值为m ,则y 1的最值为kmD 、如果y 2与x 轴的两交点间距离为d ,则y 1与x 轴的两交点间距离为d k4.若两个不同的一元二次方程有一个相同的根,那么称这两个方程为友好方程.(1)试判断一下方程0232=+-x x 与0632=-x x 是不是友好方程.(2)若一元二次方程0232=+-x x 与a x ax x 332+=+是友好方程,试求a 的值.二、定义一个新的概念例3.若a +b =2,则称a 与b 是关于1的平衡数.(1) 3与 是关于1的平衡数,5-2与 是关于1的平衡数;(2)若(m +3)×(1-3)=-5+33,判断m +3与5-3是否是关于1的平衡数,并说明理由.B C A 练习: 5.定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m ] 的函数的一些结论:① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点.其中正确的结论有A. ①②③④B. ①②④C. ①③④D. ②④6.若ab=4,则称a 与b 是关于2的“比例数”;(1)3关于2的比例数是________;3—5与___________是关于2的比例数;(2)若x 1、x 2是方程x 2+(m-4)x+m 2+3=0的两根,且x 1、x 2是关于2的比例数,试求m 的值。
初三数学专题复习 新概念型问题一、选择题1.古希腊著名的毕达哥拉斯派1、3、6、10、…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数".从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻的“三角形数”之和,下列等式中,符合这一规律的是( ) A 。
13=3+10 B.25=9+16 C.36=15+21 D 。
49=18+31 【答案】C 2.小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示的方向经过B 跑到 点C ,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翊跑步的时间为t (单位:秒),他与教练距离为y (单位:米),表示y 与t 的函数关系的图象大致如图2,刚这个固定位置可能是图1的( ) A .点M B .点N C .点P D .Q答案:D.3。
如图所示为一个污水净化塔内部,污水从上方入口进入后流经形如等腰直角三角形的净化材枓表面,流向如图中箭头所示,每一次水流流经三角形两腰的机会相同,经过四层净化后流入底部的5个出口中的一个.下列判断:①5个出口的出水量相同;②2号出口的出水量与4号出口的出水量相同;③1,2,3号出水口的出水量之比约为1:4:6;④若净化材枓损耗的速度与流经其表面水的数量成正比,则更换最慢的一个三角形材枓使用的时间约为更换最快的一个三角形材枓使用时间的6倍.其中正确的判断有( )个. A .1个B .2个C .3个D .4个 答案:B4.已知2222211211,c x b x a y c x b x a y ++=++=且满足)1,0(212121≠===k k c c b b a a .则称抛物线21,y y 互为“友好抛物线",则下列关于“友好抛物线”的说法不正确的是( )O30 t / 秒y /米QNM PC B AA 、y 1,y 2开口方向,开口大小不一定相同B 、因为y 1,y 2的对称轴相同C 、如果y 2的最值为m ,则y 1的最值为kmD 、如果y 2与x 轴的两交点间距离为d ,则y 1与x 轴的两交点间距离为d k 答案:D二、填空题5。
中考数学专题新概念型问题一、中考专题诠释所谓“新概念”型问题,主要是指在问题中概念了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新概念进行运算、推理、迁移的一种题型.“新概念”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新概念型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.考点二:运算题型中的新概念2.若(x1,y1)•(x2,y2)=x1x2+y1y2,则(4,5)•(6,8)=.考点三:探索题型中的新概念例3 如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是三角形;(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.考点四:开放题型中的新概念例4 在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下概念:若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|;若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.