(完整版)高中数学函数知识点梳理复习资料,推荐文档
- 格式:pdf
- 大小:366.88 KB
- 文档页数:4
高三函数知识点百度文库高三函数知识点函数是数学中的基础概念之一,也是高三数学学习的重点内容之一。
在本文中,我将为大家介绍高三函数的知识点,帮助大家更好地理解和掌握这一部分内容。
一、函数的定义与性质函数是一种特殊的关系,它将一个集合的元素与另一个集合的元素进行对应。
函数通常表示为y=f(x),其中x是自变量,y是因变量,f表示函数关系。
函数的定义包括定义域、值域和对应关系等内容。
在高三数学中,我们还需要了解函数的性质,例如函数的奇偶性、单调性和周期性等。
这些性质可以通过函数的图像和导数等来进行判断和分析。
二、函数的基本类型1. 一次函数一次函数是函数的一种基本类型,其表达式为y=ax+b,其中a和b为常数。
一次函数的图像是一条直线,具有特定的斜率和截距,可以通过直线的性质来分析和解决问题。
2. 二次函数二次函数是函数的另一种常见类型,其表达式为y=ax^2+bx+c,其中a、b和c为常数,且a不等于0。
二次函数的图像是一条抛物线,可以通过抛物线的开口方向、顶点和对称轴等特点来进行分析和求解。
3. 反比例函数反比例函数是一种特殊的函数类型,其表达式为y=k/x,其中k 为常数。
反比例函数的图像是一条双曲线,可以通过双曲线的渐近线、图像的性质和特点来进行分析和解决问题。
4. 指数函数和对数函数指数函数和对数函数也是高三函数的重点内容。
指数函数的表达式为y=a^x,其中a为底数,x为指数。
对数函数是指数函数的反函数,表达式为y=logax,其中a为底数,x为真数。
指数函数和对数函数在很多实际问题中都有广泛的应用。
三、函数的应用函数在实际问题中的应用非常广泛。
例如,在经济学中,我们常常使用成本函数、收益函数和需求函数等来进行分析和决策;在物理学中,函数常常用于描述运动规律和物理量之间的关系;在生物学中,函数常常用于表示生物体的生长模型和代谢过程等。
在解决函数应用问题时,我们需要运用函数知识点和数学建模的方法,将实际问题转化为数学问题,通过函数的图像、性质和相关公式等来进行求解和分析。
一、函数的定义(概念)一、映射,一一映射,单射和满射1、单射:设f 是由集合A 到集合B 的映射,如果x,y∈A,且x≠y 等价于f(x)≠f(y),则称f 为由A 到B 的单射。
可理解成“源不同则像不同”。
2、满射:值域任何元素都有至少有一个变量与之对应。
形式化的定义如下: 若函数为满射,则对任意b ,存在a 满足f(a) = b 。
二、函数的三要素:定义域,值域,对应关系2.(2007广东理1)已知函数xx f -=11)(的定义域为M , g (x )=ln(1+x )的定义域为N ,则M ∩N =( )A .{x | x >-1}B .{x | x <1}C .{x |-1< x <1}D .φ26、(湖北文5分)5.函数0.5log (43)y x =-的定义域为( )A .3(,1)4B .3(,)4+∞C .(1,)+∞D .3(,1)(1,+)4∞sinx 3log 的定义域和值域 1)1(2+=-x x f ,求)(x f二、函数的单调性一、定义二、判断单调性的方法:(1)定义法:①在给定的区间上任取1x ,2x ,且设12x x <;② 作差;③定号下结论; (2)作商法:若()f x 为区间I 上的单调递增函数,1x 、2x 为区间内两任意值,那么有:1212()()0f f x x x x ->-或1212)[()()]0f f x x x x -->(★若()f x 为区间I 上的单调递减函数,1x 、2x 为区间内两任意值,那么有:1212()()0f f x x x x-<-或1212)[()()]0f f x x x x --<((3)复合函数的单调性:对于函数()y f u =和()u g x =,如果函数()u g x =在区间(,)a b 上具有单调性,当(),x a b ∈时(),u m n ∈,且函数()y f u =在区间(,)m n 上也具有单调性,则复合函数(())y f g x =在区间(),a b 具有单调性。
函数知识点总结高中一、函数的定义1. 函数的定义函数是自变量和因变量之间的一种映射关系。
一般地,如果对于集合A中的每一个元素x,在集合B中有唯一确定的元素y与之对应,则称y是x的函数值,称这种对应关系为函数,记作y=f(x)。
2. 函数的定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。
在定义函数的时候,需要确定函数的定义域和值域。
