二次根式的化简求值经典题题型
- 格式:doc
- 大小:118.50 KB
- 文档页数:1
专题练习-二次根式化简求值一、单选题1.计算的结果()A. B. - C. D. -2.若,化简=( )A. B. C. D.3.先化简再求值:当a=9时,求a+ 的值,甲乙两人的解答如下:甲的解答为:原式= ;乙的解答为:原式= .在两人的解法中()A. 甲正确B. 乙正确C. 都不正确D. 无法确定4.当x=-2时,二次根式的值为( )A. 1B. ±1C. 3D. ±35.已知,则代数式的值是()A. 0B.C.D.6.已知x= -5,则代数式(x+4)2的值为()A. 3﹣2B. 2+2C. 1﹣D. 3+27.若化简|的结果是,则x的取值范围是()A. x为任意实数B. 1≤x≤4C. x≥1D. x<48.设a为﹣的小数部分,b为﹣的小数部分.则﹣的值为()A. +-1B. -+1C. --1D. ++19.设实数a,b在数轴上对应的位置如图所示,化简+|a+b|的结果是()A. -2a+bB. 2a+bC. -bD. b 10.若, 则xy 的值为( )A. 3B. 8C. 12D. 4 11.下列计算中,正确的有( ) ①=±2 ;②=2 ; ③=±25; ④a=-A. 0个B. 1个C. 2个D. 3个12.设=a ,=b , 用含a , b 的式子表示,下列正确的是( )A. 0.3ab 2B. 3abC. 0.1ab 3D. 0.1a 3b 13.已知x+|x-1|=1,则化简的结果是( )A. 3-2xB. 1C. -1D. 2x-314.已知x=2﹣,则代数式(7+4)x 2+(2+)x+的值是( )A. 0B.C. 2+D. 2﹣二、填空题15.已知m=1+ ,n=1﹣,则代数式的值________.16.若x=﹣2,则代数式x 2+1的值为________17.已知 m=2+ ,n=2﹣ ,则代数式的值为________.18.已知 ﹣=,那么+的值是________19.当x=2+ 时,式子x 2﹣4x+2017=________.20.当时,。
专题2.25二次根式的化简求值50题(分层练习)(提升练)1.已知x =,y =,求下列各式的值:(1)22x y -.(2)22252x xy y -+.2.(1)先化简,再求值:)(x x x x ++-,其中x =(2)已知x y =,试求代数式22252x xy y -+的值.3.(1(2;(3)已知2x =,求代数式((272x x ++4.(1)已知x =y =,求22x xy y ++的值;(275.已知x =y =,求代数式223x xy y -+的值.6.在数学小组探究学习中,张兵与他的小组成员遇到这样一道题:已知a =2281a a -+的值.他们是这样解答的:2=-∴2a -=,∴()223a -=,即2443a a -+=,∴241a a -=-,∴()()222812412111a a a a -+=-+=⨯-+=-.请你根据张兵小组的解题方法和过程,解决以下问题:(1)a =,则2281a a -+=.(2)若a =43443a a a --+的值.7.已知a =,b =8.先化简,再求值:(()1x x x x -+-,其中2x =.9.已知a =,b =求:(1)22a b ab -的值;(2)22a ab b ++的值.10.先化简,再求值:(()22323a a a a --+,其中3a =.11.先化简下式,再求值:()()2237752x x x x -+----,其中1x =+.12.先化简,再求值:153y x ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中12x =,3y =.13,其中:3a =,2b =.14.已知.已知1,1a b ==.(1)代数式221a a -+的值为________;(2)求代数式22a b +值.15.已知a =,求代数式229a a -+的值.16.(1)已知1α=+,求代数式((241αα-+的值(2)已知4y =x y 的值.17.已知:x =y =,求22x xy y ++的平方根.18.已知a =,b =(1)22a b ab -(2)22a b +19.在数学课外学习活动中,嘉琪遇到一道题:已知a =,求2281a a -+的值.他是这样解答的:∵2a ==∴2a -=.∴()223a -=,即2443a a -+=,∴241a a -=-,∴()()222812412111a a a a -+=-+=⨯-+=-,请你根据嘉琪的解题过程,解决如下问题:(1)化简:=__________;=__________;(2)(3)若a =2481a a -+的值.20.已知1a =+,1b ,求22a b -和abb a+的值.21.某同学在解决问题:已知a =2362a a -+的值.他是这样分析与解的:1a ===+ ,1a ∴-=()212a ∴-=,2212a a -+=,221a a ∴-=,()223623223125a a a a ∴-+=-+=⨯+=,请你根据这位同学的分析过程,解决如下问题:(1)++ (2)若a =;①求2281a a --的值;②求3236216a a a --+的值.22.(1=,=;(2)已知x =((272x x ++(323.阅读材料:像))221⨯=()0a a =≥,……这种两个含二次根式的代数式相乘,积不含二次根式,我们称这两个代数式互为有理化因式.在进行二次根式运算时,利用有理化因式可以化去分母中的根号.数学课上,老师出了一道题“已知a =2361a a --的值.”聪明的小明同学根据上述材料,做了这样的解答:因为1a ===所以1a -=所以()212a -=,所以2212a a -+=所以221a a -=,所以2363a a -=,所以23612a a --=请你根据上述材料和小明的解答过程,解决如下问题:__________=______;2-的有理化因式是________=______;(2)若a =,求22123a a -++的值.24)0,0x y->>,其中1x =-,1y .25.先化简,再求值:(1a a a aa ⎛⎫++- ⎪⎝⎭,其中a =26.已知x =,y =(1)求222x xy y ++的值.(2)若x 的小数部分为a ,y 的整数部分为b ,求ax by +的平方根.27.已知非零实数a ,b 满足=28.先化简,再求值:()()()22282x y x y x y --++,其中1x =1y =.29.已知12x =,求()33420252022x x --.30.已知1,10,15a b c ==-=-31.已知:12x x +=,求221x x+的值.32.已知8a b +=-,12ab =,求33.(1)已知a 、b4b +,求a 、b 的值.(2)已知实数a 满足2021a a -,求22021a -的值.34.已知x =y =,求代数式22x y +的值.35.先化简,再求值:()()()22 2222a b a b a b b ⎡⎤++-⎣⎦+-2069b b ++=.36.已知x =y =,求代数式22205520x xy y ++的值.37.已知x =,y =.(1)求33x y xy +的值;(2)求y x x y +的值.38.若x ,y 为实数,且12y =39.已知x =y =.求:(1)x y +和xy 的值;(2)求22x xy y -+的值.40.已知x =y =,求下列各式的值:(1)22x y -(2)222x xy y ++.41.有这样一类题目:如果你能找到两个数m 、n ,使22m n a +=且mn =a ±将变成222m n mn +±,即变成2()m n ±(1)例如,∵222532+=++=++=,==______,请完成填空.(2)(3)利用上面的方法,设A =,B =,求A +B 的值.42.已知a =,b =,求b a a b+的值.43.先化简,再求值:⎛- ⎝,其中8x =,127y =.44.(12-+4x =.(2)已知x =y =,求22x xy y -+值.45.已知3y =+,若a b =a2+b 2+ab 的值.46.(1)已知x ,y ﹣2,求下列各式的值:①11x y +;②x 2﹣xy +y 2;(28=.47.已知x =1x 的值.48.已知=x x 的整数部分为a ,小数部分为b ,求2a b a b--+的值.49.(1)先化简,再求值:((26a a a a +---+,其中1a -.(2)已知2x =,2y =223x y xy+-50.已知a =b =(1)求22a ab b -+的值;(2)若a 的小数部分为m ,b 的小数部分为n ,求()()m n m n +-的值.参考答案1.(1);(2)42【分析】(1)先求解x y x y +-,再利用平方差公式进行因式分解,再直接代入计算即可;(2)先求解()2x y xy ,+再利用完全平方公式进行变形求值即可.(1)解:∵x =y ,∴x y +=,x y -=∴()()22x y x y x y -=+-=;(2)解:∵x =y ,∴x y +=,2xy ==-∴()22222529yx y y x x y x =+--+(()229242=-´-=.【点拨】本题考查的是二次根式的求值,二次根式的加减乘法的混合运算,掌握“利用平方差公式与完全平方公式进行变形求解代数式的值”是解本题的关键.2.(15-,1-(2)42【分析】(1)先计算整式的乘法,再合并同类项,然后把x =(2)先利用x 、y 的值计算出x y -=2xy =-,再利用完全平方公式得到222252(2)x xy y x y xy -+=--,然后利用整体代入的方法计算.(1)解:)(x x x x ++-225x x =-+-5=-,当x =原式56512=-=-=-(2)解:∵x =y ,∴x y -=,352xy =-=-,∴222252(2)x xy y x y xy-+=--(()222=⨯--42=.【点拨】本题主要考查了二次根式的混合运算,整式的混合运算,熟练掌握相关运算法则是解题的关键.利用整体代入的方法可简化计算.3.(1(2);(3)2【分析】(1)根据二次根式的乘除混合计算法则求解即可;(2)根据二次根式的混合计算法则求解即可;(3)直接把2x =((272x x ++++然后合并同类二次根式即可得到答案.解:(1)原式=(2)原式===(3)原式((27222=+-++-+()74343=+-+-+(7743=+-+-49481=-++2=【点拨】本题主要考查了二次根式的混合计算,二次根式的化简求值,二次根式的乘除混合计算,熟知相关计算法则是解题的关键.4.(1)11;(2)【分析】(1)先计算出x y xy +,值,再根据()222x xy y x y xy ++=+-,代入计算即可得到答案;(2x y ==,则2222727936x y x y a a +=+=-++=,,从而可以求出=33<解:(1) x =y =,x y ∴+==321xy ==-=,∴()222x xy y x y xy ++=+-(2111=-=;(2x y ==,则2222727936x y x y a a +=+=-++=,,∴()()222213xy x y x y =+-+=,∴()222223x y x y xy -=+-=,∴x y -==33<=【点拨】本题考查了运用完全平方公式的变形进行求值,注()222x xy y x y xy ++=+-以及整体思想的运用.5.3【分析】先将x 、y 的值分母有理化,再代入到原式2)x y xy --=(计算可得.解:1x == ,1y =,∴原式()2=--x y xy))21111=--41=-3=【点拨】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式分母有理化的能力.6.(1)1-;(2)4【分析】(1)仿照例题,可以求得所求式子的值;(2)仿照例题,将a 的值分母有理化,然后变形,即可求得所求式子的值.