例如:点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点).(1)已知点A(-12,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=34x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标.思路分析:(1)①根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的概念可以确定|0-y|=2,据此可以求得y的值;②设点B的坐标为(0,y).因为|- 12-0|≥|0-y|,所以点A与点B的“非常距离”最小值为|-12-0|=12;(2)①设点C的坐标为(x0,34x0+3).根据材料“若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|”知,C、D两点的“非常距离”的最小值为-x0= 34x0+2,据此可以求得点C的坐标;②当点E在过原点且与直线y= 34x+3垂直的直线上时,点C与点E的“非常距离”最小,即E(- 35,45).解答思路同上.解:(1)①∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|-12-0|=12≠2,∴|0-y|=2,解得,y=2或y=-2;∴点B的坐标是(0,2)或(0,-2);②点A与点B的“非常距离”的最小值为12;(2)①∵C是直线y=34x+3上的一个动点,∴设点C的坐标为(x0,34x0+3),∴-x0=34x0+2,此时,x0=-87,∴点C与点D的“非常距离”的最小值为:87,此时C(-87,157);②E(-35,45).-35-x0=34x0+3-45,解得,x0=-85,则点C的坐标为(-85,95),最小值为1.点评:本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的概念是正确解题的关键.对应训练4.(2012•台州)请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=- 76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a⊕b= (用a,b的一个代数式表示).考点五:阅读材料题型中的新概念将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°,3]得△AB′C′,则S△AB′C′:S△ABC= ;直线BC与直线B′C′所夹的锐角为度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.。
1.(2013•安徽)我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:=;(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)考点:四边形综合题.专题:压轴题.分析:(1)根据条件∠B=∠C和梯形的定义就可以画出图形;(2)根据平行线的性质就可以得出∠DEC=∠B,∠AEC=∠C,就可以得出△ABE∽△DEC,由相似三角形的性质就可以求出结论;(3)根据角平分线的性质可以得出△EFB≌△EHC,就可以得出∠3=∠4,再有条件就可以得出∠ABC=∠DCB,从而得出结论,当点E不在四边形内部时分两种情况讨论就可以求出结论.解答:解:(1)如图1,过点D作DE∥BC交PB于点E,则四边形ABCD分割成一个等腰梯形BCDE和一个三角形ADE;(2)∵AB∥DE,∴∠B=∠DEC,∵AE∥DC,∴∠AEB=∠C,∵∠B=∠C,∴∠B=∠AEB,∴AB=AE.∵在△ABE和△DEC中,,∴△ABE∽△DEC,∴,∴;(3)作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,∴∠BFE=∠CHE=90°.∵AE平分∠BAD,DE平分∠ADC,∴EF=EG=EH,在Rt△EFB和Rt△EHC中,∴Rt△EFB≌Rt△EHC(HL),∴∠3=∠4.∵BE=CE,∴∠1=∠2.∴∠1+∠3=∠2+∠4即∠ABC=∠DCB,∵ABCD为AD截某三角形所得,且AD不平行BC,∴ABCD是“准等腰梯形”.当点E不在四边形ABCD的内部时,有两种情况:如图4,当点E在BC边上时,同理可以证明△EFB≌△EHC,∴∠B=∠C,∴ABCD是“准等腰梯形”.当点E在四边形ABCD的外部时,四边形ABCD不一定是“准等腰梯形”.分两种情况:情况一:当∠BED的角平分线与线段BC的垂直平分线重合时,四边形ABCD为“准等腰梯形”;情况二:当∠BED的角平分线与线段BC的垂直平分线相交时,四边形ABCD不是“准等腰梯形”.点评:本题考查了平行线的性质的运用,相似三角形的判定及性质的运用,角平分线的性质的运用,全等三角形的判定及性质的运用,解答时多次运用角平分线的性质是关键.2.