固体物理学概念和习题
- 格式:pdf
- 大小:398.73 KB
- 文档页数:16
《固体物理学》概念和习题固体物理基本概念和思考题:1.给出原胞的定义。
答:最小平行单元。
2.给出维格纳-赛茨原胞的定义。
答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。
3.二维布喇菲点阵类型和三维布喇菲点阵类型。
4. 请描述七大晶系的基本对称性。
5. 请给出密勒指数的定义。
6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。
7. 给出三维、二维晶格倒易点阵的定义。
8. 请给出晶体衍射的布喇格定律。
9. 给出布里渊区的定义。
10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么?11. 写出晶体衍射的结构因子。
12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。
13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。
14. 请写出晶格振动的波恩-卡曼边界条件。
15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。
(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)16. 给出声子的定义。
17. 请描述金属、绝缘体热容随温度的变化特点。
18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。
19. 简述晶体热膨胀的原因。
20. 请描述晶体中声子碰撞的正规过程和倒逆过程。
21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)?22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。
23. 写出金属的电导率公式。
24. 给出魏德曼-夫兰兹定律。
25. 简述能隙的起因。
26. 请简述晶体周期势场中描述电子运动的布洛赫定律。
27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。
28. 给出空穴概念。
29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。
1. 基元,点阵,原胞,晶胞,布拉菲格子,简单格子,复式格子。
基元:在具体的晶体中,每个粒子都是在空间重复排列的最小单元;点阵:晶体结构的显著特征就是粒子排列的周期性,这种周期性的阵列称为点阵; 原胞:只考虑点阵周期性的最小重复性单元;晶胞:同时计及周期性与对称性的尽可能小的重复单元;布拉菲格子:是矢量Rn=mA1+nA2+lA3全部端点的集合,A1,A2,A3分别为格点到邻近三个不共面格点的矢量;简单格子:每个基元中只有一个原子或离子的晶体;复式格子:每个基元中包含一个以上的原子或离子的晶体;2. 晶体的宏观基本对称操作,点群,螺旋轴,滑移面,空间群。
宏观基本对称操作:1、2、3、4、6、i 、m 、4,点群:元素为宏观对称操作的群螺旋轴:n 度螺旋轴是绕轴旋转2/n π与沿转轴方向平移T t j n=的复合操作 滑移面:对某一平面作镜像反映后再沿平行于镜面的某方向平移该方向周期的一半的复合操作空间群:保持晶体不变的所有对称操作3. 晶向指数,晶面指数,密勒指数,面间距,配位数,密堆积。
晶向(列)指数:布拉菲格子中所有格点均可看作分列在一系列平行直线族上,取一个格点沿晶向到邻近格点的位移基失由互质的(l1/l2/l3)表示;晶面指数:布拉菲格子中所有格点均可看作分列在一系列平行平面族上,取原胞基失为坐标轴取离原点最近晶面与三个基失上的截距的倒数由互质的(h1/h2/h3)表示;密勒指数:晶胞基失的坐标系下的晶面指数;配位数:晶体中每个原子(离子)周围的最近邻离子数称之为该晶体的配位数;面间距:晶面族中相邻平面的间距;密堆积:空间内最大密度将原子球堆砌起来仍有周期性的堆砌结构;4. 倒易点阵,倒格子原胞,布里渊区。
倒易点阵:有一系列在倒空间周期性排列的点-倒格点构成。
倒格点的位置可由倒格子基矢表示,倒格子基矢由…确定倒格子原胞:倒空间的周期性重复单元(区域),每个单元包含一个倒格点布里渊区:在倒格子中如以某个倒格点作为原点,画出所有倒格矢的垂直平分面,可得到倒格子的魏格纳塞茨原胞,即第一布里渊区5. 布拉格方程,劳厄方程,几何结构因子。
《固体物理》基础知识训练题及其参考答案说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。
第一章作业1:1.固体物理的研究对象有那些?答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。
2.晶体和非晶体原子排列各有什么特点?答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。
非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。
3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。
有那些单质晶体分别属于以上三类。
答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。
常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。
面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。
常见的面心立方晶体有:Cu, Ag, Au, Al等。
六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。
常见的六角密排晶体有:Be,Mg,Zn,Cd等。
4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。
答:NaCl:先将错误!未找到引用源。
两套相同的面心立方晶格,并让它们重合,然后,将一套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格;金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格;Cscl::先将错误!未找到引用源。
