《纳米材料基础与应用》第8章-纳米结构的制备与特性
- 格式:ppt
- 大小:5.49 MB
- 文档页数:75
纳米材料结构与性能摘要纳米材料具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。
纳米材料的应用前景十分广阔。
本文简要介绍了纳米材料在结构与性能方面的一些独特的性质,包括其物理效应以及物理化学性质。
关键字:纳米材料,效应,特性1.纳米材料纳米材料是指特征尺寸在纳米数量级(通常指1~100 nm)的极细颗粒组成的固体材料。
从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。
通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。
从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。
一般零维纳米材料有纳米颗粒、量子点等,一维纳米材料有纳米线、纳米棒、纳米管、纳米带等,二维纳米材料主要是纳米薄膜。
实际研究当中还有一些材料比如象介孔材料、多孔材料、以及具有特殊结构的材料,它们整体在三维方向都超过了纳米范围,但是它们都是有纳米材料构成,并且具有纳米材料的性质,因此由纳米材料组成的块体材料也属于纳米材料的范围[1]。
2.纳米材料的微观结构纳米级的颗粒是由数目极少的原子或分子组成的原子群或分子群,是一种典型的介观系统。
纳米晶粒内部的微观结构与粗晶材料基本相同,从结构上看,它是由两种组元构成的,即材料的体相组元晶体原子和界面组元晶界。
纳米材料突出的结构特征是晶界原子的比例很大,当晶粒尺寸为10 nm 时,一个金属纳米晶内的界面可达6×1025 m2,晶界原子达15% ~50%[2]。
目前很难用一个统一的模型来描述纳米晶界的微观结构,其原因在于纳米材料中的晶界结构相当复杂,若是常规材料,截面应该是一个完整的晶体结构,但对于纳米晶来说,由于晶粒尺寸小,界面组元在整个材料中所占的比例极大,晶界缺陷所占的体积比也相当大,尽管每个单独的分界面可能具有一个二维局部或局域的有序结构,但从一个局部界面到另一个局部界面的周期不同,由所有这样的界面原子组成的界面,其原子排列方式均不同。
简述纳米材料的制备及其性能表征一、前言纳米技术是在0.1~100nm尺寸空间内研究电子、原子和分子运动规律和特性的科学技术。
纳米微粒是指尺寸介于1~100nm之间的金属或半导体的细小微粒。
纳米微粒所具有的特殊结构层次赋予了它许多特殊的性质和功能,如表面效应,小尺寸效应、量子尺寸效应、宏观量子隧道效应等。
这一系列新颖的物理化学特性使它在众多领域,特别是光、电、磁、催化等方面有着重大的应用价值。
纳米材料是纳米科技的一个分支,它是纳米科技的一个分支,它是纳米技术发展的基础。
科学家们正致力于研究对纳米材料的组成、结构、形态、尺寸、排列等的控制,以制备符合各种预期功能的纳米材料。
纳米材料的制备方法有很多,制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集形成微粒,并控制微粒的生长,使其维持在纳米尺寸。
二、纳米材料制备方法简述(一)传统的物理方法1.粉碎法粉碎法制备纳米材料属于物理方法,主要包括低温粉碎法,超声粉碎法,爆炸法,机械球磨法等,这些方法操作简单成本低,但产品纯度不高,颗粒分布不均匀,形状难以控制。
2.凝聚法凝聚法制备纳米材料也是属于一种物理方法,主要包括真空蒸发凝聚和等离子体蒸发凝聚(二)传统的化学法1.气相沉积法该法是利用挥发性金属化合物蒸气的化学反应来合成所需物质的方法,它的优点主要在于:①金属化合物原料具有挥发性,容易提纯,而且生成粉料不需进行粉碎,因而生成物纯度高;②生成颗粒的分散性好;③控制反应条件可以得到颗粒直径分布范围较窄的超微细粉;④容易控制气氛;⑤特别适合制备具有某些特别用途的碳、氮、硼化合物超细微粉。
2.化学沉淀法沉淀法主要包括共沉淀法、均匀沉淀法、直接沉淀法等,这些方法都是利用生成沉淀的液相反应来制取。