(2013•安徽)我们把正六边形的顶点及其对称中心称作如图1所示基本图的特征点,显然这样的基本图共有7个特征点,将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图2,图3,…(1)观察以上图形并完成下表:图形的名称基本图的个数特征点的个数图1 1 7图2 2 12图3 3 17图4 4 22………猜想:在图(n)中,特征点的个数为5n+2(用n表示);(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,2),则x1=;图(2013)的对称中心的横坐标为2013.考点:规律型:图形的变化类;规律型:点的坐标.专题:压轴题.分析:(1)观察图形,结合已知条件,得出将基本图每复制并平移一次,特征点增加5个,由此得出图4中特征点的个数为17+5=22个,进一步猜想出:在图(n)中,特征点的个数为:7+5(n﹣1)=5n+2;(2)过点O1作O1M⊥y轴于点M,根据正六边形、等腰三角形的性质得出∠BO1M=30°,再由余弦函数的定义求出O1M=,即x1=;然后结合图形分别得出图(2)、图(3)、图(4)的对称中心的横坐标,找到规律,进而得出图(2013)的对称中心的横坐标.解答:解:(1)由题意,可知图1中特征点有7个;图2中特征点有12个,12=7+5×1;图3中特征点有17个,17=7+5×2;所以图4中特征点有7+5×3=22个;由以上猜想:在图(n)中,特征点的个数为:7+5(n﹣1)=5n+2;(2)如图,过点O1作O1M⊥y轴于点M,又∵正六边形的中心角=60°,O1C=O1B=O1A=2,∴∠BO1M=30°,∴O1M=O1B•cos∠BO1M=2×=,∴x1=;由题意,可得图(2)的对称中心的横坐标为(2×2)=2,图(3)的对称中心的横坐标为(2×3)=3,图(4)的对称中心的横坐标为(2×4)=4,…∴图(2013)的对称中心的横坐标为(2×2013)=2013.故答案为22,5n+2;,2013.点评:本题借助正六边形考查了规律型:图形的变化类问题,难度适中.关键是通过观察、归纳与总结,得到其中的规律;(2)要注意求的是整个图形的对称中心的横坐标,而不是第2013个正六边形的对称中心的横坐标,这也是本题容易出错的地方.3.我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中,∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:=;(3)如图3,在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,则四边形ABCD是不是“准等腰梯形”?请说明理由.考点:四边形综合题.分析:(1)过点A作AE∥CD交BC于点E,则△ABE和四边形AECD就是所求作的图形;(2)由AB∥DE,AE∥DC,就可以得出∠B=∠DEC,∠AEB=∠C,就可以得出△ABE∽△DEC,就可以得出结论;(3)作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,由角平分线的性质就可以得出EF=EG=EH,就可以得出△BEF≌△BEH,就可以得出∠FBE=∠HCE,从而得出∠ABC=∠DCB而得出结论.解答:解:(1)如图,过点A作AE∥CD交BC于点E,∴∠AEB=∠C.∵∠B=∠C∴∠AEB=∠B,∴AB=AE,∴△ABE是等腰三角形;∵AE∥CD,AD≠CD,∴四边形AECD是梯形.∴△ABE和四边形AECD就是所求作的图形;(2)∵AB∥DE,AE∥DC,∴∠B=∠DEC,∠AEB=∠C.∵∠B=∠C,∴∠AEB=∠DEC∴△ABE∽△DCE,∴;(3)四边形ABCD是“准等腰梯形”.理由:作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,∵AE平分∠BAD,DE平分∠ADC,∴∠EFB=∠EHC=90°,EF=EG=EH.在Rt△BEF和Rt△CEH中,∴Rt△BEF≌Rt△CEH(HL);∴∠FBE=∠HCE.∵BE=BC,∴∠EBC=∠ECB,∴∠EBC+∠FBE=∠ECB+∠HCE,∴∠ABC=∠HCB.∴四边形ABCD是“准等腰梯形”.点评:本题考查了等腰三角形的性质的运用,平行线的性质的运用角平分线的性质的运用,全等三角形的判定及性质的运用,解答时运用等腰三角形的性质求解是关键.4.(2012•保定一模)四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形ABCD的准等距点.考点:作图—复杂作图;全等三角形的判定与性质.专题:作图题.分析:(1)根据菱形的性质,在菱形对角线上找出除中心外的任意一点即可;(2)作对角线BD的垂直平分线于与另一对角线AC相交于点P,根据线段垂直平分线上的点到线段两端点的距离相等可得点P即为所求的准等距点;(3)连接BD,先利用“角角边”证明△DCF和△BCE全等,根据全等三角形对应边相等可得CD=CB,再根据等边对等角的性质可得∠CDB=∠CBD,从而得到∠PDB=∠PBD,然后根据等角对等边的性质可得PD=PB,根据准等距点的定义即可得证.解答:解:(1)如图2,点P即为所画点.