组成两套相同的简单立方,并让它们重合,然后将一套晶格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。
《固体物理学》概念和习题固体物理基本概念和思考题:1.给出原胞的定义。
答:最小平行单元。
2.给出维格纳-赛茨原胞的定义。
答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。
3.二维布喇菲点阵类型和三维布喇菲点阵类型。
4. 请描述七大晶系的基本对称性。
5. 请给出密勒指数的定义。
6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。
7. 给出三维、二维晶格倒易点阵的定义。
8. 请给出晶体衍射的布喇格定律。
9. 给出布里渊区的定义。
10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么?11. 写出晶体衍射的结构因子。
12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。
13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。
14. 请写出晶格振动的波恩-卡曼边界条件。
15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。
(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)16. 给出声子的定义。
17. 请描述金属、绝缘体热容随温度的变化特点。
18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。
19. 简述晶体热膨胀的原因。
20. 请描述晶体中声子碰撞的正规过程和倒逆过程。
21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)?22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。
23. 写出金属的电导率公式。
24. 给出魏德曼-夫兰兹定律。
25. 简述能隙的起因。
26. 请简述晶体周期势场中描述电子运动的布洛赫定律。
27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。
28. 给出空穴概念。
29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。
《固体物理》基础知识训练题及其参考答案说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。
第一章作业1:1.固体物理的研究对象有那些?答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。
2.晶体和非晶体原子排列各有什么特点?答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。
非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。
3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。
有那些单质晶体分别属于以上三类。
答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。
常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。
面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。
常见的面心立方晶体有:Cu, Ag, Au, Al等。
六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。
常见的六角密排晶体有:Be,Mg,Zn,Cd等。
4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。
答:NaCl:先将两套相同的面心立方晶格,并让它们重合,然后,将一套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格;金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格;Cscl::先将组成两套相同的简单立方,并让它们重合,然后将一套晶格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
第一章晶体结构1.试述晶态、非晶态、准晶、多晶和单晶的特征性质。
解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。
非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。
准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。
2.晶格点阵与实际晶体有何区别和联系?解:晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。
当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。
晶格点阵与实际晶体结构的关系可总结为:晶格点阵+基元=实际晶体结构3.晶体结构可分为Bravais格子和复式格子吗?解:晶体结构可以分为Bravais格子和复式格子,当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表该原子,这种晶体结构就称为简单格子或Bravais格子;当基元包含2个或2个以上的原子时,各基元中相应的原子组成与格点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。
4.图1.34所示的点阵是布喇菲点阵(格子)吗?为什么?如果是,指明它属于那类布喇菲格子?如果不是,请说明这种复式格子的布喇菲格子属哪类?(a)(b)(c)(d)图 1.34(a)“面心+体心”立方;(b)“边心”立方;(c)“边心+体心”立方;(d)面心四方解:(a)“面心+体心”立方不是布喇菲格子。
从“面心+体心”立方体的任一顶角上的格点看,与它最邻近的有12个格点;从面心任一点看来,与它最邻近的也是12个格点;但是从体心那点来看,与它最邻近的有6个格点,所以顶角、面心的格点与体心的格点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。
