机器视觉入门介绍
- 格式:pptx
- 大小:16.03 MB
- 文档页数:48
机器视觉入门知识总结一、机器视觉系统工业相机类型:按照输出信号类型的不同分为模拟相机和数字相机两种。
而数字相机按照接口标准不同,可以分为1394相机、USB相机、CameraLink相机以及Gige相机四种。
其中CameraLink接口相机能够解决大数据量传送问题;Gige接口相机能够解决长距离、快速传输问题;而1394相机和USB接口相机具有简单易用、性价比高等特点;镜头接口类型:C接口、CS接口、U接口等;光源类型:环形光源、背光源、同轴光源、条形光源、点光源、球积分光源等;二、如何选择相机?1、根据应用的不同分别选用CCD或CMOS相机CCD工业相机主要应用在运动物体的图像提取,当然随着CMOS技术的发展,很多贴片机也在选用CMOS工业相机。
用在视觉自动检查的方案或行业中一般用CCD工业相机比较多。
CMOS工业相机由成本低,功耗低也应用越来越广泛。
2、分辨率的选择根据系统需求来选择分辨率大小。
首先考虑待观察或待测量物体的精度,根据精度选择分辨率。
相机像素精度=单方向视野范围大小/相机单方向分辨率。
则相机单方向分辨率=单方向视野范围大小/理论精度。
若单视野为5mm长,理论精度为0.02mm,则单方向分辨率=5/0.02=250。
然而为增加系统稳定性,不会只用一个像素单位对应一个测量/观察精度值,一般可以选择倍数4或更高。
这样该相机需求单方向分辨率为1000,选用130万像素已经足够。
其次看工业相机的输出,若是体式观察或机器软件分析识别,分辨率高是有帮助的;若是VGA输出或USB输出,在显示器上观察,则还依赖于显示器的分辨率,工业相机的分辨率再高,显示器分辨率不够,也是没有意义的;利用存储卡或拍照功能,工业相机的分辨率高也是有帮助的。
应用案例:假设检测一个物体的表面划痕,要求拍摄的物体大小为10*8mm,要求的检测精度是0.01mm。
首先假设我们要拍摄的视野范围在12*10mm,那么相机的最低分辨率应该选择在:(12/0.01)*(10/0.01)=1200*1000,约为120万像素的相机,也就是说一个像素对应一个检测的缺陷的话,那么最低分辨率必须不少于120万像素,但市面上常见的是130万像素的相机,因此一般而言是选用130万像素的相机。
机器视觉入门目录•1. 什么是机器视觉o 1.1. 机器视觉是人工智能重要的前沿技术o 1.2. 机器视觉能做什么o 1.3. 机器视觉的优势(为什么用机器视觉,不仅仅是替代人工哦)•2. 发展历程o 2.1. 源于国外o 2.2. 国内市场爆发式增长o 2.3. 核心部件国产化进行时《打开“视”界之门,挖掘机器视觉蓝海》1. 什么是机器视觉机器视觉通过模拟人类视觉系统,赋予机器“看”和“认知”的能力,是机器认识世界的基础。
机器视觉利用成像系统代替视觉器官作为输入手段,利用视觉控制系统代替大脑皮层和大脑的剩余部分完成对视觉图像的处理和解释,让机器自动完成对外部世界的视觉信息的探测,做出相应判断并采取行动,实现更复杂的指挥决策和自主行动。
作为人工智能最前沿的领域之一,视觉类技术是人工智能企业的布局重点,具有最大的技术分布。
1.1. 机器视觉是人工智能重要的前沿技术人工智能基础构架,如下图:国内外人工智能企业应用技术分布:1.2. 机器视觉能做什么•识别(填空题,描述看到的是什么)识别功能指甄别目标物体的物理特征,包括:o外形o颜色o字符识别(OCR、OVR)o条码其准确度和识别速度是衡量的重要指标•检测(判断题)o判断有无o外观验伤▪外观是否存在缺陷▪产品装配是否完整•定位获取目标物体的坐标和角度信息,自动判断物体位置•测量把获取的图像像素信息标定成常用的度量衡单位,然后在图像中精确地计算出目标物体的几何尺寸,主要应用于高精度及复杂形态测量。
o2D测量o3D测量1.3. 机器视觉的优势(为什么用机器视觉,不仅仅是替代人工哦)相对于人类视觉而言,机器视觉在量化程度、灰度分辨力、空间分辨力和观测速度等方面存在显著优势。
其利用相机、镜头、光源和光源控制系统采集目标物体数据,借助视觉控制系统、智能视觉软件和数据算法库进行图形分析和处理,软硬系统相辅相成,为下游自动化、智能化制造行业赋予视觉能力。
随着深度学习、3D 视觉技术、高精度成像技术和机器视觉互联互通技术的发展,机器视觉性能优势进一步提升,应用领域也向多个维度延伸。
机器视觉基础知识
机器视觉基础知识是指基于人类视觉系统原理和计算机科学技术,通过视觉传感器获取并解析图像信息,实现对图像的理解、分析和处理的一门技术。