(1)解:2a ==+ ,2a ∴-()223a ∴-=,2443a a ∴-+=,241a a ∴-=-,()()22281241211211a a a a ∴+=+=⨯-+=---+=-,故答案为:1-;(2)解:2a =+ ,2a ∴-=,()225a ∴-=,2445a a +-∴=,241a a ∴-=,()43222244344314343134a a a a a a a a a a a ∴+=-+=⨯-++--=-=+=-,即43443a a a --+的值为4.【点拨】本题考查二次根式的化简求值、分母有理化,解答本题的关键是明确题意,利用类比的方法解答.7.【分析】先分母有理化求出a b 、的值,再利用完全平方公式将222a b ++变形为2()22a b ab +-+,然后代入求值即可.解:2a =,2b =,====.【点拨】本题主要考查了二次根式的化简求值和完全平方公式的应用,熟练掌握化简方法和完全平方公式的变形是解题的关键.8.222x x --,32-.【分析】先用二次根式的混合运算法则化简,然后将2x =代入计算即可.解:(()1x x x x -+-,=222x x x -+-,=222x x --,当x =时,原式=22222--()(),=()212422---),=32-.【点拨】本题主要考查了二次根式的混合运算、代数式求值等知识点,正确运用二次根式的混合运算法则化简原式是解答本题的关键.9.(1)-;(2)11【分析】(1)根据二次根式的乘法法则求出ab ,根据二次根式的减法法则求出a b -,根据提公因式法把原式变形,代入计算即可;(2)根据完全平方公式把原式变形,代入计算,得到答案.(1)解:a = ,b =321ab ∴==-=,a b -=-=-则22a b ab -()ab a b =-(1=⨯-=-;(2)22a ab b ++2223a ab b ab=-++()23a b ab=-+2(31=-+⨯83=+11=.【点拨】本题考查的是二次根式的化简求值,掌握二次根式的加减法法则、乘法法则是解题的关键.10.26a a +,7-【分析】直接利用平方差公式以及二次根式的乘法将原式变形,进而合并同类项,进而把已知代入求出答案.解:原式2243363a a a =--++26a a =+,把3a 代入,得,原式))2336=+2918=+-7=-.【点拨】此题主要考查了平方差公式,多项式乘单项式以及二次根式的化简求值,正确化简原式是解题关键.11.224x x --,3-【分析】先去括号,然后合并同类项化简,最后代值计算即可.解:()()2237752x x x x -+----2237752x x x x -+--++=224x x =--,当1x =+时,原式())2222415115253x x x =--=--=--=-=-.【点拨】本题主要考查了二次根式的化简求值,正确计算是解题的关键.12.【分析】先确定00,x y >>,再利用二次根式的性质化简,然后计算二次根式的加减法,最后将x ,y 的值代入计算即可得.解:由题意得:100y x x >>,,∴00,x y >>,则153y x ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2221153x y x x y ⎛⎛=⋅⋅-- ⎝⎝=-=当12x =,3y =时,原式6====【点拨】本题考查了二次根式的化简求值,熟练掌握运算法则是解题关键.13.a b -,1.【分析】利用二次根式的性质和平方差公式化简,然后代入求值即可.221·ab =-a b =-a b =-,当3a =,2b =时,原式32=-1=.【点拨】题目主要考查二次根式的化简求值及平方差公式,熟练掌握二次根式的运算法则是解题关键.14.(1)3;(2)8【分析】(1)将221a a -+变形为()21a -,再代入a 的值求解即可;(2)将22a b +变形为()22a b ab +-,再代入a ,b 的值利用平方差公式和完全平方公式求解即可.(1)解:∵1a +,∴())222211113a a a -+=-=+-=,故答案为:3;(2)解:22a b +2222a b ab ab =++-()22a b ab =+-,当1,1a b =+=时,22a b +()22a b ab=+-)))211211⎡⎤=+-⎣⎦()12231=-⨯-8=.【点拨】本题考查二次根式的化简求值,掌握平方差公式和完全平方公式是解决问题的关键.15.13【分析】先对a进行分母有理化求出1a =,再把所求式子变形为()218a -+,再把1a =整体代入求解即可.解:∵a =,∴)())24141411511a ⨯+⨯+⨯+===+--,∴229a a -+2218a a =-++()218a =-+)2118=-+28=+58=+13=.【点拨】本题主要考查了二次根式的化简求值,分母有理化,正确求出1a =+并把所求式子变形为()218a -+是解题的关键.16.(1)2;(2)16.【分析】(1)把4-)21,再代入数据利用平方差公式计算即可求解;(2)根据二次根式有意义的条件得到20x -≥,20x -≥,求得2x =,4y =,再代入数据计算即可求解.解:(1)∵1α=,∴((241αα-+))()221111=+-))21111⎡⎤=--⎣⎦()()23131=---42=-2=;(2)∵4y =++4y =+∴20x -≥,20x -≥,∴2x =,4y =,∴2416x y ==.【点拨】本题考查了二次根式有意义的条件,二次根式的化简求值,掌握平方差公式的结构特征是解题的关键.17.±【分析】先将x 、y 化简,然后即可得到x y xy +、的值,从而可以求得所求式子的值.解:∵25x ==+,25y==-∴(55105525241x y xy +=++-==+-=-=,,∴22x xy y ++222x xy y xy=++-()2x y xy =+-2101=-1001=-99=.∵99的平方根为±∴22x xy y ++的平方根为±【点拨】本题考查二次根式的化简求值,求一个数的平方根,解答本题的关键是明确二次根式化简求值的方法.18.(1)-;(2)14【分析】(1)先把a 、b进行分母有理化得到2a =-2b =+,进而求出a b -=-1ab =,再根据()22a b ab ab a b -=-进行代值求解即可;(2)根据()2222a b a b ab +=-+进行求解即可.(1)解:∵a =b =∴a=b =,∴2243a -==-2243b ==-∴22a b -=---(22431ab =+-=-=,∴22a b ab -()ab a b =-1=-=-(2)解:由(1)得a b -=-1ab=,∴()(22222212214a b ab a b =-+=-+=+=+.【点拨】本题主要考查了二次根式的化简求值,正确求出a b -=-1ab=是解题的关键.19.,1;(3)5【分析】(1)根据分母有理化的方法进行求解即可;(2)把各项进行分母有理化,从而可求解;(3)仿照所给的解答方式进行求解.(1)解:==;2⨯=(21=++1;(3)解:∵1a ==,∴1a -=∴()212a -=,即2212a a -+=,∴()224814211442148145a a a a -+=-++-=⨯+-=+-=.【点拨】本题主要考查二次根式的化简求值,分母有理化,解答的关键是对相应的运算法则的掌握.20.4【分析】将a ,b 的值分别代入要求的式子中,然后按照二次根式运算的法则计算即可.解:22221)1)44a b -=-=++=2222842a b a b b a ab ++=====.【点拨】本题考查了二次根式的混合运算,熟记二次根式的混合运算法则是解题的关键.注意做这类计算题时,一定要细心.21.1;(2)①3-;②0;【分析】(1)根据例题可得:对每个式子的分子和分母,同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类二次根式即可求解;(2)①将a =化简,再得到241a a -=-,再整体代入化简后的式子计算即可;②根据241a a -=-,将所求式子变形,再整体代入计算即可.(1+ 1=1=;(2)解:① 2a ==-2a ∴-=()223a ∴-=,2443a a -+=241a a ∴-=-,∴()()222812412113a a a a --=--=⨯--=-,②由①知241a a -=-,∴3236216a a a --+()()()2224246436a a a a a a a a a =-+-+-++()()()1216136a a a =⨯-+⨯-+⨯-++2636a a a =---++0=.【点拨】本题考查了二次根式的化简求值,解题的关键是明确题意,利用平方差和完全平方公式解答.22.(1)2,2;(2)2+(3)>【分析】(1)根据二次根式的分母有理化可进行求解;(2)直接把x 的值代入求解即可;(3=解:(12142222-==-2;(2)∵x =,∴22x==∴((272x x ++((72=+⨯+⨯2=(3=;故答案为>.【点拨】本题主要考查二次根式的运算及分母有理化,熟练掌握二次根式的运算及分母有理化是解题的关键.23.2或2;2;(2)7【分析】(1)根据有理化因式的定义,进行求解即可;(2)根据题干给出的解题方法,进行求解即可.(1)解:∵321 =-=,=∵))()22341,22431=-=--=-=,22+或2,22=-=;2+或2;2;(2)解:∵(232332a+==+∴3a-=∴()237a-=,∴2697a a+=-,∴262a a-=-,∴22124aa-+=,∴221237a a-++=.【点拨】本题考查分母有理化.理解并掌握有理化因式的定义,是解题的关键.24.4【分析】利用二次根式的性质将原式化简,然后由平方差公式得出4xy=,代入求解即可.==,∵1x =-,1y =+,∴1)4xy ==,∴原式4==.【点拨】题目主要考查二次根式的化简及求代数式的值,平方差公式,熟练掌握运算法则是解题关键.25.223a -,3【分析】根据二次根式的混合运算法则,平方差公式和单项式乘多项式法则计算即可化简,再将a =代入化简后的式子计算即可.解:(1a a a a a ⎛⎫++- ⎪⎝⎭2221a a =-+-223a =-.当a =22232(33a =-=⨯-=.【点拨】本题考查二次根式的化简求值,涉及二次根式的混合运算,平方差公式和单项式乘多项式.熟练掌握各运算法则是解题关键.26.(1)20;(2)1±.【分析】(1)先分母有理化求出x 、y 的值,再求出x y +和xy 的值,最后根据完全平方公式进行变形,代入求出即可;(2)先求出x 、y 的范围,再求出a 、b 的值,最后代入求出即可.(1)解:12 2x ⨯==,2y =-,))22x y +=+-=,∴()(2222220x xy y x y ++=+==;(2)解;∵23,∴4<25+<,0<21-<,∵x 的小数部分为a ,y 的整数部分为b ,∴=a 24+-=2-,0y =,∴))2220541ax by +=+⨯=-=,∴ax by +的平方根是1=±.【点拨】本题考查了完全平方公式、分母有理化、估算无理数的大小、平方根等知识点,能求出x y +和xy 的值是解(1)的关键,能估算出x 、y 的范围是解(2)的关键.27.3【分析】利用因式分解将已知化为0=,得出a b =,然后代入所求代数式即可得解.解: 非零实数a ,b 满足=,由题意可知0,0a b >>,220∴+=,∴=0,0a b >> ,0∴,=,a b ∴=,2332a a a a a a++=+-62aa =3=.【点拨】此题考查了二次根式的化简求值,熟练掌握二次根式的性质、因式分解以及分式的性质是解答此题的关键.28.18xy -,18-【分析】根据完全平方差公式、多项式乘以多项式运算法则先运算,再根据整式加减运算法则,去括号、合并同类项即可得到化简结果,最后代值利用平方差公式求解即可得到结果.解:()()()22282x y x y x y --++()()22222448282x xy y x xy xy y =-+-+++22228828102x xy y x xy y =-+---()()()22228881022x x xy xy y y =-+--+-18xy =-,当1x =1y =时,原式)1811=-⨯2181⎡⎤=-⨯-⎢⎥⎣⎦()1821=-⨯-18=-.