3.胶体化学法该法首先采用离子交换法、化学絮凝法、溶胶法制得透明的阳性金属氧化物的水溶胶,以阴离子表面活性剂进行处理,然后用有机溶剂冲洗制得有机溶胶,经脱水和减压蒸馏在低于所有表面活性剂热分解温度的条件下制得无定型球形纳米颗粒。
纳米材料的特性及制备摘要:1992年国际纳米材料会议对纳米材料定义如下:一相任一维的尺寸达到100nm 以下的材料为纳米材料[1]。
因此,纳米材料是由尺度在1~100nm的微小颗粒组成的体系,由于独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,其领域涉及物理、化学、生物、微电子等诸多学科。
美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。
由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。
本文将对纳米材料的特性及其制备进行简单介绍。
关键词:纳米材料;材料特性;制备方法;应用前景近十几年来,随着高尖端技术的快速发展,关于高性能新型纳米材料的开发促使人们对固体微粒的制备、结构、性质和应用前景进行了广泛深入的研究随着物质的超微化,纳米材料表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的四大效应小尺寸效应、量子效应、表面效应和界面效应,使得其具有传统材料所不具备的一系列优异的力、磁、电、光学和化学等宏观特性,从而使其作为一种新型材料在宇航、电子、冶金、化工、生物和医学领域展现出广阔的应用前景,因而使得纳米材料的研究成为当今世界材料科学、凝聚态物理、化学等领域中的一个热门课题[2-4]。
一、纳米材料的特性纳米材料指的是颗粒尺寸为1~100nm 的粒子组成的新型材料。
由于它的尺寸小、比表面大及量子尺寸效应,它具有常规粗晶材料不具备的特殊性能。
(一)小尺寸效应:当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面层附近原子密度减小,导致声、光、电磁、热力学等待性呈现新的小尺寸效应。
例如:光吸收显著增加并产生吸收峰的等离子共振频移;磁有序态向磁无序态的转变;超导相向正常相的转变;声子谱发生改变等[5]。
第八章纳米结构与器件一、纳米结构概述二、人工纳米结构组装体系三、纳米结构和分子自组装体系四、厚膜模板合成纳米阵列五、介孔固体和介孔复合体六、MCM—41介孔分子筛七、单电子晶体管八、碳纳米管有序阵列体系的CVD合成一、纳米结构概述1. 定义纳米结构是以纳米尺度的物质单元为基础,按一定规律构筑或营造的一种新的体系。
该体系是当前从纳米材料领域派生出来的含有丰富科学内涵的一个重要分支科学。
2. 学科特点以原子为单元的有序排列,相对独立,有其自身的特点:①有许多奇特的理化现象和性质②与下一代量子结构器件密切相关3. 主要内容①纳米级物质单元:纳米微粒、团簇、人造超原子;纳米管、棒、丝、线、缆线、带状结构;纳米尺寸的空位、孔洞等②构筑过程中的驱动力:外因—人工纳米结构组装体系内因—纳米结构自组装体系;分子自组装体系。
4. 研究意义将对于纳米材料中的基本物理效应的认识不断引向深入①可研究单个纳米结构单元的行为、特性②可对纳米材料基元的表面进行控制,认识其间的耦合、协同效应可建立新原理,构筑纳米材料体系的理论框架,为自由利用纳米材料的理化特性、创造新的物质体系和量子器件打下基础。
二、人工纳米结构组装体系按人类的意志,利用物理、化学的方法,人为地将纳米尺度的物质单元按一定的规律组装、排列,构成一维、二维和三维的纳米阵列结构体系。
体系的特性①纳米微粒的特性:小尺寸、量子尺寸、表面效应等②组合后的新特性:量子耦合效应、协同效应等③可通过外场控制光、电、磁场操控体系的性能 纳米超微型器件 创造出新的物质体系:纳米结构、量子效应原理性器件等。
通过对纳米材料基本单元的行为、特性的研究、控制,可建立新的原理。
是纳米材料研究的前沿。