3. 函数的性质函数的性质包括奇偶性、周期性、单调性等,这些性质可以通过函数的图像来判断。
二、函数的图像1. 函数的图像函数的图像是函数在平面直角坐标系上的表示,对于一元函数y=f(x),可以通过画出函数的图像来直观地理解函数的性质和规律。
2. 基本初等函数的图像常见的初等函数包括线性函数、二次函数、指数函数、对数函数、幂函数、三角函数等,它们都有各自的特点和图像特征。
三、函数的性质1. 奇偶性函数的奇偶性是指函数的图像是否关于原点对称。
如果对于任意x∈D,有f(-x)=f(x),则函数f(x)是偶函数;如果对于任意x∈D,有f(-x)=-f(x),则函数f(x)是奇函数。
2. 周期性周期函数的函数值随自变量的变化而重复出现。
周期函数可以用来描述一些具有规律性变化的现象,如正弦函数、余弦函数等。
3. 单调性函数的单调性是指函数在定义域上的增减性。
如果对于任意x1<x2,有f(x1)<f(x2),则函数f(x)是单调增加的;如果对于任意x1<x2,有f(x1)>f(x2),则函数f(x)是单调减少的。
4. 极限和连续性函数的极限和连续性是函数的重要性质,它们可以用来描述函数在某一点的趋势和变化规律。
四、常见函数1. 线性函数线性函数是最简单的一种函数,它的图像是一条直线,表示为y=kx+b,其中k是斜率,b是截距。
2. 二次函数二次函数是一种常见的函数,它的图像是一个抛物线,表示为y=ax^2+bx+c,其中a、b、c为常数且a≠0。
高中数学函数知识点归纳1. .函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.2. 奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.3. 多项式函数的奇偶性多项式函数是奇函数的偶次项(即奇数项)的系数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.23.函数的图象的对称性(1)函数的图象关于直线对称.(2)函数的图象关于直线对称.4. 两个函数图象的对称性(1)函数与函数的图象关于直线(即轴)对称.(2)函数与函数的图象关于直线对称.(3)函数和的图象关于直线y=x对称.25.若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.5. 互为反函数的两个函数的关系.27.若函数存在反函数,则其反函数为,并不是,而函数是的反函数.6. 几个常见的函数方程(1)正比例函数,.(2)指数函数,.(3)对数函数,.(4)幂函数,.(5)余弦函数,正弦函数,,.7. 几个函数方程的周期(约定a>0)(1),则的周期T=a;(2),或,或,或,则的周期T=2a;(3),则的周期T=3a;(4)且,则的周期T=4a;(5),则的周期T=5a;(6),则的周期T=6a.8. 分数指数幂(1)(,且).(2)(,且).9. 根式的性质(1).(2)当为奇数时,;当为偶数时,.10. 有理指数幂的运算性质(1).(2).(3).33.指数式与对数式的互化式.34.对数的换底公式(,且,,且,).推论(,且,,且,,).11. 对数的四则运算法则若a>0,a≠1,M>0,N>0,则(1);(2);(3).。
高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论logmnab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。
高中数学函数知识点总结(精华版)知识分
享
高中数学函数知识点总结(精华版)知识分享
1. 函数的定义和性质
- 定义:函数是一个将各个元素从一个集合映射到另一个集合的规则。
- 函数的性质:单调性、奇偶性、周期性等。
2. 基本函数
- 幂函数:y = x^n,n为常数,图像为直线或曲线。
- 三角函数:包括正弦函数、余弦函数、正切函数等,图像具有周期性。
- 指数函数:y = a^x,a为正常数,图像单调递增或递减。
- 对数函数:y = log_a(x),a为正常数,图像单调递增或递减。
3. 函数的运算与变换
- 四则运算:加法、减法、乘法、除法。
- 复合运算:由两个或多个函数构成一个新的函数。
- 反函数:原函数与定义域互为值域的函数。
- 平移、压缩、翻折等函数的变换。
4. 函数的图像与性质
- 函数图像的绘制和分析方法。
- 函数的最值、零点、极值等特性。
5. 函数的应用
- 函数在物理、经济等领域的应用。
- 函数在数学建模中的应用。
6. 解函数方程
- 求函数方程的解法与步骤。