…(1分)(答案不唯一)(2)如图3,点P即为所作点.…(2分)(答案不唯一.)(3)证明:连接DB,在△DCF与△BCE中,,∴△DCF≌△BCE(AAS),∴CD=CB,∴∠CDB=∠CBD.∴∠PDB=∠PBD,∴PD=PB,∵PA≠PC∴点P是四边形ABCD的准等距点.点评:本题考查了复杂作图,主要利用了线段垂直平分线的作法,全等三角形的判定与性质,读懂题意,理解准等距点的定义是解题的关键.5.(2006•福州)对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),当|a1|=|a2|时,我们称这两个二次函数的图象为全等抛物线.现有△ABM,A(﹣1,0),B(1,0).记过三点的二次函数抛物线为“C□□□”(“□□□”中填写相应三个点的字母)(1)若已知M(0,1),△ABM≌△ABN(0,﹣1).请通过计算判断C ABM与C ABN是否为全等抛物线;(2)在图2中,以A、B、M三点为顶点,画出平行四边形.①若已知M(0,n),求抛物线C ABM的解析式,并直接写出所有过平行四边形中三个顶点且能与C ABM全等的抛物线解析式.②若已知M(m,n),当m,n满足什么条件时,存在抛物线C ABM根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与C ABM全等的抛物线?若存在,请列出所有满足条件的抛物线“C□□□”;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题;新定义.分析:(1)应该是全等抛物线,由于这两个抛物线虽然开口方向不同,但是开口大小一样,因此二次项的绝对值也应该相等.可用待定系数法求出两抛物线的解析式,然后进行判断即可.(2)与(1)相同都是通过构建平行四边形来得出与△ABM全等的三角形,那么过与△ABM全等的三角形的三个顶点的抛物线都是与C ABM全等的抛物线.解答:解:(1)设抛物线C ABM的解析式为y=ax2+bx+c,∵抛物线C ABM过点A(﹣1,0),B(1,0),M(0,1),∴抛物线C ABM的解析式为y=﹣x2+1,同理可得抛物线C ABN的解析式为y=x2+1,∵|﹣1|=|1|,∴C ABM与C ABN是全等抛物线.(2)①设抛物线C ABM的解析式为y=ax2+bx+c,∵抛物线C ABM过点A(﹣1,0),B(1,0),M(0,n),抛物线C ABM的解析式为y=﹣nx2+n,与C ABM全等的抛物线有:y=nx2﹣n,y=n(x﹣1)2,y=n(x+1)2②当n≠0且m≠±1时,存在抛物线C ABM,与C ABM全等的抛物线有:C ABN,C AME,C BMF.点评:本题是函数与几何结合的综合题,解题关键是善于利用几何图形的性质以及函数的性质和定理等知识,主要考查学生数形结合的数学思想方法.6.(2013•沈阳)定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD 沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC 的面积.考点:四边形综合题.专题:压轴题.分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD﹣2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.解答:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)解:∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD﹣2S△ABF=4×6﹣2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC==2,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴CO=OA′,BO=DO,∴四边形A′BDC是平行四边形,∴BD=A′C=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.点评:本题考查了平行四边形性质和判定,三角形的面积,勾股定理的应用,解这个题的关键是能根据已知题意和所学的定理进行推理.题目比较好,但是有一定的难度.7.(2012•贵阳模拟)如果一个三角形和一个矩形满足下列条件:三角形的一边与矩形的一边完全重合,并且三角形的这条边所对的角的顶点落在矩形与三角形重合的边的对边上,则称这样的矩形为三角形的“友好矩形”.如图①所示,矩形ABEF即为△ABC的“友好矩形”.我们发现:当△ABC是钝角三角形时,其“友好矩形”只有一个.(1)仿照以上叙述,请你说明什么是一个三角形的“友好平行四边形”;(2)如图②,若△ABC为直角三角形,且∠C=90°,在图②中画出△ABC的所有“友好矩形”;(3)若△ABC是锐角三角形,且AB=5cm,AC=7cm,BC=8cm,在图③中画出△ABC的所有“友好矩形”,指出其中周长最大的矩形并说明理由.