三、纳米结构和分子自组装体系1. 定义①纳米结构自组装体系是指通过弱的和较小方向性的非共价键(氢键、Van der Waals键和弱离子键)的协同作用把原子、离子或分子连接在一起,构筑成一个纳米结构或纳米结构的花样。
纳米材料的结构及其性能摘要:介绍了纳米材料的基本概念,纳米材料基本组成单位,四个效应及相关纳米材料的性能。
关键词:纳米材料结构性能20世纪90年代,以前人们从未探索过的纳米物质(Nanostructured materials)一跃成为科学家十分关注的研究对象。
新奇的纳米材料刚刚诞生才几年,以其所具有的独特性和新的规律,如材料尺度上的超细微化而产生的表面效应、体积效应、量子尺寸效应、量子隧道效应等及由这些效应所引起的诸多奇特性能,已引起世界各国科技界及各国政要的高度重视,使这一领域成为跨世界材料科学研究领域的"热点"。
1999年12月14日,美国总统科学和技术顾问委员会(PCAST)致函克林顿,极力推荐美国国家科学和技术委员会(NSTC)的提议,即从2001年度财政预算中开始实施"国家纳米技术推进计划"(National Nanotechnology Initiative--NNI),引起克林顿的高度重视。
2000年1月2日,克林顿签发执行令,决定将NNI 列为美国科技领域最优先发展的计划,并在2000年度财政预案中专为此项计划追加2.25亿美元,与2000年度相比增加了84%。
美国政府这一举措引起了世界范围的广泛关注,新一轮科技竞争已经在或明或暗的气氛中形成,纳米或纳米技术背后隐藏着的巨大商机开始显现,有资料表明,1999年全球纳米技术的生产值达500亿美元,预计到2010年将达到14400亿美元。
1、纳米和纳米材料纳米是一种长度的量度单位,1纳米(nm)等于10-9米,1nm的长度大约为4到5个原子排列起来的长度,或者说1nm相当于头发丝直径的10万分之一。
在英语里纳米用nano 表示,NANO一词源自拉丁前缀,矮小之意。
纳米结构(nanostructure)通常是指尺寸在100nm以下的微小结构。
纳米材料(nanostructure materials或nanomaterials)是纳米级结构材料的简称。
第八章纳米结构与器件一、纳米结构概述二、人工纳米结构组装体系三、纳米结构和分子自组装体系四、厚膜模板合成纳米阵列五、介孔固体和介孔复合体六、MCM—41介孔分子筛七、单电子晶体管八、碳纳米管有序阵列体系的CVD合成一、纳米结构概述1. 定义纳米结构是以纳米尺度的物质单元为基础,按一定规律构筑或营造的一种新的体系。
该体系是当前从纳米材料领域派生出来的含有丰富科学内涵的一个重要分支科学。
2. 学科特点以原子为单元的有序排列,相对独立,有其自身的特点:①有许多奇特的理化现象和性质②与下一代量子结构器件密切相关3. 主要内容①纳米级物质单元:纳米微粒、团簇、人造超原子;纳米管、棒、丝、线、缆线、带状结构;纳米尺寸的空位、孔洞等②构筑过程中的驱动力:外因—人工纳米结构组装体系内因—纳米结构自组装体系;分子自组装体系。
4. 研究意义将对于纳米材料中的基本物理效应的认识不断引向深入①可研究单个纳米结构单元的行为、特性②可对纳米材料基元的表面进行控制,认识其间的耦合、协同效应可建立新原理,构筑纳米材料体系的理论框架,为自由利用纳米材料的理化特性、创造新的物质体系和量子器件打下基础。
二、人工纳米结构组装体系按人类的意志,利用物理、化学的方法,人为地将纳米尺度的物质单元按一定的规律组装、排列,构成一维、二维和三维的纳米阵列结构体系。
体系的特性①纳米微粒的特性:小尺寸、量子尺寸、表面效应等②组合后的新特性:量子耦合效应、协同效应等③可通过外场控制光、电、磁场操控体系的性能 纳米超微型器件 创造出新的物质体系:纳米结构、量子效应原理性器件等。
通过对纳米材料基本单元的行为、特性的研究、控制,可建立新的原理。
是纳米材料研究的前沿。
三、纳米结构和分子自组装体系1. 定义①纳米结构自组装体系是指通过弱的和较小方向性的非共价键(氢键、V an der Waals键和弱离子键)的协同作用把原子、离子或分子连接在一起,构筑成一个纳米结构或纳米结构的花样。