以上是高中数学函数知识点的精华总结和知识分享。
掌握这些知识能够帮助学生更好地理解和应用函数概念,提升数学能力。
注:本文档内容仅为总结分享,并不保证所有内容的正确性,请酌情参考。
3.函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型f(x) ax2 bx c,x (m, n)的形式;②逆求法(反求法):通过反解,用y 来表示x,再由x的取值范围,通过解不等式,得出y的取值范围;常用来解,型如:y ,x (m,n);cx d④换元法:通过变量代换转化为能求值域的函数,化归思想;常针对根号,举例:-—-- —— -J—J- —- —~ - - - —~ - —L T™Lr——y--1 十一,再利用配方法。
令\戈;-1 = t,则/ = F' + 1,原式转化为:•'亠八:—一+5⑤利用函数有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;k⑥基本不等式法:转化成型如:y x (k 0),利用平均值不等式公式来求值域;x⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
^WWWMWVWMWWWWWWV.⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
二•函数的性质1.函数的单调性(局部性质)(1) 增函数设函数y=f(x)的定义域为|,如果对于定义域I内的某个区间D内的任意两个自变量X i, X2,当X i<X2时,都有f(xi)<f(x 2),那么就说f(x)在区间D上是增函数. 区间D称为y=f(x)帀单调增区间—如果对于区间D上的任意两个自变量的值X i,X2,当X i<X2时,都有f(x 1) >f(x 2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(Xf的单调减注意:函数的单调性是函数的局部性质;⑴单调性:定义(注意定义是相对与某个具体的区间而言)增函数:对任意的X i ,X2 [a,b],X i X2 f (x i) f (X2) 减函数对任意的X i, X2 [a,b], X i X2 f (x i) f (X2)注:① 函数上的区间I且X i,X2 € I.若f ( X i ) f ( X2 ) >0 ( X i工X2),则函数f(x)在区间I上是增函数;X i X2若f(x i ) f ( x2 ) < 0 ( X i工X2),贝寸函数f(x)是在区间I上是减函数。
高中数学第二章-函数考试内容:映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系.指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 考试要求:(1)了解映射的概念,理解函数的概念.(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.§02. 函数 知识要点一、本章知识网络结构:F:A B对数函数指数函数二、知识回顾: (一) 映射与函数 1. 映射与一一映射 2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 3.反函数反函数的定义 设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到x=ϕ(y). 若对于y 在C 中的任何一个值,通过x=ϕ(y),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的反函数,记作)(1y f x -=,习惯上改写成)(1x f y -=(二)函数的性质 ⒈函数的单调性定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2,⑴若当x 1<x 2时,都有f(x 1)<f(x 2),则说f(x)在这个区间上是增函数; ⑵若当x 1<x 2时,都有f(x 1)>f(x 2),则说f(x) 在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.2.函数的奇偶性正确理解奇、偶函数的定义。
高中数学必修 + 选修知识点概括必修 1 数学知识点第一章:会合与函数观点1、会合三因素:确立性、互异性、无序性。