考点:四边形综合题.分析:(1)仿照友好矩形的定义即可得出友好平行四边形的定义;(2)根据友好矩形的定义得出分别以AB为边和对角线得出△ABC的所有“友好矩形”即可;(3)利用勾股定理得出BD,AD的长,进而分别求出以BC、AB、AC为边的“友好矩形”周长比较即可.解答:解:(1)三角形的一边与平行四边形的一边完全重合,并且三角形的这条边所对的角的顶点落在平行四边形与三角形重合的边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”.(2)如图②所示:(3)如图③,过A做AD⊥BC于D设BD长为x cm,则DC长为(8﹣x)在Rt△ABD和Rt△ADC中AD2=AB2﹣BD2=52﹣x2,AD2=AC2﹣DC2=72﹣(8﹣x)2则52﹣x2=72﹣(8﹣x)2解得:x=2.5,过A做AD⊥BC于D,则有,则以BC为边的“友好矩形”周长为:,以AB为边的“友好矩形”周长为:,以AC为边的“友好矩形”周长为:,∴以BC为边的“友好矩形”周长最大.点评:此题主要考查了四边形综合题以及勾股定理等知识,考查学生的阅读理解、综合分析及分类讨论能力,难度较大.8.(2012•常州)平面上有两条直线AB、CD相交于点O,且∠BOD=150°(如图),现按如下要求规定此平面上点的“距离坐标”:(1)点O的“距离坐标”为(0,0);(2)在直线CD上,且到直线AB的距离为p(p>0)的点的“距离坐标”为(p,0);在直线AB上,且到直线CD 的距离为q(q>0)的点的“距离坐标”为(0,q);(3)到直线AB、CD的距离分别为p,q(p>0,q>0)的点的“距离坐标”为(p,q).设M为此平面上的点,其“距离坐标”为(m,n),根据上述对点的“距离坐标”的规定,解决下列问题:(1)画出图形(保留画图痕迹):①满足m=1,且n=0的点M的集合;②满足m=n的点M的集合;(2)若点M在过点O且与直线CD垂直的直线l上,求m与n所满足的关系式.(说明:图中OI长为一个单位长)考点:一次函数综合题;角平分线的性质;含30度角的直角三角形;锐角三角函数的定义.专题:计算题;作图题.分析:(1)①以O为圆心,以2为半径作圆,交CD于两点,则此两点为所求;②分别作∠BOC和∠BOD的角平分线并且反向延长,即可求出答案;(2)过M作MN⊥AB于N,根据已知得出OM=n,MN=m,求出∠NOM=60°,根据锐角三角函数得出sin60°==,求出即可.解答:解:(1)①如图所示:点M1和M2为所求;②如图所示:直线MN和直线EF为所求;(2)如图:过M作MN⊥AB于N,∵M的“距离坐标”为(m,n),∴OM=n,MN=m,∵∠BOD=150°,直线l⊥CD,∴∠MON=150°﹣90°=60°,在Rt△MON中,sin60°==,即m与n所满足的关系式是:m=n.点评:本题考查了锐角三角函数值,角平分线性质,含30度角的直角三角形的应用,主要考查学生的动手操作能力和计算能力,注意:角平分线上的点到角两边的距离相等.9.(2012•无锡)对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).(1)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;(2)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.试求点M(2,1)到直线y=x+2的直角距离.考点:一次函数综合题.专题:压轴题.分析:(1)根据新的运算规则知|x|+|y|=1,据此可以画出符合题意的图形;(2)根据新的运算规则知d(M,Q)=|x﹣2|+|y﹣1|=|x﹣2|+|x+2﹣1|=|x﹣2|+|x+1|,然后由绝对值与数轴的关系可知,|x﹣2|+|x+1|表示数轴上实数x所对应的点到数2和﹣1所对应的点的距离之和,其最小值为3.解答:解:(1)由题意,得|x|+|y|=1,∵d(O,P)=1,O(0,0),P(x,y)∴d(0,P)=|x|+|y|∴|x|+|y|=1①x≥0,y≥0∴x+y=1y=1﹣x②x≤0,y≤0∴﹣x﹣y=1y=﹣x﹣1③x≥0,y≤0∴x﹣y=1y=x﹣1④x≤0,y≥0∴﹣x+y=1y=1+x将四个函数关系式表示在数轴上,所有符合条件的点P组成的图形如图所示:(2)∵d(M,Q)=|x﹣2|+|y﹣1|=|x﹣2|+|x+2﹣1|=|x﹣2|+|x+1|,又∵x可取一切实数,|x﹣2|+|x+1|表示数轴上实数x所对应的点到数2和﹣1所对应的点的距离之和,其最小值为3.∴点M(2,1)到直线y=x+2的直角距离为3.点评:本题考查了一次函数综合题.正确理解新定义运算法则是解题的关键.10.(2012•厦门)如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连接AB.如果点P在直线y=x﹣1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“临近点”.(1)判断点C()是否是线段AB的“临近点”,并说明理由;(2)若点Q(m,n)是线段AB的“临近点”,求m的取值范围.