【点拨】本题考查整式化简求值,涉及完全平方差公式、多项式乘以多项式、整式加减运算、去括号法则、合并同类项、平方差公式及二次根式运算,熟练掌握相关运算法则及公式是解决问题的关键.29.1-.【分析】根据x =12x -=()22121442022x x x -=-+=,2442021x x -=,将原式化为()()3322444420212022x x x x x ⎡⎤-+---⎣⎦,再整体代入即可求解.解:∵12x =,∴112122x -=-⨯∴()22121442022x x x -=-+=,∴2442021x x -=,∴原式()()3322444420212022x x x x x ⎡⎤=-+---⎣⎦()32021202120212022x x =+--()31=-1=-.【点拨】本题主要考查二次根式的化简,能正确根据二次根式的运算法则进行计算是解题关键.30.【分析】把已知数据代入代数式,根据二次根式的性质化简即可.解:∵1,10,15a b c ==-=-,===【点拨】本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.31.5+【分析】根据2221112x x x x x x ⎛⎫+=+-⋅ ⎪⎝⎭进行计算求解即可.解:∵12x x +=,∴221x x +2112x x x x ⎛⎫=+-⋅ ⎪⎝⎭(222=+-432=+-5=+【点拨】本题主要考查了二次根式的化简求值,完全平方公式的变形求值,正确根据完全平方公式得到2221112x x x x x x ⎛⎫+=+-⋅ ⎪⎝⎭是解题的关键.32【分析】根据题意可判断a 和b 都是负数,然后二次根式的乘、除法公式和合并同类二次根式法则化简并求值即可.解:8a b +=-Q ,12ab =,∴a 和b 均为负数,()222240a b a b ab +=+-====b b a a-+-=22=22a b-+====3-=【点拨】此题考查的是二次根式的化简和完全平方公式的变形;掌握二次根式的乘、除法公式和合并同类二次根式法则是解决此题的关键.33.(1)5a =,4b =-;(2)2022【分析】(1)根据二次根式有意义的条件先求出a 的值,进而求出b 的值即可;(2)根据二次根式有意义的条件得到2022a ≥,2021=,两边平方即可得到答案.解:(14b +要有意义,∴501020a a -≥⎧⎨-≥⎩,∴5a =,4b =+,∴4b =-;(2)∵2021a a -要有意义,∴20220a -≥,∴2022a ≥,∴2021a a -=,2021=,∴220222021a -=,∴220212022-=a 【点拨】本题主要考查了二次根式有意义的条件,化简绝对值,代数式求值,熟知二次根式有意义的条件是被开方数大于等于0是解题的关键.34.24【分析】先计算出x y +=2xy =-,,再利用完全平方公式变形得到()2222x y x y xy +=+-,然后利用整体代入的方法计算.解:∵x =y =,∴x y +=++=2xy =+=-,∴()(()222222220424x y x y xy +=+-=-⨯-=+=.【点拨】本题主要考查二次根式的化简求值,代数式求值,解题的关键是熟练运用完全平方公式化简二次根式.35+【分析】先根据整式的混合运算法则将所求整式化简,再根据算术平方根和偶次幂的非负性求出a 、b ,代入即可作答.解:()()()22+ 2+2+22a b a b a b b --⎡⎤⎣⎦()()22222442322a ab b a ab b b⎡⎤=+++-⎣⎦--()22222442322a ab b a ab b b =+++---()23a a b =+23b a a =+=+,2069b b ++=,()203b +=,0≥,()203b +≥,0=,()203b +=,∴20a -=,30b +=,∴=2a ,3b =-,将=2a ,3b =-3+中,原式()3332=+=+⨯-=【点拨】本题考查了二次根式的加减乘除混合运算,其中涉及到了算术平方根的非负性和完全平方公式等,解决本题的关键是牢记整式的混合运算法则.36.2015【分析】直接利用分母有理化将原式化简,再将多项式变形,进而代入得出答案.解:∵x 25===-,y 25===+22205520x xy y ∴++2220402015x xy y xy=+++()2220215x xy y xy=+++()22015x y xy=++((22055155252=⨯-++⨯-+()22010152524=⨯+⨯-2010015=⨯+200015=+2015=.【点拨】本题主要考查了分母有理化,正确化简各数是解题关键.37.(1)10;(2)10【分析】(1)先求出xy 及x +y 的值,再将33x y xy +因式分解,最后再整体代入求值;(2)先将y x x y+通分,再通过完全平方公式变形,最后代入求值.解:(1)x y ==1,xy ∴=⨯+=x y +==()33222()212110x y xy xy x y xy x y xy⎡⎤⎡⎤∴+=+=+-=⨯-⨯=⎣⎦⎣⎦(2)y x x y +22y x xy+=2()2x y xy xy+-=2211-⨯=10=【点拨】本题考查与二次根式相关的代数式求值问题,解题的关键是整体思想的应用.38.【分析】先根据二次根式有意义的条件求出x 的值,进而求出y 的值,然后代值计算即可.解:∵12y =要有意义,∴140410x x -≥⎧⎨-≥⎩,∴1144x ≤≤即14x =,∴1122y ==,∴122x y y x==,,==【点拨】本题主要考查了二次根式有意义的条件,二次根式的求值,正确求出x 、y 的值是解题的关键.39.(1)1;(2)9【分析】(1)根据二次根式的加法法则即可求出x y +,根据二次根式的乘法法则即可求出xy ;(2)先根据完全平方公式变成()2223x xy y x y xy =+--+,再代入求出答案即可.(1)解:∵x =y =,∴x y ==++321xy ⨯==-=.∴x y +的值为xy 的值为1.(2)∵x y +=1xy =,22x xy y -+()23x y xy=+-(231=-⨯123=-9=.∴22x xy y -+的值为9.【点拨】本题考查二次根式的化简求值,完全平方公式,平方差公式.能正确根据二次根式的运算法则进行计算是解题的关键.40.(1);(2)12【分析】(1)先计算出x y +和x y -,再利用乘法公式得到()()22x y x y x y -=+-;(2)利用乘法公式得到222)2(x xy y x y =+++,然后利用整体代入的方法计算.(1)解:x =Q y =,x y ∴+=,x y -=()()22x y x y x y -=+-=(2)由(1)知x y +=∴22222()12x xy y x y ++=+==.【点拨】本题考查了二次根式的运算,完全平方公式、平方差公式等知识点.题目难度不大,注意整体代入思想的运用.41.1-;(3)2+【分析】(1(0)0(0)(0)a aa aa a>⎧⎪===⎨⎪-<⎩,即可得出相应结果.(2)根据(1)中“222532+=++=++=”,将代数式转化为完全平方公式的结构形式,再根据二次根式的性质化简求值,即可得出结果.(3)根据题意,首先把A式和B式分别转化为完全平方公式的结构形式,再根据二次根式的性质把A 式和B式的结果分别算出,最后把A式和B式再代入A+B中,求出A+B的值.解:(1)∵222 5232+=++=++==(2)∵)22 43111 -=+-=+-=-1-.(3)∵222 6422(2A=+++++⨯+∴2 A=+∵2212132B+-⨯⨯===∴B=====∴把A式和B式的值代入A+B中,得:222A B+=+=【点拨】本题考查二次根式的化简求值问题,完全平方公式.解本题的关键在熟练掌握二次根式的性(0)0(0)(0)a aa aa a>⎧⎪===⎨⎪-<⎩和熟练运用完全平方公式()2222a b a ab b±=±+.42.18【分析】先将条件变形为:2a=,2b=,然后将结论变形22a bab+,最后将化简后的条件代入变形后的式子就可以求出其值.解:∵a =,b =,∴2a +,2b -,∴ab =1,+=a b∴b a a b +()(22222218a b a b ab ab ++==-=-=.【点拨】本题主要考查了二次根式的分母有理化,完全平方公式的运用,正确求出2a =,2b =是解答本题的关键.43.2+3+.【分析】先根据二次根式的运算法则,在根据分式的运算法则计算即可,先化简,再代入8x =,127y =即可.解:原式2=-2=+,当8x =、127y =时,原式3=329=+⨯3=.【点拨】本题考查了二次根式及分式的运算法则,熟练掌握并应用二次根式及分式的运算法则是解答本题的关键.44.(1)(2)11【分析】(1)根据二次根式的性质化简,然后代入即可求出答案.(2)先由x 与y 的值计算出x ﹣y 和xy 的值,再代入原式=x 2﹣2xy +y 2+xy =(x ﹣y )2+xy 计算可得.解:(1)原式==,当4x =时,原式6=(2)∵x =y =,∴x y -==231xy ==-=-,原式=x 2﹣2xy +y 2+xy=(x ﹣y )2+xy=(2﹣1=12﹣1=11.【点拨】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式、平方差公式.45.3x +y ,15【分析】根据题意求出x 与y 的值,然后根据完全平方公式以及平方差公式进行化简,然后将x 与y 代入原式即可求出答案.解:∵3y =+有意义∴40x -≥且40x -≥∴x =4,∴y =3,∵a b =()222222a b ab a b ab ab a b ab++=++-=+-∴()2222a b ab a b ab ++=+-=+-(()2x y =--3x y=+把x =4,y =3代入上式中原式34315=⨯+=【点拨】本题主要考查了二次根式有意义的条件,二次根式的化简求解,完全平方公式和平方差公式,解题的关键在于能够熟练掌握相关知识进行求解.46.(1)①3;②19;(2)±【分析】(1)①根据x +2,y −2,可以得到xy 、x +y 的值,然后即可求得所求式子的值;②将所求式子变形,然后根据x2,y −2,可以得到xy 、x +y 的值,从而可以求得所求式子的值;(2)根据完全平方公式和换元法可以求得所求式子的值.解:(1)①11x y +=x yy x +,∵x 2,y ,∴x +y =,xy =3,当x +y =,xy =3时,原式=3;②x 2−xy +y 2=(x +y )2−3xy ,∵x 2,y ,∴x +y =,xy =3,当x +y ,xy =3时,原式=()2−3×3=19;(2x y ,则39−a 2=x 2,5+a 2=y 2,∴x 2+y 2=44,8,∴(x +y )2=64,∴x 2+2xy +y 2=64,∴2xy =64−(x 2+y 2)=64−44=20,∴(x −y )2=x 2−2xy +y 2=44−20=24,∴x −y =±,±故答案为:±【点拨】本题考查二次根式的化简求值、分式的加减法、平方差公式,解答本题的关键是明确它们各自的计算方法.47.32-【分析】先把=x x =再化简2154x x x --+得111x x ---,最后代入求值即可.解:x =+∵12<<∴34<<∴4x <1x1x=(4)1(4)(1)x x x x--=---111x x =---将x =代入上式得:原式=13(222-==-=【点拨】本题考查了二次根式的混合计算,熟练掌握运算法则是解答此题的关键.48.7-2=+12<得到3a =,1b =,将a 、b 代入即可计算即可.2=,12<<,∴3a =,1b =,∴(2312227a b a b -----===-+【点拨】本题考查二次根式的化简及计算,同时也考查了学生的估算能力,夹逼法是估算时常用的一种方法.49.(1)(a a ;5-(2)11【分析】(1)利用乘法公式化简,在代入求值计算即可;(2)把x ,y 代入代数式求解即可;解:(1)原式(222266a a a a a =--+=+=+,当1a -时,原式11=+,5=-.(2)由已知可得:1x y xy -==,原式=222x xy y xy -+-,()2=--x y xy,(21=-,121=-,11=.【点拨】本题主要考查了二次根式的化简计算,利用乘法公式化简是解题的关键.50.(1)13;(2)3-【分析】(1)利用二次根式的加法运算和乘法运算求得a b +和ab ,对所求式子利用完全平方公式变形,进而整体代入求出即可;(2)首先利用分母有理化法则求出a ,b的值,根据12<,可得m ,n 的值,进而代入求值即可.解:(1)22114442a b+-++====,1ab =,22a ab b -+()23a b ab=+-243=-13=;(2)2a ==,2b ==+∵12<<,21-<-,∴22221-<<-,21222+<<+,即021<,324<+∴2的整数部分是0,小数部分是2,即2m =2+31,即1n =,∴()()m n m n +-()()2121=3=-【点拨】本题主要考查了二次根式的化简求值,估算无理数的大小,根据12<<,得出m ,n 的值是解题关键,注意要分母有理化.。