第八章纳米材料的热学性能重点:纳米材料的热学性质及尺寸效应纳米晶体的熔化纳米晶体的热稳定性纳米晶体的点阵热力学性质纳米晶体的界面热力学重点材料的热性能是材料最重要的物理性能之一表现出一系列与块体材料明显不同的热学特性,如:比热容值升高热膨胀系数增大熔点降低纳米材料的热学性质与其晶粒尺寸直接相关Why?材料的热性能是材料最重要的物理性能之一8.1 纳米材料的热学性质及尺寸效应8.1.1纳米材料的热学性质纳米材料的熔点材料中分子、原子的运动行为决定材料的热性能当热载子(电子、声子及光子)的各种特征运动尺寸与材料尺度相当时,反映物质热性能的物性参数(如熔化温度、热容等)会体现出鲜明的尺寸依赖性。
特别是,低温下热载子的平均自由程将变长,使材料热学性质的尺寸效应更为明显。
8.1.2 纳米晶体的热容及特征温度热容是指材料分子或原子热运动的能量Q随温度T的变化率,与材料的结构密切相关。
在温度T时,材料的热容量C的表达式为:若加热过程中材料的体积不变,则测得的热容量为定容热容(CV);若加热过程中材料的压强不变,则测得的为定压热容(CP)。
晶界的过剩体积ΔV其中,V和V分别为完整单晶体和晶界的体积。
在纳米材料中,很大一部分原子处于晶界上,界面原子的最近邻原子构型与晶粒内部原子的显著不同,使晶界相对于完整晶格存在一定的过剩体积热力学计算表明:纳米晶的热容随着晶界过剩体积的增加而增加,因而亦随着晶界能的增加而增加。
由于高比例晶界组元的贡献,纳米材料的比热容会比其粗晶材料的高。
注意区分:纳米材料定容热容与比热容的特点2、德拜特征温度由固体物理,德拜特征温度的定义为:ωm表征晶格振动的最高频率;kB为玻尔兹曼常数。
纳米晶体材料的德拜特征温度θnc相对于粗晶的θc的变化率Δθnc可由下式给出:目前,对于纳米晶体材料特征温度的减小还无确切解释。
但可见,晶格振动达到最高频率变得容易了。
8.1.3纳米晶体的热膨胀热膨胀是指材料的长度或体积在不加压力时随温度的升高而变大的现象。
材料学中的纳米结构设计与制备材料学是研究材料的性质、结构、制备及其在工业、生产、生活应用中的一门学科。
在材料学中,纳米结构设计与制备是近些年来备受关注的热点话题之一。
一、纳米结构的概念纳米是一个长度单位,指的是纳米米,即10的负9次方米。
而纳米结构指的是尺寸在10纳米以下的结构体系。
纳米结构因其独特的力学、光学、电学、磁学、化学等性质,具有普通材料所不具备的很多优异性能,因此纳米材料在生物医学、太阳能转化、信息处理等领域表现出了广泛的前景。
二、纳米结构的制备方法纳米结构的制备方法可以分为物理法、化学法和生物法三类。
1. 物理法物理法是通过物理手段来制备纳米结构的方法,主要包括飘浮法、气相沉积法、离子束法、电泳法、等离子体法等。
这些方法可以使得实验者能够控制粒子、纳米线、纳米管等的形态、大小、结晶度,从而实现纳米结构的制备。
2. 化学法化学法是通过化学反应的方法来制备纳米结构,主要包括溶胶-凝胶法、化学气相沉积法、微波法、水热法、流体法等。
这些方法能够在表面修饰、纳米结构的大量制备、材料功能化等方面发挥重要作用。
3. 生物法生物法是利用生物体、细胞、酶等生物材料制备纳米结构的方法,主要包括细胞生物学法、生物分子法、基因工程法等。
三、纳米结构的设计纳米结构的设计是指通过对纳米结构的组成元素、形态、尺寸进行理性设计,从而得到具有特定性能的纳米材料。
纳米结构的设计必须考虑到材料的联系、结构和功能三个方面。
1. 材料联系纳米材料的组成元素之间必须有良好的联系和互作,从而使得材料能够发挥出其独特的性能和优势。
在设计中,需要考虑纳米材料中各个元素之间的协作性、相互作用、生物相容性等因素。
2. 结构设计结构设计是指指定特定的结构形式以实现所需的性能。
结构形式可以通过对纳米结构的形态和尺寸的调控来实现。
例如,通过调整纳米材料的尺寸,可以实现纳米材料的柔韧性、导电率、光学性能等方面的优化。
3. 功能设计功能设计是指设计纳米材料的特定性能和用途。