2、常有会合:正整数会合:N*或N,整数会合:Z ,有理数会合: Q,实数会合: R.3、并集 . 记作:A B.交集.记作: A B.全集、补集C U A { x | x U ,且 x A}(C U A)∩( C U B) = C U(A∪B) (C U A)∪( C U B) = C U(A∩B);A B B B A;简略逻辑:或:有真为真,全假为假。
且:有假为假,全真为真。
非:真假相反原命题互逆逆命题若 p则 q互若 q 则 p否为互逆互否为逆否否互否命题逆否命题若┐q则┐p若┐p则┐q互逆原命题:若 P则 q;抗命题:若q 则 p;否命题:若┑ P 则┑q;逆否命题:若┑ q 则┑ p。
常用变换:① f ( x y) f ( x) f ( y) f ( x y) f ( x).f ( y)证f ( x y)f ( y)f( )[()]() ( )f ( x)x f x y y f x y f y② f (x) f ( x) f (y) f (x y) f ( x) f ( y)y证:x xf()f()f() f (y)yy4、设 A、B 是非空的数集,假如依据某种确立的对应关系 f ,使对于会合A中的随意一个数 x ,在会合B中都有唯一确立的数 f x和它对应,那么就称 f : A B 为会合A到会合B的一个函数,记作: y f x , x A .分母不等于零5、定义域被开方大于等于零对数的幂大于零,底大于零不等于1值域:利用函数单一性求出所给区间的最大值和最小值,6、函数单一性:(1)定义法:设x1、x2[ a, b], x1 x2那么f (x1 ) f ( x2 )0 f ( x)在[ a, b] 上是增函数;f (x1 ) f ( x2 )0 f ( x)在[ a, b] 上是减函数.步骤:取值—作差—变形—定号—判断(2)导数法:设函数 y f ( x) 在某个区间内可导,若f (x) 0 ,则f ( x)为增函数;若f ( x)0 ,则 f ( x)为减函数 .7、奇偶性f x 为偶函数:f x f x 图象对于y 轴对称.函数 f x 为奇函数f x f x 图象对于原点对称 .若奇函数y f x 在区间0,上是递加函数,则y f x 在区间,0 上也是递加函数.若偶函数 yf x 在区间 0,上是递加函数,则yf x 在区间 ,0 上是递减函数.函数的几个重要性质:① 如 果 函 数 yf x 对 于 一 切 x R , 都 有f ax f ax 或 f ( 2a-x ) =f ( x ),那函数 y f x 的图象对于直线 x a 对称 .②函数 yf x 与函数 y fx 的图象对于直线x 0对称;函数 yf x 与函数 y f x 的图象对于直线y 0 对称;函数 yf x 与函数 yf x的图象对于坐标原点对称 .二、函数与导数1、几种常有函数的导数① C '0 ;② ( x n )' nx n 1 ;③ (sin x) ' cos x ; ④ (cos x) ' sin x ; ⑤ ( a x ) 'a xln a ; ⑥ ( e x) 'e x; ⑦ (log a x)'1 ;⑧ (ln x) ' 1x ln ax2、导数的运算法例( 1) (u v)'u ' v '.( 2) (uv)' u 'v uv ' .( 3) ( u)'u 'v uv ' (v 0) .vv 23、复合函数求导法例复合函数 yf (g (x)) 的导数和函数y f (u), u g ( x) 的导数间的关系为 y x y u u x , 即 y 对 x 的导数等于 y 对 u 的导数与 u 对 x 的导数的乘积 .解题步骤 :分层—层层求导—作积复原导数的应用:1、 yf ( x) 在点 x 0 处的导数的几何意义 :函数 yf (x) 在点 x 0 处的导数是曲线yf ( x) 在P(x 0 , f (x 0 )) 处的切线的斜率 f (x 0 ) ,相应的切线方程是 yy 0 f (x 0 )(xx 0 ) .切线方程 : 过点 P x 0 , y 0 的切线方程,设切点为x 1, y 1 ,则切线方程为 y y 1 f ' x 1 x x 1 ,再将 P 点带入求出 x 1 即可 2、函数的极值 (---- 列表法 )(1) 极值定义:极值是在 x 0 邻近全部的点,都有f ( x) < f ( x 0 ) ,则 f ( x 0 ) 是函数 f (x) 的极大值;极值是在 x 0 邻近全部的点,都有 f ( x) > f (x 0 ) ,则 f ( x 0 ) 是函数 f (x) 的极小值 .(2) 鉴别方法:①假如在 x 0 邻近的左边 f ' (x) > 0,右边 f ' (x) < 0,那么 f ( x 0 ) 是极大值;②假如在 x 0 邻近的左边 f ' (x) < 0,右边 f ' (x) > 0,那么 f ( x 0 ) 是极小值 .3、求函数的最值(1) 求 y f (x) 在 (a, b) 内的极值(极大或许极小值)(2) 将 y f (x) 的各极值点与 f (a), f (b) 比较,此中最大的一个为最大值,最小的一个为极小值。