专题01 二次根式化简的四种题型全攻略类型一、利用被开方数的非负性化简二次根式例.= )A .1x ³B .1x ³-C .1x ³或1x £-D .1x ¹±【变式训练1】已知m ,n 为实数,且3n -==________.【详解】依题意可得m -2≥0且2-m ≥0,∴m =2,∴n -3=0∴n =3,=.【变式训练2】已知a ,b ,c 是ABC V ||0b c -=ABC V 的形状是_______.A .3x >B .3x ³C .3x <D .3x £等腰三角形周长.【答案】17【详解】解:由题意得:3030a a -³ìí-³î,解得:a =3,则b =7,若c =a =3时,3+3<7,不能构成三角形.若c =b =7,此时周长为17.类型二、利用数轴化简二次根式例.实数a b c ,,在数轴上的对应点如图所示,化简a b -+-A .b c--B .c b - C .222b c -+D .2b c ++【答案】A 【详解】解:由数轴知:00c b a <,<<,∴0b a -<,∴原式=a b a c----()=a b a c--+-=b c --.故选:A .【变式训练1】已知实数m n、||m n+=_____A.2a b-+B.2a b-C.b-D.b【答案】A【解析】根据数轴上点的位置得:a<0<b,∴a-b<0,则原式=|a|+|a-b|=-a+b-a= -2a+b.故选:A.【变式训练3】已知实数a、b、c.【变式训练4】如图,a ,b ,c 是数轴上三个点A 、B 、C 所对应的实数.试化简:c +.类型三、利用字母的取值范围化简二次根式例1.已知,化简:25m -<<5-=__________.【答案】23m -##32m-+A B C .D .【变式训练2】若35x <<+=_______;【答案】0【解析】由题意可知:3-x ≥0,∴2=3x -=33x x ---=33x x -+-=0故答案为:0.【变式训练4】7=-b .(1)求a 的值;(2)若a 、b 分别为一直角三角形的斜边长和一直角边长,求另一条直角边的长度.类型四、双重二次根式的化简例.阅读下列材料,然后回答问题.一样的式子,其实我们还可以将其进一==1===以上这种化简的步骤叫做分母有理化.(1;(2(2【变式训练1】阅读理解“分母有理化”是我们常用的一种化简的方法7==+设x =-,>故0x >,由22x =33=+-2=解得x -=【答案】5-【详解】解:设x=>∴0x<∴266x=--+,∴212236x=-´=,∴x=5=-,∴原式55=--=-【变式训练2】先阅读材料,然后回答问题.(1经过思考,小张解决这个问题的过程如下:=①===④在上述化简过程中,第步出现了错误,化简的正确结果为;(2)请根据你从上述材料中得到的启发,化简由于437+=,4312´=,即:227+=, =2====问题:(1=__________=____________﹔(2a ,b (a b >),使a b m +=,ab n =,即22m +=那么便有:=__________.(3(请写出化简过程)【答案】(11+(2)a b ±>;(3【详解】解:(11===+;)a b >;【变式训练4】阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如(231+=,善于思考的小明进行了以下探索:设()2a m =(其中a 、b 、m 、n 均为正整数),则有222a m n =++,∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把部分a 的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若()2a m +=+,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)若()2a m +=,且a 、m 、n 均为正整数,求a 的值;(3.课后作业120-=,那么这个等腰三角形的周长为( )A .8B .10C .8或10D .9【答案】B【详解】解:20-=∴40a -=,20b -=,解得4a =,2b =当腰长为2,底边为4时,∵224+=,不满足三角形三边条件,不符合题意;当腰长为4,底边为2时,∵2464+=>,4402-=<,满足三角形三边条件,此时等腰三角形的周长为44210++=.故选:B2.化简二次根式- )A B C .D .【答案】AA .2b c-B .2b a -C .2a b --D .2c b-6.已知x、y为实数,4y+,则x y的值等于______.8a b =+.根据这一性质,我们可以将一些“双重二次根式”去掉一层根号,达到化简效果..解:设24+=(a ,b 为非负有理数),则4a b +=++∴43a b ab +=ìí=î①②由①得,4b a =-,代入②得:()43a a -=,解得11a =,23a =∴13b =,21b =∴224(1+==1==请根据以上阅读理解,解决下列问题:(1)__________;(2)(3)的大小,我们可以把a和b分别平方,∵a2=12,b2=18,则a2<b2,∴a<b.请利用“平方法”解决下面问题:(1)比较c=,d=c d(填写>,<或者=).(2)猜想m=n=+(3)=(直接写出答案).10.(1)已知a 、b 4b =+,求a 、b 的值.(2)已知实数a 满足2021a =,求22021a -的值.。
二次根式化简习题大全 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】二次根式化简练习一、 化简下列二次根式 =12 =8 =18 20=60= =72 =80 =90=108 125= =128 =135二、 比较下列二次根式的大小182_____123 2421 ____2731 12554 ___16932 403_____602三、 化简=38x 212x =x 232532⨯⨯=292ab = a c b 16332 = 2312a c b ==-22513 =+22158211-= 二选择题1.若-1<x <0,则()221+-x x 等于 +12.下列等式成立的是 A.2)2(2-=- B.4x =x 2 122++b b =-1 D.36x x = 3.若1)3()2(22=-+-a a ,则a 的取值范围是≤a ≤3 ≥3或a ≤2 ≤2 ≥34.化简a +2)1(a -等于 或-1 或1 5.计算22)21()12(a a -+-的值是 或4a -26.当3323+-=+x x x x 时,x 的取值范围是≤0 ≤-3 ≥-3 ≤x ≤07当a >0时,化简3ax -的结果是ax ax - ax - ax8.实数a ,b 在数轴上对应点的位置如图所示,则化简2222a b ab a -+-的结果为9.计算22)53()52(-+-等于5 5 510.下列二次根式中,是同类二次根式的是 A.b c a bc a 3与 B.23b a 与ab C.a 2与34a D.b a 与23b a 三.填空题1.代数式xx x -+++213有意义的条件是 ; x x 263-+-有意义的条件是2.函数xx x y -++-=2132的自变量x 的取值范围是 3化简12=____. .2)23(-= . 4.|)1(1|,22a a +--<化简时当得 . 5.若三角形的三边a ?b ?c 满足a 2-4a +4+3-b =0,则笫三边c 的取值范围是_____________.6.若m <0,则|m |+______332=+m m .已知:42<<x ,化简()|5|12-+-x x =_________.三解答题1.计算 221--22+0)101(+1)21(- 2)52(80182445-+-++ 3.小明和小芳解答题目:"先化简下式,再求值:a +221a a +-,其中a =9"时,得出了不同的答案.小明的解答是:原式=a +2)1(a -=a +(1-a )=1; 小芳的解答是:原式=a +2)1(a -=a +(a -1)=2a -1=2×9-1=17.(1)_________的解答是错误的.(2)错误的解答错在未能正确运用二次根式的性质:________.4.若│1995-a │+2000a -=a ,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值5已知,化简求值 6、已知,先化简,再求值。
第八讲 二次根式的化简求值用运算符号把数或表示数的字母连结而成的式子,叫做代数式,有理式和无理式统称代数式,整式和分式统称有理式.有条件的二次根式的化简求值问题是代数式的化简求值的重点与难点.这类问题包容了有理式的众多知识,又涉及最简根式、同类根式、有理化等二次根式的重要概念,同时联系着整体代入、分解变形、构造关系式等重要的技巧与方法,解题的关键是,有时需把已知条件化简,或把已知条件变形,有时需把待求式化简或变形,有时需把已知条件和待求式同时变形.例题求解 【例l 】已知21=+xx ,那么191322++-++x x x x x x 的值等于 .(2001年河北省初中数学创新与知识应用竞赛题)思路点拨 通过平方或分式性质,把已知条件和待求式的被开方数都用xx 1+的代数式表示.【例2】 满足等式2003200320032003=+--+xy y x x y y x 的正整数对(x ,y)的个数是( )A .1B .2C . 3D . 4 (2003年全国初中数学联赛题)思路点拨 对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解.【例3】已知a 、b 是实数,且1)1)(1(22=++++b b a a ,问a 、b 之间有怎样的关系?请推导.(第20后俄罗斯数学臭林匹克竞赛题改编) 思路点拨 由特殊探求一般,在证明一般性的过程中,由因导果,从化简条件等式入手,而化简的基本方法是有理化.【例4】 已知:aa x 1+= (0<a<1),求代数式42422362222----+---+÷-+x x xx x x x x x x x 的值. (2002半四川省中考题)思路点拨 视x x x 4,22--为整体,把aa x 1+=平方,移项用含a 代数式表示x x x 4,22--,注意0<a1的制约.【例5】 (1)设a 、b 、c 、d 为正实数,a<b ,c<d ,bc>ad ,有一个三角形的三边长分别为22c a +,22d b +,22)()(c d a b -+-,求此三角形的面积;(第12届“五羊杯”竞赛题)(2)已知a ,b 均为正数,且a+b=2,求U=1422+++b a 的最小值.(2003年北京市竞赛题)思路点拨 (1)显然不能用面积公式求三角形面积(为什么?),22c a +的几何意义是以a 、c 为直角边的直角三角形的斜边,从构造图形人手,将复杂的根式计算转化为几何问题加以解决;(2)用代数的方法求U 的最小值较繁,运用对称分析,借助图形求U 的最小值.