考点:一次函数综合题.专题:计算题.分析:(1)根据A、B的坐标得出AB∥x轴,根据点P到直线AB的距离小于1,求出当纵坐标y在2<y<4范围内时,点是线段AB的“临近点”,看点的纵坐标是否在y的范围内即可;(2)根据线段AB的“临近点”的纵坐标的范围是2<n<4,把n=2和n=4分别代入n=m﹣1,求出相应的m 值,即可得出点的横坐标m的范围.解答:解:(1)点C()是线段AB的“临近点”.理由是:∵点P到直线AB的距离小于1,A、B的纵坐标都是3,∴AB∥x轴,3﹣1=2,3+1=4,∴当纵坐标y在2<y<4范围内时,点是线段AB的“临近点”,点C的坐标是(),∴y=>2,且小于4,∵C(,)在直线y=x﹣1上,∴点C()是线段AB的“临近点”.(2)∵点Q(m,n)是线段AB的“临近点”,由(1)可以得出:线段AB的“临近点”的纵坐标的范围是2<n<4,把n=2代入y=x﹣1(即n=m﹣1)得:m=3,n=4代入y=x﹣1(即n=m﹣1)得:m=5,∴3<m<5,即m的取值范围是3<m<5.点评:本题考查了有关一次函数的应用,通过做此题培养了学生的阅读能力和计算能力,此题是一道非常好、比较典型的题目.11.(2012•台州)定义:P、Q分别是两条线段a和b上任意一点,线段PQ的长度的最小值叫做线段a与线段b的距离.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是2;当m=5,n=2时,如图2,线段BC与线段OA的距离为;(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,①求出点M随线段BC运动所围成的封闭图形的周长;②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m的值;若不存在,请说明理由.考点:圆的综合题;勾股定理;相似三角形的判定与性质.专题:代数几何综合题;压轴题.分析:(1)理解新定义,按照新定义的要求求出两个距离值;(2)如答图2所示,当点B落在⊙A上时,m的取值范围为2≤m≤6:当4≤m≤6,显然线段BC与线段OA的距离等于⊙A半径,即d=2;当2≤m<4时,作BN⊥x轴于点N,线段BC与线段OA的距离等于BN长;(3)①在准确理解点M运动轨迹的基础上,画出草图,如答图3所示.由图形可以直观求出封闭图形的周长;②如答图4所示,符合题意的相似三角形有三个,需要进行分类讨论,分别利用点的坐标关系以及相似三角形比例线段关系求出m的值.解答:解:(1)当m=2,n=2时,如题图1,线段BC与线段OA的距离(即线段BN的长)=2;当m=5,n=2时,B点坐标为(5,2),线段BC与线段OA的距离,即为线段AB的长,如答图1,过点B作BN⊥x轴于点N,则AN=1,BN=2,在Rt△ABN中,由勾股定理得:AB===.(2)如答图2所示,当点B落在⊙A上时,m的取值范围为2≤m≤6:当4≤m≤6,显然线段BC与线段OA的距离等于⊙A半径,即d=2;当2≤m<4时,作BN⊥x轴于点N,线段BC与线段OA的距离等于BN长,ON=m,AN=OA﹣ON=4﹣m,在Rt△ABN中,由勾股定理得:∴d===.(3)①依题意画出图形,点M的运动轨迹如答图3中粗体实线所示:由图可见,封闭图形由上下两段长度为8的线段,以及左右两侧半径为2的半圆所组成,其周长为:2×8+2×π×2=16+4π,∴点M随线段BC运动所围成的封闭图形的周长为:16+4π.②结论:存在.∵m≥0,n≥0,∴点M位于第一象限.∵A(4,0),D(0,2),∴OA=2OD.如答图4所示,相似三角形有三种情形:(I)△AM1H1,此时点M纵坐标为2,点H在A点左侧.如图,OH1=m+2,M1H1=2,AH1=OA﹣OH1=2﹣m,由相似关系可知,M1H1=2AH1,即2=2(2﹣m),∴m=1;(II)△AM2H2,此时点M纵坐标为2,点H在A点右侧.如图,OH2=m+2,M2H2=2,AH2=OH2﹣OA=m﹣2,由相似关系可知,M2H2=2AH2,即2=2(m﹣2),∴m=3;(III)△AM3H3,此时点B落在⊙A上.如图,OH3=m+2,AH3=OH3﹣OA=m﹣2,过点B作BN⊥x轴于点N,则BN=M3H3=n,AN=m﹣4,由相似关系可知,AH3=2M3H3,即m﹣2=2n (1)在Rt△ABN中,由勾股定理得:22=(m﹣4)2+n2(2)由(1)、(2)式解得:m1=,m2=2,当m=2时,点M与点A横坐标相同,点H与点A重合,故舍去,∴m=.综上所述,存在m的值使以A、M、H为顶点的三角形与△AOD相似,m的取值为:1、3或.点评:本题是以圆为基础的运动型压轴题,综合考查了圆的相关性质、相似三角形、点的坐标、勾股定理、解方程等重要知识点,难度较大.本题涉及动线与动点,运动过程比较复杂,准确理解运动过程是解决本题的关键.第(3)①问中,关键是画出点M运动轨迹的图形,结合图形求解一目了然;第(3)②问中,注意分类讨论思想的运用,避免漏解.12.(2012•绍兴)联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.