高中数学三角函数复习专题一、知识点整理 :1、角的看法的推行:正负,范围,象限角,坐标轴上的角;2、角的会集的表示:①终边为一射线的角的会集:x x2k, k Z=|k 360o, k Z②终边为向来线的角的会集:x x k, k Z;③两射线介定的地域上的角的会集:x 2k x2k, k Z④两直线介定的地域上的角的会集:x k x k, k Z;3、任意角的三角函数:(1)弧长公式: l a R R 为圆弧的半径,a为圆心角弧度数, l 为弧长。
(2)扇形的面积公式:S 1lR R 为圆弧的半径, l 为弧长。
2(3)三角函数定义:角中边上任意一点 P 为 ( x, y) ,设 | OP |r 则:sin y, cos x ,tan y r= a 2b2 r r x反过来,角的终边上到原点的距离为r 的点P的坐标可写为:P r cos, r sin 比如:公式 cos()cos cossin sin的证明(4)特别角的三角函数值α032 64322sin α012310-10222cosα13210-101222tan α0313不存不存0 3在在(5)三角函数符号规律:第一象限全正,二正三切四余弦。
(6)三角函数线:(判断正负、比较大小,解方程或不等式等)y T 如图,角的终边与单位圆交于点P,过点 P 作 x 轴的垂线,P 垂足为 M ,则Ao 过点 A(1,0)作 x 轴的切线,交角终边OP 于点 T,则M x。
(7)同角三角函数关系式:①倒数关系: tana cot a 1sin a ②商数关系: tan acosa③平方关系: sin 2 a cos2 a1( 8)引诱公试sin cos tan三角函数值等于的同名三角函数值,前方-- sin+ cos- tan加上一个把看作锐角时,原三角函数值的- tan-+ sin- cos符号;即:函数名不变,符号看象限+- sin- cos+ tan2-- sin+ cos- tan2k++ sin+ cos+ tansin con tan2+ cos+ sin+ cot三角函数值等于的异名三角函数值,前方2+ cos- sin- cot加上一个把看作锐角时,原三角函数值的3- cos- sin+ cot2符号 ;3- cos+ sin- cot2即:函数名改变,符号看象限 : sin x cos x cos x比方444cos x sin x444.两角和与差的三角函数:(1)两角和与差公式:cos() cos a cos sin a sin sin( a) sin a coscosa sintan a(atan a tan注:公式的逆用也许变形)1 tan a tan.........(2)二倍角公式:sin 2a 2sin acosa cos 2a cos2 a sin 2 a12 sin2 a 2 cos2 a 12 tan atan 2a1 tan2 a(3)几个派生公式:①辅助角公式:a sinx bcosx a2b2 sin(x)a22 cos()b x比方: sinα± cosα= 2 sin4= 2 cos4.sinα±3 cosα= 2sin3=2cos3等.②降次公式: (sin cos) 21sin 2cos21cos2,sin 21cos222③ tan tan tan()(1 tan tan)5、三角函数的图像和性质:(此中 k z )三角函数y sin x定义域(- ∞, +∞)值域[-1,1]最小正周期T2奇偶性奇[ 2k,2k]22单调性单调递加[ 2k,2k3 ]22单调递减x k对称性2(k ,0)零值点x ky cosx(- ∞, +∞)[-1,1]T 2偶[( 2k 1) ,2k ]单调递加[( 2k , (2k 1) ]单调递减x k(k,0)2x k2y tan xx k2(-∞,+∞)T奇(k,k)22单调递加k(,0)x kx k2x 2 k,最值点y max1ymax 1;无x k2x(2k 1) ,y min1y min1 6、 .函数y Asin( x) 的图像与性质:(本节知识观察一般能化成形如y Asin( x) 图像及性质)( 1)函数 y Asin( x) 和 y Acos( x2 ) 的周期都是T( 2)函数y A tan( x) 和 y Acot( x) 的周期都是T( 3)五点法作y Asin( x) 的简图,设t x,取0、、、3、2来求相应x22的值以及对应的y 值再描点作图。