学历训练1.已知2323-+=x ,2323+-=y ,那么代数式22)()(y x xy y x xy +-++值为 .2.若41=+a a (0<a<1),则aa 1-= . 3.已知123123++=++x x ,则)225(423---÷--x x x x 的值.(2001年武汉市中考题)4.已知a 是34-的小数部分,那么代数式)4()2442(222a a a a aa a a a -⋅++++-+的值为 . (2003年黄石市中考题)5.若13+=x ,则53)321()32(23+-+++-x x x 的值是( ) A .2 B .4 C .6 D .8 (2003年河南省竞赛题) 6.已知实数a 满足a a a =-+-20012000,那么22000-a 的值是( ) A .1999 B .2000 C .2001 D .20027.设9971003+=a ,9991001+=a ,10002=c ,则a 、b 、c 之间的大小关系是( ) A .a<b<c B .c<b<a C . c<a<b D .a<c<b8.设a a x -=1,则24x x +的值为( )A .a a 1-B .a a -1C .aa 1+ D .不能确定 9.若a>0,b>0, 且)5(3)(b a b b a a +=+,求abb a ab b a +-++32的值.10.已知x x =--2)1(1,化简x x x x +++-+414122.11.已知31+=x ,那么2141212---++x x x = . (2003年“信利杯”全国初中数学竞赛题) 12.已知514=-++a a ,则a 26-= .13.已知9)12(42+-++x a 的最小值为= .(“希望杯”邀请赛试题)14.已知2002)2002)(2002(22=++++y y x x ,则58664322+----y x y xy x = .(第17届江苏省竞赛题) 15.1+a2如果22002+=+b a ,22002-=-b a ,3333c b c b -=+,那么a 3b 3-c 3的值为( ) (2003年武汉市选拔赛试题)A .20022002B .2001C .1D .016.已知12-=a ,622-=b ,26-=c ,那么a 、b 、c 的大小关系是( ) A .a<b<c B .b<a<c C .c<b<a c<a<b (2002年全国初中数学联赛题)17.当220021+=x 时,代数式20033)200120054(--x x 的值是( ) A . 0 B .一1 C . 1 D .- 22003 (2002年绍兴市竞赛题)18.设a 、b 、c 为有理数,且等式62532+=++c b a 成立,则2a+999b+1001c 的值是( ) A .1999 B . 2000 C . 2001 D .不能确定 (2001年全国初中数学联赛试题)19.某船在点O 处测得一小岛上的电视塔A 在北偏西60°的方向,船向西航行20海里到达B 处,测得电视塔在船的西北方向,问再向西航行多少海里,船离电视塔最近?20.已知实数 a 、b 满足条件1<=-a b b a ,化简代数式2)1()11(--⋅-b a ba ,将结果表示成不含b 的形式.21.已知a a x 21+=(a>0),化简:2222-++--+x x x x .22.已知自然数x 、y 、z 满足等式062=+--z y x ,求x+y+z 的值. (加拿大“奥林匹克”竞赛题)答案:。
完美WORD 格式二次根式的化简1. 若-1<x<0,则 斥-Qa+h 等于2. 下列等式成立的是3. 若叮冷-n 「,则a 的取值范围是4.化简a+ 等于5.计算(匸―的值是6.当 ■ • '•时,x 的取值范围是7.当 2m+7<0 时,'7、 二 — 1化简为8. 当a>0时,化简的结果是10.计算 &2-® 十-送亍 等于、填空题A.2X+1B.1C.-1-2XD.1-2XA. |B. • =/C.b-嘤$ 衣必 7 =-1D.—A.2 < a w 3B.a > 3 或 a w 2C.a w 2D.a > 3A.2a-1B.1C.1 或-1D.2a-1 或 1A.2-4 a 或 4a-2B.0C.2-4aD.4a-2A.x w 0B.x < -3C.x 》-3D.-3 w x < 0A.-5 mB. mC.- m-2D.5 mA.xB.-xC.xD.-x9.实数a,b 在数轴上对应点的位置如图所示,则化简 一门'厂\…的结果为A.-bB.2a-bC.b-2aD.bA.5-2B.1C.2 -5D.2 -111.下列二次根式中 ,是同类二次根式的是A.B J 出'冉三与屮页 c 迈匚与寸D2. J"® 二3. 当 X-謝.俺 |l-V (l + ^):得 4.若三角形的三边a?b?c 满足a 2-4a+4+ •=0,则笫三边c 的取值范围是5. 判断题⑴若•=玄则a - -定是 正数.()⑵若• =-a,则a 一定是负数.()(3)= n -3.14.()⑷•••(-5)2=52」:—— 一―1()乍、Qw ,■ -(V5 - \■ \''7 - <5.(5) ( )⑹当 a>1 时,|a-1|+ ' =2a-2.()(7)若 x=1,则 2x- ‘ " 一1 °' =2x-(x-2)=x+2=1+2=3.((10)'' ' =x+1.()⑴)=0.()(12)当 m>3 时,’ ''"-m=-3.( )6. 如果等式-=-x 成立,则x 的取值范围是7. 当 x _____ 时,W-h x' =x-1.8. 若 (兀 + 2〕=x+2,则 x __________ 9. 若 m<0,则 |m|+ '---------<A <2时,干--6A +1)10.当211. 若 x 与它的绝对值之和为零,则 二12. 当 a时,1、" -3a|=-4a.(8)若JOT)=冈工0,则x y 异号.((9)m<1 时,13.化简14. 若a<0,则化简' 的结果为15. ______________________________________ 化简-弭©7"的结果是16. ___________ 当 a 时,2M 2.f~217. _______________________________________ 若a<-3时,则[2-JU十心I等于18.计算19.已知: 2<x<4,化简寸+丨玄-、= ______________________21.比较大小:•-7 + 2宓22. 化简:* 1亠[=.[5+1的整数部分a,小数部分为b,则a=23. 设24. 先化简再求值:当a=9时,求a+一;一丄"从的值,甲乙两人的解答如下甲的解答为:原式=a+ '•■'=a+(1-a)=1;乙的解答为:原式=a+WU「" =a+(a-1)=2a-1=17.两种解答中,_______ 的解答是错误的,错误的原因是未能正确地运用二次根次的性质:_______________25.把根号外的因式移动到根号内:27. 当-1<x<0 时,化简A+V1+2A' + A = ________________ .28. 小明和小芳解答题目:”先化简下式,再求值:a+ I ',其中a=9"时,得出了不同的答案.小明的解答是:原式:=a+ ■' =a+(1- a)=1;小芳的解答是:原式=a+ =a+(a-1)=2a-1=2 x 9-1=17.(1) _______ 的解答是错误的.(2) 错误的解答错在未能正确运用二次根式的性质:___________三、解答题(共26题,题分合计205分)1.已知a为实数,化简1.a = -J一b2.已知^ ', 爲+ 2,求盘十占十-的值.茁'+ 2血+护3.化简求值::'、-'汀.其中a*:;+1,b= :•-'-1.4.玄亠定一占时,求代数式:…「一/ ■■■■ ■ 3的值.5. 计算:」一I + •+:6.<45 + + <78-^/80 4- J(&_為丄计算:-7.8.)【x _ 4先化简再求值-■- ■ ■,其中x=2+1_化简求值:(角煌川暮T,其中a=-Q)询9. 计算:宀10. 先化简后求值:x2- 2x - 3 宀9- -------- * ~;----7斗2 ; -r 一I •亠-其中x=11. 计算:12. 若」14.先化简后求值_V + J " — 1 -X一 J — 115.计算假设有一对亲兄弟,哥哥 26岁,弟弟25岁,现在哥哥乘以 0.6倍光速飞行的宇宙飞船作星际航行 .如果宇宙飞船作了五年的星际航行后回来(这五年指地球上的五年),即当弟弟13.已知,苗十应 ⑶ X+ •'(x<「)(4)--(0<x<y)16.化简⑴乂历-春2厲-計⑵尺叩(x<0)17.化简:(1):-肚(-2<x<4)18.化简:(1);」 几"-t 订-- ' (-1<a<2)(1<a<8)19.化简:(1) ;(0<x<1)(a<2b)-4X + 1 4-2|X -2|(-20.化简:(1)'-<x<2) + 4x + I + <4x 2 -12x + 9(^丄 -2 < x w 】)21.已知 3 - *+(a+b+6)2=0,求 a 2 2 的值.22.当,■-时,化简下式并求值:-x^jx 2 + a 223 Si .r - 5 - 2^, j - 5 + 2 H 求;- 2xy +23.24.若一—…■-,+ _「一 '■ 一八,求代数式一—'+「-超•一 :s -点的值. 25.根据大科学家爱因斯坦的相对论原理,当地球上的时间经过1秒钟时,在作星际飞行的宇宙飞船内经过了秒.(c 为光速,r 为飞船速度)30岁时,哥哥在宇宙飞船内度过了多少先化简后求值•,把年,年龄是多大?J 片-1 + J1 - JT + —26.若x、y为实数且y< 匚,化简|2y-1|二次根式的化简答案一、选择题(共11题,合计44分)1.16817 答案: C2.16818 答案: B3.16819 答案: A4.16820 答案: D5.16821 答案: A6.16822 答案: D7.16823 答案: A8.16824 答案: B9.16825 答案: D10.16826 答案::B11.8763 答案: C二、填空题(共28题,合计112 分)1.6297 答案:2占2.8765 答案:2-Va3.8772 答案:-a-24.8773 答案:1<c<55.16804 答案:(1)X ⑵X⑶V ⑷X6.16805 答案:x W 07.16806 答案:x > 18.16807 答案:x=-29.16808 答案:-m10.16809 答案::-3X2+7X-211.1681答案:-X12.16811 答案:aw 013.16812 答案:10= fl3114.16813 答案:1—a --------a(5) V (6)V (7)X (8) V (9) X (10) X ⑴)X(12) V15.16814 答案:(5 - -5 16.16815 答案:av 017.16816 答案:-3-a18.6298 答案:V2-119.6317 答案: 420.6318 答案:-x21.6330 答案:<22.6331 答案:v,(6 +123.6400 答案:R K亦-1a - 2rb =-----224.8774 答案:甲;打汀 _ ”严25.6328 答案:J3a(b+ <026.6332 答案:—2 —27.8769 答案: 128.16835 答案:⑴小明(2),=|a|=--a (a v0)三、解答题(共26题,合计205分)1.8781 答案:(1-a厂2.6352 答案: 43.6355 答案:4.6359 答案:1 + V2-V35.6360 答案: 46.6369 答案:4>/217.6371 答案:132 +V28.6372 答案:29.6374 答案:60 + >^2完美WORD 格式10.6376 答案:少-12rz 11.6377 答案:V2 ~T12.6386 答案: 613.6399 答案: 原式盘丄-书-近-羽-A /2 = -2^/2 < 0「.原式■ ° +丄--aa=2V3-2J2也可这样运算:原式= |2^|-|-2V2|= 2^3 -厶伍5 + 2^521.16834 答案:12、、14.6401 答案: 15.16827 答案: 4(1)4-x (2)2 a-5⑶16.16828 答案: (1)1⑵-517.16829 答案: (1)2-2x(2)2x-118.16830 答案:(1)3 (2)7-a⑴:+ -V3⑵-19.16831 答案:1 -X20.16832 答案:(1)3 (2)4(4)y 2-x 2完美WORD格式22.6381答案:原式23.8782 答案:' ' 124.6333 答案:1525.6373 答案:解:根据题意得,,所以地球上的1秒钟,宇宙飞船内度过了Ji-(—)2 nTTTBT7脑"2丫U 秒,计算得5秒,所以地球上5年,相当于这个宇宙飞船内的4年.因此,弟弟30岁时,即地球上过了5年,而宇宙飞船内度过了4年,所以哥哥回来后是30岁.26.8783 答案:|2y-1|=1-2y。