考点:线段垂直平分线的性质;等腰三角形的性质;等边三角形的性质;勾股定理.专题:新定义.分析:应用:连接PA、PB,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况利用等边三角形的性质求出PD与AB的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB=45°,然后即可求出∠APB的度数;探究:先根据勾股定理求出AC的长度,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况,根据三角形的性质计算即可得解.解答:应用:解:①若PB=PC,连接PB,则∠PCB=∠PBC,∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PD=DB=AB,与已知PD=AB矛盾,∴PB≠PC,②若PA=PC,连接PA,同理可得PA≠PC,③若PA=PB,由PD=AB,得PD=BD,∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,∴AC===4,①若PB=PC,设PA=x,则x2+32=(4﹣x)2,∴x=,即PA=,②若PA=PC,则PA=2,③若PA=PB,由图知,在Rt△PAB中,不可能.故PA=2或.点评:本题考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论.。
新定义问题【专题点拨】新定义运算、新概念问题一般是介绍新定义、新概念,然后利用新定义、新概念解题,其解题步骤一般都可分为以下几步:1.阅读定义或概念,并理解;2.总结信息,建立数模;3.解决数模,回顾检查.“新概念”试题,其设计新颖,构思独特,思维容量大,既能考查学生的阅读、分析、推理、概括等能力,又能考查学生知识迁移的能力和数学素养,同时还兼具了区分选拔的功能 .【解题策略】具体分析新颖问题→弄清问题题意→向已知知识点转化→利用相关联知识查验→转化问题思路解决【典例解析】类型一:规律题型中的新定义例题1:(2015•永州,第10题3分)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是()A.[x]=x(x为整数) B.0≤x﹣[x]<1C.[x+y]≤[x]+[y]D.[n+x]=n+[x](n为整数)【解析】:根据“定义[x]为不超过x的最大整数”进行计算【解答】:解:A、∵[x]为不超过x的最大整数,∴当x是整数时,[x]=x,成立;B、∵[x]为不超过x的最大整数,∴0≤x﹣[x]<1,成立;C、例如,[﹣5.4﹣3.2]=[﹣8.6]=﹣9,[﹣5.4]+[﹣3.2]=﹣6+(﹣4)=﹣10,∵﹣9>﹣10,∴[﹣5.4﹣3.2]>[﹣5.4]+[﹣3.2],∴[x+y]≤[x]+[y]不成立,D、[n+x]=n+[x](n为整数),成立;故选:C.【点评】本题考查了一元一次不等式组的应用,解决本题的关键是理解新定义.新定义解题是近几年中考常考的题型.变式训练1:(2015•山东潍坊,第12题3分)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )A.(—2012,2) B.(一2012,一2)C. (—2013,—2)D. (—2013,2)类型二:运算题型中的新定义例题2:(2016·四川宜宾)规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log n a n=n.log N M=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000= .【解析】实数的运算.先根据log N M=(a>0,a≠1,N>0,N≠1,M>0)将所求式子化成以10为底的对数形式,再利用公式进行计算.【解答】解:log1001000===.故答案为:.变式训练2:(2016四川省乐山市第16题)在直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y′),给出如下定义:若(0)(0)y x y y x ≥⎧'=⎨-<⎩,则称点Q 为点P 的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数3y x =+图象上点M 的“可控变点”,则点M 的坐标为 ;(2)若点P 在函数216y x =-+(5x a -≤≤)的图象上,其“可控变点”Q 的纵坐标y′的取值范围是1616y '-≤≤,则实数a 的取值范围是 .类型三: 探索题型中的新定义例题3:(2016山西省第10题)宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH【解析】考点:黄金分割的识别【解答】:由作图方法可知DF=5CF ,所以CG=CF )15(-,且GH=CD=2CF ,从而得出黄金矩形CG=CF )15(-,GH=2CF ∴2152)15(-=-=CF CF GH CG ∴矩形DCGH 是黄金矩形。