高中数学函数知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”女口:集合A x|y lg x, B y | y Ig x,C (x, y) | y Ig x,A、B、C 中元素各表示什么?A 表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹2进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
女口:集合A x|x2 2x 3 0 ,B x|ax 1若B A,则实数a的值构成的集合为____________(答:1, 0,-)3显然,这里很容易解出A={-1,3}.而B最多只有一个元素。
故B只能是-1 或者3。
根据条件,可以得到a=-1,a=1/3.但是,这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。
3.注意下列性质:(1)集合a1,a2,,a n的所有子集的个数是2n;要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在)。
同样,对于元素a2, a3,……a n,都有2种选择,所以,总共有2n种选择,即集合A有2n 个子集。
当然,我们也要注意到,这2n种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为2n1,非空真子集个数为2n2(2)若A B ABA,A B B;(3)德摩根定律:C u A B C U A C u B ,C U A B C U A C u B有些版本可能是这种写法,遇到后要能够看懂4•你会用补集思想解决问题吗?(排除法、间接法)的取值范围注意,有时候由集合本身就可以得到大量信息,做题时不要错过;如告 诉你函数f (x )=ax 2+bx+c (a>0)在(,1)上单调递减,在(1,)上单调递增, 就应该马上知道函数对称轴是 x=1.或者,我说在上,也应该马上可以想 到m n 实际上就是方程 的2个根5、 熟悉命题的几种形式、可以判断真假的语句叫做命题,逻辑连接词有 “或”(),“且”()和“非”).若p q 为真,当且仅当p 、q 均为真若p q 为真,当且仅当p 、q 至少有一个为真 若p 为真,当且仅当p 为假命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
高中导数与函数知识点总结归纳一、基本概念 1. 导数的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。
()f x 在点0x 处的导数记作xx f x x f x f y x xx ∆-∆+='='→∆=)()(lim)(000002 导数的几何意义:(求函数在某点处的切线方程)函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-3.基本常见函数的导数:①0;C '=(C 为常数) ②()1;nn xnx-'=③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();xxe e '= ⑥()ln xxa a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x'=. 二、导数的运算1.导数的四则运算:法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: ()()()()f xg x f x g x '''±=±⎡⎤⎣⎦法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦常数与函数的积的导数等于常数乘以函数的导数: ).())((''x Cf x Cf=(C 为常数)法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦。
三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。
高中数学函数知识归纳总结最全高中数学中最基础也最重要的概念之一就是函数。
函数是一种对应关系,它把一个自变量的取值映射到一个因变量的取值上。
学好函数这一章节,对其他数学知识的学习有直接的帮助。
本文将对高中数学中常见的函数知识进行归纳总结,以帮助广大学生更好地理解和掌握函数知识。