机器视觉技术在工业、医疗、安防等领域得到广泛应用,其基础知识包括以下几个方面:
1. 图像采集:机器视觉系统通过摄像机、激光雷达等视觉传感器采集图像信息,获取目标物体的外在特征。
2. 图像预处理:为了提高图像的质量和准确性,需要对采集到的图像进行去噪、滤波、增强等处理。
3. 特征提取:通过图像处理算法,提取目标物体的形状、颜色、纹理等特征,作为后续处理的基础。
4. 目标检测:通过特定的算法,实现对图像中目标物体的自动识别和定位,为后续的分析和决策提供基础。
5. 图像分割:将图像分为不同的区域,为目标的进一步分析和处理提供基础。
6. 物体跟踪:对连续的图像序列中的目标物体进行跟踪,分析其运动轨迹和状态变化。
7. 三维重建:通过多视角的图像信息,实现对目标物体的三维重建,为后续的仿真和虚拟现实应用提供基础。
机器视觉技术的发展和应用,需要深入掌握以上基础知识,结合实际应用场景,灵活运用各种算法和技术手段,不断提升机器视觉系统的性能和应用效果。
机器视觉入门介绍在当今科技飞速发展的时代,机器视觉作为一项关键技术,正逐渐走进我们的生活和各个行业领域。
那么,什么是机器视觉呢?简单来说,机器视觉就是让机器具备像人一样的“眼睛”和“大脑”,能够对看到的图像或视频进行分析、理解和判断。
机器视觉系统通常由几个关键部分组成。
首先是图像采集设备,这就好比我们的眼睛,常见的有摄像机、工业相机等。
它们负责获取物体的图像信息。
然后是图像处理单元,类似于我们大脑中的视觉中枢,对采集到的图像进行预处理,比如去噪、增强对比度等,让图像更加清晰、易于分析。
接下来是特征提取和分析模块,这部分要从图像中找出有用的特征,比如形状、颜色、纹理等,并根据这些特征来判断物体的属性或状态。
最后是决策和输出环节,根据分析的结果做出相应的决策,比如控制机器的动作、给出分类结果等。
机器视觉的应用场景非常广泛。
在工业生产中,它可以用于产品质量检测。
想象一下,在一条生产线上,成千上万的零件快速流过,如果依靠人工一个个去检查,不仅效率低下,而且容易出现疏漏。
但有了机器视觉,就能够快速、准确地检测出零件的缺陷,比如尺寸是否合格、表面是否有划痕等,大大提高了生产效率和产品质量。
在农业领域,机器视觉也大显身手。
比如在水果采摘中,通过机器视觉可以判断水果的成熟度,只采摘成熟的水果,提高采摘的效率和质量。
在农产品分拣环节,能够根据水果的大小、形状、颜色等特征进行分类,提高农产品的附加值。
在交通领域,机器视觉可以用于车牌识别、交通流量监测等。
在高速公路的收费站,通过车牌识别系统,车辆可以快速通过,无需停车缴费。
在城市的交通路口,通过对车辆和行人的监测,可以优化交通信号灯的控制,提高交通的流畅性。
在医疗领域,机器视觉可以辅助医生进行诊断。
例如,在医学影像分析中,帮助医生更准确地发现病变部位。
在手术中,机器视觉系统可以为医生提供更精确的导航,提高手术的成功率。
当然,要实现机器视觉,还需要解决一些技术挑战。
首先是光照条件的影响。
机器视觉基础知识概述机器视觉就是用机器代替人眼来做测量和判断。
机器视觉系统是指通过机器视觉产詁将被摄取口标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。
一个典型的工业机器视觉系统包括:光源、镜头、相机(包括CCD相机和COMS相机)、图像处理单元、图像处理软件、监视器、通讯/输入输出单元等。
(维视图像)基于PC的视觉系统基本组成%1和机与镜头——这部分属于成像器件,通常的视觉系统都是由一套或者多套这样的成像系统组成,如果有多路相机,可能由图像卡切换来获取图像数据,也可能由同步控制同吋获取多相机通道的数据。
根据应用的需要相机可能是输出标准的单色视频(RS-170/CCIR)、复合信号(Y/C)、RGB信号,也可能是非标准的逐行扫描信号、线扫描信号、高分辨率信号等。
%1光源——作为辅助成像器件,它直接影响输入数据的质量和应用效果,对成像质量的好坏往往能起到至关重要的作用。
由于没有通用的机器视觉照明设备, 所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。
%1传感器一一通常以光纤开关、接近开关等的形式出现,用以判断被测对象的位置和状态,告知图像传感器进行止确的采集。
%1图像采集卡—通常以插入卡的形式安装在PC中,图像采集卡的主要工作是把相机输出的图像输送给电脑主机。