中考数学专题新概念型问题
一、中考专题诠释
所谓“新概念”型问题,主要是指在问题中概念了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新概念进行运算、推理、迁移的一种题型.“新概念”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力
二、解题策略和解法精讲
“新概念型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.
考点二:运算题型中的新概念
2.若(x1,y1)•(x2,y2)=x1x2+y1y2,则(4,5)•(6,8)=.
考点三:探索题型中的新概念
例3 如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)“抛物线三角形”一定是三角形;
(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;
(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.
考点四:开放题型中的新概念
例4 在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下概念:
若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|;
若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.
例如:点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点).
(1)已知点A(-1
2
,0),B为y轴上的一个动点,
①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;
②直接写出点A与点B的“非常距离”的最小值;
(2)已知C是直线y=3
4
x+3上的一个动点,
①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;
②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标.
思路分析:(1)①根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的概念可以确定|0-y|=2,据此可以求得y的值;
②设点B的坐标为(0,y).因为|- 1
2
-0|≥|0-y|,所以点A与点B的“非常距离”最小值为|-
1
2
-0|=
1
2
;
(2)①设点C的坐标为(x0,3
4
x0+3).根据材料“若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常
距离”为|x1-x2|”知,C、D两点的“非常距离”的最小值为-x0= 3
4
x0+2,据此可以求得点C的
坐标;
②当点E在过原点且与直线y= 3
4
x+3垂直的直线上时,点C与点E的“非常距离”最小,即
E(- 3
5
,
4
5
).解答思路同上.
解:(1)①∵B为y轴上的一个动点,∴设点B的坐标为(0,y).
∵|-1
2
-0|=
1
2
≠2,
∴|0-y|=2,
解得,y=2或y=-2;
∴点B的坐标是(0,2)或(0,-2);
②点A与点B的“非常距离”的最小值为1
2
;
(2)①∵C是直线y=3
4
x+3上的一个动点,
∴设点C的坐标为(x0,3
4
x0+3),
∴-x0=3
4
x0+2,
此时,x0=-8
7
,
∴点C与点D的“非常距离”的最小值为:8
7
,
此时C(-8
7
,
15
7
);
②E(-3
5
,
4
5
).
-3
5
-x0=
3
4
x0+3-
4
5
,
解得,x0=-8
5
,
则点C的坐标为(-8
5
,
9
5
),
最小值为1.
点评:本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的概念是正确解题的关键.
对应训练
4.(2012•)请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:
1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=- 7
6
,(-3)⊕5=5⊕(-3)=-
4
15
,…
你规定的新运算a⊕b= (用a,b的一个代数式表示).
考点五:阅读材料题型中的新概念
将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].
(1)如图①,对△ABC作变换[60°,3]得△AB′C′,则S△AB′C′:S△ABC= ;直线BC
与直线B′C′所夹的锐角为度;
(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;
(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.。