二次根式的计算与化简练习题(提高篇)1、已知m是 2 的小数部分,求m21 2 的值。
m22、化简( 1)(1 x)2 x2 8x 16 ( 2)132x 3 2xxx 250 2 2 x( 3)4a 4b( a b) 3a3a2b(a0)3、当 x 2 3 时,求(7 4 3) x2(23)x 3 的值。
4、先化简,再求值:2a 3ab3b27a3b3 2ab3ab ,其中 a1, b 3 。
6 4 96、已知aa2 2a 1 a 1 4a2 16 4a2 8a2 1,先化简2 a a2 2a 1 a2 4a 4,再求值。
a a 27、已知: a1 ,b 1 ,求a2 b 22 2a 的值。
2 3 3 2b 9、已知0x 3 ,化简x2x26x910、已知a 2 3 ,化简求值1 2aa2 a 2 2a 1 1a 1 a2 a a11、①已知x23, y 23, 求: x2xy y2的值。
x 2②已知 x 2 1 ,求 x 1的值.x 1③ 4 y 2 6 y2 ( 7 x 5 x 2 ) ④ ( 3a 3 27a 3 ) ax 9 312、计算及化简:22⑴.11aaa a⑷.a 2ab baa ba ab ba b a b 2 ab⑵.bababaabbab13、已知: a1 1 10 ,求 a 2a12a的值。
x 3yx 291的值。
14、已知20,求x x 3 y 1二次根式提高测试一、判断题:(每小题 1 分,共 5 分)1. ( 2)2ab =- 2ab. ()2.3- 2 的倒数是3+ 2.() 3. (x 1)2 = ( x 1) 2. ()1 a 3b 、2 a4.ab 、 3 xb是同类二次根式.()1x 25. 8x,3 , 9 都不是最简二次根式. ()二、填空题:(每小题 2 分,共 20 分)16.当 x__________时,式子x 3有意义.15 2 10257.化简-827 ÷ 12 a 3 = _.8.a - a21的有理化因式是 ____________ .9.当 1< x <4 时, |x - 4| + x 2 2x 1= ________________.10.方程2( x -1)= x + 1 的解是 ____________.ab c 2 d 211.已知 a 、 b 、 c 为正数, d 为负数,化简abc 2d 2 = ______.1112.比较大小:- 2 7_________ -4 3.13.化简: (7- 5 2)2000 (·- 7-52)2001= ______________.14.若 x 1 +y3= 0,则 (x - 1)2+(y + 3)2= ____________.15. x , y 分别为 8- 11的整数部分和小数部分,则 2xy - y2= ____________.三、选择题:(每小题 3 分,共 15 分)16.已知 x33x 2=- x x3,则( )(A )x ≤ 0( B ) x ≤- 3( C ) x ≥- 3( D )- 3≤ x ≤017.若 x < y <0,则x22xy y2 + x 22xy y 2 = ()(A )2x( B )2y (C )- 2x ( D )- 2y( x 1 )2 4(x1 )2 418.若 0< x <1,x -x 等于 ⋯⋯⋯⋯⋯⋯⋯⋯()22(A ) x(B )- x(C )- 2x( D ) 2xa 319.化a(a < 0)得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A )a( B )-a( C )-a( D )a20.当 a <0, b < 0 ,- a + 2ab- b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A ) ( ab)2(B )-( ab )2 (C )(ab ) 2( D )(ab) 2四、在 数范 内因式分解: (每小 3 分,共 6 分)21. 9x 2- 5y 2 ;22. 4x 4- 4x 2+ 1.五、 算 :(每小 6 分,共 24 分)23.(532)(5 32);5 4224. 411 - 117 - 37 ;n ab n m n25.( a2m-mmn +mn)÷ a2b2 m ;26.(a +b aba b )÷(aab b +bab a -a bab )( a≠b).(六)求值:(每小题 7 分,共 14 分)3 2 3 2 x3 xy 227.已知 x=3 2, y= 3 2 ,求x4y 2x3 y2 x2 y3 的值.x 2x x2 a2 128.当 x= 1- 2 时,求 x2 a2 x x2 a2 + x2 x x2 a2 +x2 a2 的值.七、解答题:(每小题 8 分,共 16 分)1 1 1 129.计算( 2 5+ 1)(12 + 23 + 34 ++ 99 100 ).1 x2 y x 2 y30.若 x, y 为实数,且 y=14x +4x 1 + 2 y x -yx的值..求《二次根式》提高测试(一)判断题: (每小题 1 分,共 5 分)1. ( 2) 2ab =- 2 ab . ()【提示】( 2)2 = | -2| = 2.【答案】×.2. 3 - 2 的倒数是 3 + 2.()【提示】1 2 = 32=-( 3 +2).【答3 3 4案】×. 1)2 x 1)2. (x 1) 2 = ( x . ( )【提示】 (x 1) 2 = | x - 1| , ( = - 1 3x ( x ≥1).两式相等,必须 x ≥ 1.但等式左边 x 可取任何数. 【答案】×. 4. ab 、 1a 3b 、 2a是同类二次根式.()【提示】 1a 3b 、 2 a3 x b3x b化成最简二次根式后再判断. 【答案】√.5. 8x ,1, 9 x 2 都不是最简二次根式. ()9 x 2 是最简二次根式.【答3案】×.(二)填空题: (每小题 2 分,共 20 分)6.当 x__________ 时,式子1 有意义.【提示】x 何时有意义 x ≥ 0.分式何时x3有意义分母不等于零. 【答案】 x ≥ 0 且 x ≠ 9.7.化简- 152 10 ÷25 = _.【答案】- 2a a .【点评】注意除法法则和积的82712a 3算术平方根性质的运用.8. a - a 21 的有理化因式是 ____________ .【提示】( a - a2 1 )( ________)=a 2- ( a 2 1) 2 . a + a 2 1 .【答案】 a + a 2 1 ..当< < 4 时,- +x22 x1 = ________________ .91 x| x 4|【提示】 x 2- 2x + 1=( ) 2, x - 1.当 1 <x < 4 时, x - 4, x -1 是正数还是负数x - 4 是负数, x -1 是正数.【答案】 3. 10.方程 2 (x - 1)= x + 1 的解是 ____________ .【提示】把方程整理成 ax = b 的形式后, a 、 b 分别是多少2 1 , 2 1.【答案】 x = 3+ 2 2 .11.已知 a 、b 、c 为正数, d 为负数,化简ab c 2 d 2 = ______.【提示】 c 2 d 2 =ab c 2d 2| cd| =- cd .【答案】 ab + cd .【点评】∵ ab = ( ab )2 ( ab > 0),∴ ab -c 2d 2=(ab cd )( ab cd ).12.比较大小:-1 _________- 1 .【提示】2 7 = 28 ,43 = 48 .2 7 4 3【答案】<.【点评】先比较 28 , 48 的大小,再比较 1 1的大小,最后 ,48 28 比较- 1 与- 1 的大小.284813.化简: (7-52 )2000·(-7-5 2 )2001=______________.【提示】 (- 7-5 2 )2001=(- 7- 5 2 )2000·( _________) [- 7- 5 2 . ] ( 7- 5 2 ) ·(- 7- 5 2 )= [1. ]【答案】- 7- 5 2 .【点 】注意在化 程中运用 的运算法 和平方差公式. 14.若 x 1 + y 3= 0, (x -1)2+(y + 3)2= ____________.【答案】 40.【点 】x 1 ≥0, y3 ≥ 0.当x1 + y 3=0 , x + 1=0, y - 3= 0.15. x , y 分 8- 11 的整数部分和小数部分,2xy - y 2= ____________. 【提示】 ∵3< 11 < 4,∴ _______< 8- 11 < __________.[4,5].由于 8- 11介于 4 与 5 之 , 其整数部分 x =小数部分y = [x = 4, y = 4- 11 ]【答案】 5. 【点 】 求二次根式的整数部分和小数部分 ,先要 无理数 行估算. 在明确了二次 根式的取 范 后,其整数部分和小数部分就不 确定了. (三) : (每小3 分,共 15 分)16.已知x 33x 2 =- x x3 , ⋯ ⋯⋯⋯⋯⋯()(A )x ≤ 0( B )x ≤- 3(C )x ≥- 3( D )- 3≤ x ≤ 0【答案】 D .【点 】本 考 的算 平方根性 成立的条件,( A )、( C )不正确是因 只考 了其中一个算 平方根的意 .17.若 x < y < 0,x 22xy y 2 + x 2 2xy y2=⋯ ⋯⋯⋯⋯⋯⋯⋯⋯()(A )2x ( B )2y(C )- 2x( D )- 2y【提示】∵x < y < 0,∴ x - y < 0, x + y < 0.∴x 2 2xy y 2 = ( x y)2 =| x -y| = y - x .x 2 2xy y 2 = ( x y) 2 = | x + y| =- x -y .【答案】 C .【点 】本 考 二次根式的性a 2 = | a| .18.若 0< x < 1,(x1 )2 4 - ( x 1 )2 4 等于 ⋯⋯⋯⋯⋯⋯⋯⋯( )x x(A )2(B )-2( C )- 2xxx【提示】 (x -1 2+4= (x + 1 21 2= (x -1 x )x ) , (x + x ) - 4 x( D ) 2x)2.又∵0< x < 1,∴ x + 1>0 ,x - 1< 0.【答案】 D .x x【点 】本 考 完全平方公式和二次根式的性 . ( A )不正确是因 用性 没有注意当 0< x < 1 , x - 1< 0.x19.化a 3( a < 0 ) 得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()a(A ) a(B )- a( C )-a( D ) a【提示】a 3 = a a 2 = a · a 2 = | a|a =- a a .【答案】 C .20.当 a <0, b < 0 ,- a + 2 ab -b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A ) b ) 2 ( B )- ( a b) 2 ( C )( a b) 2( D )( ab ) 2( a【提示】∵ a < 0, b < 0,∴ - a > 0,- b > 0.并且- a = (a )2 ,-b = ( b)2 ,ab = ( a)( b) .【答案】 C .