一、基本概念与符号1. 自变量与因变量:自变量是函数的输入值,通常用字母x表示;因变量是函数的输出值,通常用字母y表示。
2. 定义域和值域:函数的定义域是自变量可能的取值范围,通常用符号“∈”表示;函数的值域是函数在定义域内所有可能取到的值的集合。
例如,函数y = x²的定义域是所有实数,值域是大于等于0的正实数。
3. 函数表示法:(1)函数表达式:y = f(x),其中f(x)是对函数的一种直接表示方法。
(2)映射符号表示法:写成y = x²,y = logx等形式。
(3)函数图像表示法。
二、基本类型1. 常函数:y = b(b为常数),函数图像为一条水平直线。
该函数的定义域为所有实数,值域为{b}。
2. 线性函数:y = kx + b(k、b为常数,k ≠ 0),函数图像为一条斜率为k的直线,b为截距。
该函数的定义域为所有实数,值域为所有实数。
3. 幂函数:y = x^k(k为常数),函数图像为一条经过原点的,k取不同值时形状各异的曲线。
该函数的定义域为{x | x ≠ 0},值域为{y | y > 0}(k > 0)或{y | y < 0}(k < 0)。
4. 指数函数:y = a^x(a > 0 且a ≠ 1),函数图像为一条经过原点的,连续递增的曲线。
该函数的定义域为所有实数,值域为{y | y > 0}。
5. 对数函数:y = loga(x)(a > 0 且a ≠ 1),函数图像为一条经过点(1,0)的,连续递减的曲线。
该函数的定义域为{x | x > 0},值域为所有实数。
最全函数知识点总结高中一、函数的基本概念1.1 函数的定义函数是一个非常基本的数学概念。
在数学上,函数是一种对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
用数学符号表示就是:对于两个集合A和B,如果存在一个规则f,它使得对于A中的每个元素x,都有一个唯一的y属于B与之对应,那么我们说f是从A到B的一个函数,记作f:A→B。
其中A称为定义域,B称为值域。
1.2 函数的概念在我们的日常生活中,我们可以看到很多函数的例子。
比如,将一个数字加上3,或者乘以2,这就是两个函数的例子。
我们可以看到,函数本质上就是一种输入与输出的关系。
1.3 函数的符号表示函数一般用字母f,g,h等表示,其定义为:y=f(x),表示x是自变量,y是因变量。
1.4 函数的自变量和因变量在函数中,自变量是输入的值,它在定义域中取值;而因变量是输出的值,它在值域中取值。
1.5 函数的图象函数的图象是函数在一个坐标系中的表示,它可以帮助我们更直观地了解函数的性质和规律。
1.6 函数的性质函数有很多的性质,比如奇偶性、单调性、周期性等等。
1.7 函数的分类函数可以分为初等函数和非初等函数。
初等函数包括多项式函数、有理函数、指数函数、对数函数、三角函数和反三角函数。
非初等函数包括无穷级数、常微分方程等。
1.8 逆函数如果函数f有定义域A和值域B,对于B中的每一个y,存在一个唯一的x属于A与之对应,那么我们称这个函数有逆函数,记作f^(-1)。
1.9 复合函数如果有两个函数f和g,使得f的值域是g的定义域,那么我们可以定义一个新的函数h(x)=f(g(x)),这就是复合函数。
1.10 函数的性质与变化函数有很多的性质和变化规律,比如极值、单调性、周期性、奇偶性等等。
对于这些性质和变化,我们可以通过函数的图象和导数来进行分析。
1.11 函数的运算函数之间可以进行加减乘除的运算,还可以进行求泛函、求复合函数、求逆函数等。
二、函数的表示与运用2.1 函数的表示方法函数可以用方程的形式、图象的形式、表格的形式、文字的形式等来表示。
高中函数必考知识点总结一、函数的概念与性质1. 函数的概念函数是一种特殊的关系,它是一个或多个自变量和因变量之间的对应关系。
在数学中,通常用f(x)表示函数,其中x为自变量,f(x)为因变量。
函数也可以用y表示,即y=f(x)。
函数的定义域为自变量能取得的值的集合,值域为函数在定义域内所有可能取得的值的集合。
2. 函数的性质(1)定义域和值域:一个函数的定义域和值域是描述这个函数在横坐标和纵坐标上的取值范围。
(2)奇函数与偶函数:奇函数的图像对称于原点,即f(-x)=-f(x);偶函数的图像对称于y 轴,即f(-x)=f(x)。
(3)周期函数:周期函数是指满足f(x+T)=f(x)的函数,其中T为函数的周期。
(4)单调性:函数在定义域上的单调性分为递增和递减两种情况。
二、函数的图像与性质1. 一次函数(1)一次函数的图像是一条直线,其表达式一般为y=kx+b,其中k为斜率,b为截距。
(2)一次函数的图像是一条直线,斜率k表示了直线的斜率,而截距b表示了直线与y 轴的交点。