它将来自相机的模拟或数字信号转换成一定格式的图像数据流,同时它可以控制和机的一些参数,比如触发信号,曝光 /积分时间,快门速度等。
图像采集卡通常有不同的换件结构以针对不同类型的和机,同时也有不同的总线形式,比如PCI、PCI64、Compact PCI, PC104, ISA 等。
%1PC平台一一电脑是一个PC式视觉系统的核心,在这里完成图像数据的处理和绝大部分的控制逻辑,对于检测类型的应用,通常都需要较高频率的CPU, 这样可以减少处理的时间。
学习机器视觉的基础知识和技能第一章:机器视觉简介机器视觉是研究如何使计算机能够“看”的一门学科。
它利用计算机视觉、模式识别和图像处理等技术,将图像或视频信号转化为可理解的数据并进行分析。
机器视觉被广泛应用于自动驾驶、智能安防、医学影像分析等领域。
1.1 机器视觉的发展历程机器视觉的发展可以追溯到上世纪60年代,当时国际上的研究者开始尝试将图像转化为数字信号进行处理和分析。
随着计算机硬件和算法的不断进步,机器视觉的应用范围也不断扩大。
1.2 机器视觉的基本原理机器视觉的基本原理是通过图像采集设备获取图像,然后通过图像处理算法对图像进行分析和处理,最后得到所需的信息。
图像采集设备可以是相机、摄像机等,图像处理算法可以包括边缘检测、图像分割、特征提取等。
第二章:机器视觉的关键技术机器视觉的关键技术包括图像预处理、目标检测、目标跟踪和目标识别等。
2.1 图像预处理图像预处理是指对图像进行去噪、平滑、增强等操作,以便更好地进行分析和处理。
常用的图像预处理方法包括灰度化、降噪、直方图均衡化等。
2.2 目标检测目标检测是指在图像或视频中自动识别和定位感兴趣的目标物体。
常用的目标检测方法包括滑动窗口、卷积神经网络等。
2.3 目标跟踪目标跟踪是指在视频序列中追踪一个或多个运动目标的位置。
常用的目标跟踪方法包括卡尔曼滤波、相关滤波等。
2.4 目标识别目标识别是指识别图像中的对象属于哪一类别。
常用的目标识别方法包括支持向量机、深度学习等。
第三章:机器视觉的应用领域机器视觉的应用领域非常广泛,涉及到工业自动化、智能交通、智能安防、医学影像等多个领域。
3.1 工业自动化机器视觉在工业自动化中扮演着重要角色,可以用于产品质量检测、物体定位等。
例如,可以通过机器视觉系统检测产品表面缺陷、尺寸偏差等问题,提高生产效率和产品质量。
3.2 智能交通机器视觉在智能交通领域的应用非常广泛。
通过图像识别技术,可以实现交通监控、车辆自动驾驶等功能。
机器视觉入门介绍机器视觉,这个听起来有点高大上的概念,其实就是让机器能“看”东西。
想象一下,咱们的眼睛是怎么工作的,机器视觉就像是给机器装上一双“眼睛”。
这门技术已经在我们生活中无处不在了,真是让人惊叹。
比如,自动驾驶汽车,它们依靠摄像头和传感器“看”路况,判断周围的环境。
可见,机器视觉不仅是未来科技的前沿,更是我们生活的助推器。
机器视觉的工作原理其实不复杂。
简单来说,它通过摄像头捕捉图像,然后把这些图像传输到计算机。
计算机再通过图像处理算法对这些图像进行分析。
说白了,就是把一堆数据变成可用的信息。
比如,在生产线上,机器视觉可以实时检测产品的缺陷,确保每一件产品都能达到标准。
要知道,眼见为实,机器的“眼”可比人眼更准确,效率也高得多。
再说说机器视觉的应用领域。
工业制造是个大头。
许多工厂利用机器视觉进行质量控制,确保每一个零件都完美无瑕。
想象一下,工人需要在一堆产品中逐个检查,有多麻烦?而机器视觉能够以每秒几十帧的速度扫描、检测,大大提高了生产效率。
除此之外,医疗领域也在借助这项技术。
比如,医学影像的分析,机器视觉可以帮助医生更快更准确地诊断疾病。
听起来是不是很酷?当然,机器视觉也面临一些挑战。
比如,图像处理的速度和准确性都是关键。
有时候,光线变化、物体遮挡等问题会影响识别效果。
解决这些问题需要不断优化算法。
对于技术开发者来说,这可真是一个“抓狂”的过程。
不过,只要不断努力,总能找到更好的解决方案。
毕竟,科技发展离不开探索与创新。
说到这里,不得不提到机器视觉与人工智能的结合。
这一组合简直是如虎添翼。
通过深度学习等技术,机器视觉不仅能够识别图像,还能理解图像背后的信息。
想象一下,机器能像人一样,理解图像中的情感和意图,这对未来的应用场景将是一个巨大的飞跃。
无论是安防监控还是智能家居,这种技术都能带来更为便捷的生活体验。
最后,我们来总结一下。
机器视觉是一个极具潜力的领域。
它让机器拥有了“眼睛”,在各行各业中大显身手。