【点 】本 考 逆向运用公式( a ) 2 = a ( a ≥ 0)和完全平方公式.注意( A )、( B )不正确是因为 a < 0, b < 0 时, a 、 b 都没有意义. (四)在实数范围内因式分解: (每小题 3 分,共 6 分)21.9x 2-5y 2;【提示】用平方差公式分解, 并注意到 5y 2= ( 5y) 2 .【答案】( 3x + 5 y ) ( 3x - 5 y ).22. 4x 4- 4x 2+1.【提示】先用完全平方公式,再用平方差公式分解. 【答案】 ( 2 x +1)2( 2 x - 1)2. 6 分,共 24 (五)计算题: (每小题 分)23.( 5 3 2 )( 5 3 2 );【提示】将53 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式= ( 5 3 )2- ( 2) 2= 5 - 2 15 + - = - 15 .3 2 6 224. 5 - 4 - 2 ;【提示】先分别分母有理化,再合并同类二次根11 1177 43式.【解】原式=5( 411) - 4( 11 7) - 2(3 7 )= 4+ 11 -11 - 7 - 3+16 11 11 79 7 7 = 1.25.( a2n - ab mn +nm)÷ a 2b 2n ;mmm nm【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=( a2n - ab mn +n m ) · 1 mm mmna 2b 2n= 1n m -1 mn m+ n m mb 2m nmab n ma 2b 2n n= 1 - 1 + 1= a 2ab 1 .b 22ba 2b 2ab a226.( a +bab)÷(a+ b - a b)(a ≠b ).abab b ab aab 【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=aab bab ÷ a a ( ab) b b ( a b ) (a b)( a b)==ab a b ÷a 2 a ab b ab a bab( a b )( a b · ab( a b )( a abab (a b)ab ( a b )( a b ) b 2 a 2 b 2a b )b ) =- ab .【点评】本题如果先分母有理化,那么计算较烦琐. (六)求值: (每小题 7 分,共 14 分)27.已知 x =32, y =3 2,求x 3 xy 2 x 2 y 3 的值.323 2x 4 y 2x 3 y 2 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵x =32=(32) 2 = 5+ 2 6 ,32y =3 2= ( 32) 2 = 5- 2 6 .32∴ x + y =10, x - y =4 6 , xy = 52-(26 )2=1.x 3xy 2x 2 y 3 = x( x y)( x y) = x y = 46 = 26 .x 4 y 2x 3 y 2 x 2 y( x y) 2 xy( x y) 1 10 5【点评】 本题将 x 、y 化简后, 根据解题的需要, 先分别求出 “ x + y ”、“ x - y ”、“ xy ”.从而使求值的过程更简捷.28.当 x = 1-2 时,求x 2a 2x a 2 + 2xx 2 a 2 +1 的值.x x 2x 2x x 2 a 2 x 2 a 2【提示】注意: x 2+ a 2 = ( x 2 a 2 ) 2 ,∴ x 2+ a 2- x x 2 a 2 = x 2 a 2( x 2 a 2 - x ),x 2- x x 2 a 2 =- x ( x 2a 2- x ).【解】原式=x-2 xx 2 a 21x 2 a 2 ( x 2 a 2x( x2a 2+x 2 a 2x)x)= x 2x 2a 2 (2x x 2a 2 ) x( x 2a 2x)x x 2a 2 ( x 2a 2x)=x 2 2x x 2a 2 ( x 2 a 2 ) 2 x x 2 a 2 x 2=( x 2 a 2 )2 x x 2 a 2 =x x 2 a 2 ( x 2 a 2 x)x x 2a 2 ( x 2 a 2x)x 2 a 2 ( x 2 a 2x)x x 2a 2 ( x 2 a 2 x)= 1.当 x =1- 2 时,原式=1 1 =- 1-2 .【点评】本题如果将前两个“分式”x2分拆成 两个“分式” 之差,那 么化简会更简 便.即原 式=x-x 2 a 2 ( x 2 a 21x)2x x 2 a 2+22x( x 2 a 2 x)x a= (11 ) -( x 2 1 x1) +1 a2 = 1. x 2a 2 x x 2 a 2a 2 xx 2 x七、解答题: (每小题 8 分,共 16 分)29.计算( 2 5 + 1)( 1+1+1+ +1).23991 234100【提示】先将每个部分分母有理化后,再计算.【解】原式=( 25 + 1)( 2 1 + 3 2 + 43+ + 100 99 ) 2 1 3 2 4 3100 99= ( 2 5 + 1 ) [ ( 2 1 ) + ( 3 2 ) + ( 4 3 ) + + ( 10099 ) ]=( 2 5 + 1)( 100 1)= 9( 2 5 + 1).【点评】本题第二个括号内有 99 个不同分母,不可能通分.这里采用的是先分母有理 化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消. 这种方法也叫做裂项相消法.30.若 x ,y 为实数,且 y = 14x + 4x 1 + 1.求 x 2 y - x2 y 的2 y x y x值.1 4 x 0x14 ]【提示】要使 y 有意义,必须满足什么条件[] 你能求出 x ,y 的值吗 [4x 1 0.y 1 .21 4xx14 ∴ x = 1 .当 x = 1时, y = 1.【解】要使 y 有意义,必须 [,即4x 1 0x 1 . 4424又∵x 2y - x y =(xy 2 -xy2y x y2y)()xxy x = | xy| - | xy| ∵ x = 1, y = 1,∴x < y .yxyx42yx∴原式= xy - y x= 2 x 当 x = 1, y = 1时,yxxyy4 21原式= 2 4 =2 .【点评】解本题的关键是利用二次根式的意义求出x 的值,进12而求出 y 的值.。
二次根式的计算与化简练习题(提高篇)1、已知m是 2 的小数部分,求m21 2 的值。
m22、化简( 1)(1 x)2 x2 8x 16 ( 2)132x 3 2xxx 250 2 2 x( 3)4a 4b( a b) 3a3a2b(a0)3、当 x 2 3 时,求(7 4 3) x2(23)x 3 的值。
4、先化简,再求值:2a 3ab3b27a3b3 2ab3ab ,其中 a1, b 3 。
6 4 96、已知aa2 2a 1 a 1 4a2 16 4a2 8a2 1,先化简2 a a2 2a 1 a2 4a 4,再求值。
a a 27、已知: a1 ,b 1 ,求a2 b 22 2a 的值。
2 3 3 2b 9、已知0x 3 ,化简x2x26x910、已知a 2 3 ,化简求值1 2aa2 a 2 2a 1 1a 1 a2 a a11、①已知x23, y 23, 求: x2xy y2的值。
x 2②已知 x 2 1 ,求 x 1的值.x 1③ 4 y 2 6 y2 ( 7 x 5 x 2 ) ④ ( 3a 3 27a 3 ) ax 9 312、计算及化简:22⑴.11aaa a⑷.a 2ab baa ba ab ba b a b 2 ab⑵.bababaabbab13、已知: a1 1 10 ,求 a 2a12a的值。
x 3yx 291的值。
14、已知20,求x x 3 y 1二次根式提高测试一、判断题:(每小题 1 分,共 5 分)1. ( 2)2ab =- 2ab. ()2.3- 2 的倒数是3+ 2.() 3. (x 1)2 = ( x 1) 2. ()1 a 3b 、2 a4.ab 、 3 xb是同类二次根式.()1x 25. 8x,3 , 9 都不是最简二次根式. ()二、填空题:(每小题 2 分,共 20 分)16.当 x__________时,式子x 3有意义.15 2 10257.化简-827 ÷ 12 a 3 = _.8.a - a21的有理化因式是 ____________ .9.当 1< x <4 时, |x - 4| + x 2 2x 1= ________________.10.方程2( x -1)= x + 1 的解是 ____________.ab c 2 d 211.已知 a 、 b 、 c 为正数, d 为负数,化简abc 2d 2 = ______.1112.比较大小:- 2 7_________ -4 3.13.化简: (7- 5 2)2000 (·- 7-52)2001= ______________.14.若 x 1 +y3= 0,则 (x - 1)2+(y + 3)2= ____________.15. x , y 分别为 8- 11的整数部分和小数部分,则 2xy - y2= ____________.三、选择题:(每小题 3 分,共 15 分)16.已知 x33x 2=- x x3,则( )(A )x ≤ 0( B ) x ≤- 3( C ) x ≥- 3( D )- 3≤ x ≤017.若 x < y <0,则x22xy y2 + x 22xy y 2 = ()(A )2x( B )2y (C )- 2x ( D )- 2y( x 1 )2 4(x1 )2 418.若 0< x <1,x -x 等于 ⋯⋯⋯⋯⋯⋯⋯⋯()22(A ) x(B )- x(C )- 2x( D ) 2xa 319.化a(a < 0)得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A )a( B )-a( C )-a( D )a20.当 a <0, b < 0 ,- a + 2ab- b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A ) ( ab)2(B )-( ab )2 (C )(ab ) 2( D )(ab) 2四、在 数范 内因式分解: (每小 3 分,共 6 分)21. 9x 2- 5y 2 ;22. 4x 4- 4x 2+ 1.五、 算 :(每小 6 分,共 24 分)23.(532)(5 32);5 4224. 411 - 117 - 37 ;n ab n m n25.( a2m-mmn +mn)÷ a2b2 m ;26.(a +b aba b )÷(aab b +bab a -a bab )( a≠b).(六)求值:(每小题 7 分,共 14 分)3 2 3 2 x3 xy 227.已知 x=3 2, y= 3 2 ,求x4y 2x3 y2 x2 y3 的值.x 2x x2 a2 128.当 x= 1- 2 时,求 x2 a2 x x2 a2 + x2 x x2 a2 +x2 a2 的值.七、解答题:(每小题 8 分,共 16 分)1 1 1 129.计算( 2 5+ 1)(12 + 23 + 34 ++ 99 100 ).1 x2 y x 2 y30.若 x, y 为实数,且 y=14x +4x 1 + 2 y x -yx的值..求《二次根式》提高测试(一)判断题: (每小题 1 分,共 5 分)1. ( 2) 2ab =- 2 ab . ()【提示】( 2)2 = | -2| = 2.【答案】×.2. 3 - 2 的倒数是 3 + 2.()【提示】1 2 = 32=-( 3 +2).【答3 3 4案】×. 1)2 x 1)2. (x 1) 2 = ( x . ( )【提示】 (x 1) 2 = | x - 1| , ( = - 1 3x ( x ≥1).两式相等,必须 x ≥ 1.但等式左边 x 可取任何数. 【答案】×. 4. ab 、 1a 3b 、 2a是同类二次根式.