2. 二次函数(1)二次函数的图像是一个抛物线,其表达式一般为y=ax^2+bx+c,其中a不为0。
(2)二次函数的顶点坐标为(-b/2a,c-b^2/4a),对称轴方程为x=-b/2a,开口向上或开口向下取决于a的正负。
3. 指数函数(1)指数函数的图像是一条过点(0,1)的递增曲线,其表达式一般为y=a^x,其中a为底数,a>0且a≠1。
(2)指数函数的性质:具有底数为正数,且大于1时函数递增;具有底数为0到1之间的数时函数递减。
(3)指数函数的图像在x轴上没有横截点,y轴上有一个横截点(0,1)。
4. 对数函数(1)对数函数的图像是一条过点(1,0)的递增曲线,其表达式一般为y=loga(x),其中a为底数,a>0且a≠1。
(2)对数函数的性质:具有底数为正数,且大于1时函数递增;具有底数为0到1之间的数时函数递减。
函数高中数学知识点(详细)函数高中数学知识点1.指数式、对数式,2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像( 中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”.(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个.(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.3.单调性和奇偶性(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.(2)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。
(即复合有意义)4.对称性与周期性(以下结论要消化吸收,不可强记)(1)函数与函数的图像关于直线(轴)对称.推广一:如果函数对于一切,都有成立,那么的图像关于直线 (由“和的一半确定”)对称.推广二:函数,的图像关于直线对称.(2)函数与函数的图像关于直线(轴)对称.(3)函数与函数的图像关于坐标原点中心对称.提高数学成绩的窍门一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。
上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。
特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。
认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。
高中数学基本知识点汇总【推荐】一、函数与导数1. 函数的概念(1)函数的定义:设A、B是非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素f(x)和它对应,那么就称为f:A→B的一个函数。
(2)函数的定义域、值域、对应法则。
(3)函数的表示法:解析法、表格法、图象法。
2. 函数的性质(1)单调性:增函数、减函数。
(2)奇偶性:奇函数、偶函数、非奇非偶函数。
(3)周期性。
(4)有界性。
3. 基本初等函数(1)常数函数:f(x) = C(C为常数)(2)幂函数:f(x) = x^n(n为实数)(3)指数函数:f(x) = a^x(a > 0且a ≠ 1)(4)对数函数:f(x) = log_a(x)(a > 0且a ≠ 1)(5)三角函数:正弦函数、余弦函数、正切函数等。
4. 导数与微分(1)导数的定义:设函数y = f(x)在点x0处有定义,若极限lim(Δx→0)[f(x0 + Δx) f(x0)]/Δx存在,则称函数y = f(x)在点x0处可导,该极限称为函数y = f(x)在点x0处的导数,记为f'(x0)。
(2)导数的运算法则:四则运算法则、复合函数求导法则、反函数求导法则等。
(3)高阶导数。
(4)微分:设函数y = f(x)在某区间内有定义,若对于该区间内的任意一点x,都有一个非零实数Δy,使得Δy = f'(x)Δx + o(Δx),则称函数y = f(x)在该点可微,Δy称为函数y = f(x)在点x处的微分。
二、三角函数与平面向量1. 三角函数(1)正弦函数、余弦函数、正切函数的定义。
(2)三角函数的图像与性质。
(3)三角恒等变形:和差公式、倍角公式、半角公式、积化和差与和差化积、正弦定理、余弦定理等。
2. 平面向量(1)向量的概念:有大小和方向的量。
(2)向量的表示:几何表示、坐标表示。
(3)向量的运算:加法、减法、数乘、向量积。