()【提示】 1a 3b 、 2 a3 x b3x b化成最简二次根式后再判断. 【答案】√.5. 8x ,1, 9 x 2 都不是最简二次根式. ()9 x 2 是最简二次根式.【答3案】×.(二)填空题: (每小题 2 分,共 20 分)6.当 x__________ 时,式子1 有意义.【提示】x 何时有意义 x ≥ 0.分式何时x3有意义分母不等于零. 【答案】 x ≥ 0 且 x ≠ 9.7.化简- 152 10 ÷25 = _.【答案】- 2a a .【点评】注意除法法则和积的82712a 3算术平方根性质的运用.8. a - a 21 的有理化因式是 ____________ .【提示】( a - a2 1 )( ________)=a 2- ( a 2 1) 2 . a + a 2 1 .【答案】 a + a 2 1 ..当< < 4 时,- +x22 x1 = ________________ .91 x| x 4|【提示】 x 2- 2x + 1=( ) 2, x - 1.当 1 <x < 4 时, x - 4, x -1 是正数还是负数x - 4 是负数, x -1 是正数.【答案】 3. 10.方程 2 (x - 1)= x + 1 的解是 ____________ .【提示】把方程整理成 ax = b 的形式后, a 、 b 分别是多少2 1 , 2 1.【答案】 x = 3+ 2 2 .11.已知 a 、b 、c 为正数, d 为负数,化简ab c 2 d 2 = ______.【提示】 c 2 d 2 =ab c 2d 2| cd| =- cd .【答案】 ab + cd .【点评】∵ ab = ( ab )2 ( ab > 0),∴ ab -c 2d 2=(ab cd )( ab cd ).12.比较大小:-1 _________- 1 .【提示】2 7 = 28 ,43 = 48 .2 7 4 3【答案】<.【点评】先比较 28 , 48 的大小,再比较 1 1的大小,最后 ,48 28 比较- 1 与- 1 的大小.284813.化简: (7-52 )2000·(-7-5 2 )2001=______________.【提示】 (- 7-5 2 )2001=(- 7- 5 2 )2000·( _________) [- 7- 5 2 . ] ( 7- 5 2 ) ·(- 7- 5 2 )= [1. ]【答案】- 7- 5 2 .【点 】注意在化 程中运用 的运算法 和平方差公式. 14.若 x 1 + y 3= 0, (x -1)2+(y + 3)2= ____________.【答案】 40.【点 】x 1 ≥0, y3 ≥ 0.当x1 + y 3=0 , x + 1=0, y - 3= 0.15. x , y 分 8- 11 的整数部分和小数部分,2xy - y 2= ____________. 【提示】 ∵3< 11 < 4,∴ _______< 8- 11 < __________.[4,5].由于 8- 11介于 4 与 5 之 , 其整数部分 x =小数部分y = [x = 4, y = 4- 11 ]【答案】 5. 【点 】 求二次根式的整数部分和小数部分 ,先要 无理数 行估算. 在明确了二次 根式的取 范 后,其整数部分和小数部分就不 确定了. (三) : (每小3 分,共 15 分)16.已知x 33x 2 =- x x3 , ⋯ ⋯⋯⋯⋯⋯()(A )x ≤ 0( B )x ≤- 3(C )x ≥- 3( D )- 3≤ x ≤ 0【答案】 D .【点 】本 考 的算 平方根性 成立的条件,( A )、( C )不正确是因 只考 了其中一个算 平方根的意 .17.若 x < y < 0,x 22xy y 2 + x 2 2xy y2=⋯ ⋯⋯⋯⋯⋯⋯⋯⋯()(A )2x ( B )2y(C )- 2x( D )- 2y【提示】∵x < y < 0,∴ x - y < 0, x + y < 0.∴x 2 2xy y 2 = ( x y)2 =| x -y| = y - x .x 2 2xy y 2 = ( x y) 2 = | x + y| =- x -y .【答案】 C .【点 】本 考 二次根式的性a 2 = | a| .18.若 0< x < 1,(x1 )2 4 - ( x 1 )2 4 等于 ⋯⋯⋯⋯⋯⋯⋯⋯( )x x(A )2(B )-2( C )- 2xxx【提示】 (x -1 2+4= (x + 1 21 2= (x -1 x )x ) , (x + x ) - 4 x( D ) 2x)2.又∵0< x < 1,∴ x + 1>0 ,x - 1< 0.【答案】 D .x x【点 】本 考 完全平方公式和二次根式的性 . ( A )不正确是因 用性 没有注意当 0< x < 1 , x - 1< 0.x19.化a 3( a < 0 ) 得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()a(A ) a(B )- a( C )-a( D ) a【提示】a 3 = a a 2 = a · a 2 = | a|a =- a a .【答案】 C .20.当 a <0, b < 0 ,- a + 2 ab -b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A ) b ) 2 ( B )- ( a b) 2 ( C )( a b) 2( D )( ab ) 2( a【提示】∵ a < 0, b < 0,∴ - a > 0,- b > 0.并且- a = (a )2 ,-b = ( b)2 ,ab = ( a)( b) .【答案】 C .【点 】本 考 逆向运用公式( a ) 2 = a ( a ≥ 0)和完全平方公式.注意( A )、( B )不正确是因为 a < 0, b < 0 时, a 、 b 都没有意义. (四)在实数范围内因式分解: (每小题 3 分,共 6 分)21.9x 2-5y 2;【提示】用平方差公式分解, 并注意到 5y 2= ( 5y) 2 .【答案】( 3x + 5 y ) ( 3x - 5 y ).22. 4x 4- 4x 2+1.【提示】先用完全平方公式,再用平方差公式分解. 【答案】 ( 2 x +1)2( 2 x - 1)2. 6 分,共 24 (五)计算题: (每小题 分)23.( 5 3 2 )( 5 3 2 );【提示】将53 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式= ( 5 3 )2- ( 2) 2= 5 - 2 15 + - = - 15 .3 2 6 224. 5 - 4 - 2 ;【提示】先分别分母有理化,再合并同类二次根11 1177 43式.【解】原式=5( 411) - 4( 11 7) - 2(3 7 )= 4+ 11 -11 - 7 - 3+16 11 11 79 7 7 = 1.25.( a2n - ab mn +nm)÷ a 2b 2n ;mmm nm【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=( a2n - ab mn +n m ) · 1 mm mmna 2b 2n= 1n m -1 mn m+ n m mb 2m nmab n ma 2b 2n n= 1 - 1 + 1= a 2ab 1 .b 22ba 2b 2ab a226.( a +bab)÷(a+ b - a b)(a ≠b ).abab b ab aab 【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=aab bab ÷ a a ( ab) b b ( a b ) (a b)( a b)==ab a b ÷a 2 a ab b ab a bab( a b )( a b · ab( a b )( a abab (a b)ab ( a b )( a b ) b 2 a 2 b 2a b )b ) =- ab .【点评】本题如果先分母有理化,那么计算较烦琐. (六)求值: (每小题 7 分,共 14 分)27.已知 x =32, y =3 2,求x 3 xy 2 x 2 y 3 的值.323 2x 4 y 2x 3 y 2 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵x =32=(32) 2 = 5+ 2 6 ,32y =3 2= ( 32) 2 = 5- 2 6 .32∴ x + y =10, x - y =4 6 , xy = 52-(26 )2=1.x 3xy 2x 2 y 3 = x( x y)( x y) = x y = 46 = 26 .x 4 y 2x 3 y 2 x 2 y( x y) 2 xy( x y) 1 10 5【点评】 本题将 x 、y 化简后, 根据解题的需要, 先分别求出 “ x + y ”、“ x - y ”、“ xy ”.从而使求值的过程更简捷.28.当 x = 1-2 时,求x 2a 2x a 2 + 2xx 2 a 2 +1 的值.x x 2x 2x x 2 a 2 x 2 a 2【提示】注意: x 2+ a 2 = ( x 2 a 2 ) 2 ,∴ x 2+ a 2- x x 2 a 2 = x 2 a 2( x 2 a 2 - x ),x 2- x x 2 a 2 =- x ( x 2a 2- x ).【解】原式=x-2 xx 2 a 21x 2 a 2 ( x 2 a 2x( x2a 2+x 2 a 2x)x)= x 2x 2a 2 (2x x 2a 2 ) x( x 2a 2x)x x 2a 2 ( x 2a 2x)=x 2 2x x 2a 2 ( x 2 a 2 ) 2 x x 2 a 2 x 2=( x 2 a 2 )2 x x 2 a 2 =x x 2 a 2 ( x 2 a 2 x)x x 2a 2 ( x 2 a 2x)x 2 a 2 ( x 2 a 2x)x x 2a 2 ( x 2 a 2 x)= 1.当 x =1- 2 时,原式=1 1 =- 1-2 .【点评】本题如果将前两个“分式”x2分拆成 两个“分式” 之差,那 么化简会更简 便.即原 式=x-x 2 a 2 ( x 2 a 21x)2x x 2 a 2+22x( x 2 a 2 x)x a= (11 ) -( x 2 1 x1) +1 a2 = 1. x 2a 2 x x 2 a 2a 2 xx 2 x七、解答题: (每小题 8 分,共 16 分)29.计算( 2 5 + 1)( 1+1+1+ +1).23991 234100【提示】先将每个部分分母有理化后,再计算.【解】原式=( 25 + 1)( 2 1 + 3 2 + 43+ + 100 99 ) 2 1 3 2 4 3100 99= ( 2 5 + 1 ) [ ( 2 1 ) + ( 3 2 ) + ( 4 3 ) + + ( 10099 ) ]=( 2 5 + 1)( 100 1)= 9( 2 5 + 1).【点评】本题第二个括号内有 99 个不同分母,不可能通分.这里采用的是先分母有理 化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消. 这种方法也叫做裂项相消法.30.若 x ,y 为实数,且 y = 14x + 4x 1 + 1.求 x 2 y - x2 y 的2 y x y x值.1 4 x 0x14 ]【提示】要使 y 有意义,必须满足什么条件[] 你能求出 x ,y 的值吗 [4x 1 0.y 1 .21 4xx14 ∴ x = 1 .当 x = 1时, y = 1.【解】要使 y 有意义,必须 [,即4x 1 0x 1 . 4424又∵x 2y - x y =(xy 2 -xy2y x y2y)()xxy x = | xy| - | xy| ∵ x = 1, y = 1,∴x < y .yxyx42yx∴原式= xy - y x= 2 x 当 x = 1, y = 1时,yxxyy4 21原式= 2 4 =2 .【点评】解本题的关键是利用二次根式的意义求出x 的值,进12而求出 y 的值.。