固体物理学考试题及答案一、选择题(每题2分,共20分)1. 固体物理学中,描述晶体中原子排列的周期性规律的数学表达式是()。
A. 布洛赫定理B. 薛定谔方程C. 泡利不相容原理D. 费米-狄拉克统计答案:A2. 固体中电子的能带结构是由()决定的。
A. 原子的核外电子B. 晶体的周期性势场C. 原子的核电荷D. 原子的电子云答案:B3. 在固体物理学中,金属导电的原因是()。
A. 金属中存在自由电子B. 金属原子的电子云重叠C. 金属原子的价电子可以自由移动D. 金属原子的电子云完全重叠答案:C4. 半导体材料的导电性介于导体和绝缘体之间,这是因为()。
A. 半导体材料中没有自由电子B. 半导体材料的能带结构中存在带隙C. 半导体材料的原子排列无序D. 半导体材料的电子云完全重叠答案:B5. 固体物理学中,描述固体中电子的波动性的数学表达式是()。
A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 热力学第一定律答案:A6. 固体中声子的概念是由()提出的。
A. 爱因斯坦B. 德拜C. 玻尔D. 费米答案:B7. 固体中电子的费米能级是指()。
A. 电子在固体中的最大能量B. 电子在固体中的最小能量C. 电子在固体中的平均水平能量D. 电子在固体中的动能答案:A8. 固体物理学中,描述固体中电子的分布的统计规律是()。
A. 麦克斯韦-玻尔兹曼统计B. 费米-狄拉克统计C. 玻色-爱因斯坦统计D. 高斯统计答案:B9. 固体中电子的能带理论是由()提出的。
A. 薛定谔B. 泡利C. 费米D. 索末菲答案:D10. 固体中电子的跃迁导致()的发射或吸收。
A. 光子B. 声子C. 电子D. 质子答案:A二、填空题(每题2分,共20分)1. 固体物理学中,晶体的周期性势场是由原子的______产生的。
答案:周期性排列2. 固体中电子的能带结构中,导带和价带之间的能量区域称为______。
答案:带隙3. 金属导电的原因是金属原子的价电子可以______。
"固体物理"根本概念和知识点第一章根本概念和知识点1) 什么是晶体、非晶体和多晶?(H)*晶面有规则、对称配置的固体,具有长程有序特点的固体称为晶体;在凝结过程中不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为非晶体。
由许许多多个大小在微米量级的晶粒组成的固体,称为多晶。
2) 什么是原胞和晶胞?(H)*原胞是一个晶格最小的周期性单元,在有些情况下不能反响晶格的对称性;为了反响晶格的对称性,选取的较大的周期单元,称为晶胞。
3) 晶体共有几种晶系和布拉伐格子?(H)*按构造划分,晶体可分为7大晶系, 共14布拉伐格子。
4) 立方晶系有几种布拉伐格子?画出相应的格子。
(H)*立方晶系有简单立方、体心立方和面心立方三种布拉伐格子。
5) 什么是简单晶格和复式格子?分别举3个简单晶格和复式晶格的例子。
(H)*简单晶格中,一个原胞只包含一个原子,所有的原子在几何位置和化学性质上是完全等价的。
碱金属具有体心立方晶格构造;Au、Ag和Cu具有面心立方晶格构造,它们均为简单晶格复式格子则包含两种或两种以上的等价原子,不同等价原子各自构成一样的简单晶格,复式格子由它们的子晶格相套而成。
一种是不同原子或离子构成的晶体,如:NaCl、CsCl、ZnS等;一种是一样原子但几何位置不等价的原子构成的晶体,如:具有金刚石构造的C、Si、Ge等6) 钛酸钡是由几个何种简单晶格穿套形成的?(H)BaTiO在立方体的项角上是钡(Ba),钛(Ti)位于体心,面心上是三组氧(O)。
三组氧(OI,OII,*3OIII)周围的情况各不一样,整个晶格是由 Ba、 Ti和 OI、 OII、 OIII各自组成的简立方构造子晶格(共5个)套构而成的。
7) 为什么金刚石是复式格子?金刚石原胞中有几个原子?晶胞中有几个原子?(H)*金刚石中有两种等价的C原子,即立方体中的8个顶角和6个面的中心的原子等价,体对角线1/4处的C原子等价。
《固体物理学》习题解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a 那么,Rf Rb1.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么晶面族是(123)的离原点最近的晶面在三个基矢坐标轴上的截距分别是a1、(1/2)a2、(1/3)a3。
固体物理学中基矢的长度等于相邻两个格点的距离,所以只要“OA,OB 和OC 分别与基矢a1,a2,a3重合”,而O 又是格点,则A 、B 、C 一定是格点。
OA 、OB 、OC 间无格点,(234)情况一样。
结晶学以晶包基矢为坐标轴表示晶面指数,但称为米勒指数。
1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
第一章1.凝聚态物质包括哪些?-液体、固体、介于其间的软物质(液晶、凝胶等)2.固体可分为哪些类型?-晶体、准晶体、非晶体3.什么是晶格?什么是晶体结构?晶体中原子的规则排列称为晶格;晶体中原子的具体排列形式称为晶体结构 。
4.常见的晶体结构有哪些?-简单立方晶体结构sc 、体心立方晶体结构bcc 、密堆晶体结构、金刚石晶体结构、NaCl 结构、CsCl 晶体结构、闪锌矿晶体结构、钙钛矿(ABO3)结构5.什么是配位数?-XX 晶体结构的配位数是多少?配位数:每个原子周围最近邻原子数;简单立方晶体结构(配位数6)、体心立方结构(8)、面心立方结构(12)、六角密堆结构(12)、金刚石晶体结构(4)6.试画出简单立方结构、体心立方结构、面心立方结构、六角密堆结构、金刚石结构等晶体结构图。
7.举例说明什么是简单晶格?什么是复式晶格?-简单晶格(布拉维格子):所有原子完全等价,作从一个原子到另一任意原子的平移,晶格完全复原,如sc 、fcc 、bcc 结构形成的晶格;复式格子:晶格结构中,存在两种或两种以上不等价的原子或离子,作从一个原子或离子到任意一个不等价的原子或离子的平移,晶格不能复原,如hcp 结构、金刚石结构、NaCl 结构8.什么是基元?简单晶格和复式晶格的基元各有什么特点?-一个最小的、完全等价的基本结构单元;简单晶格的基元只含一个原子,复式晶格的基元中含两个以上的原子或离子。
9.什么是结点?什么是点阵?点阵与晶体结构的逻辑关系是什么?-就晶格的平移对称性而言,忽略结构中基元内原子分布的细节,用来代表基元的几何点成为结点;点阵是反映晶格平移对称性的分位点的无限阵列;<点阵>+<基元>=<晶体结构>10.什么是点阵的基矢?什么是破缺的平移对称性?-对于一个给定的点阵,可以使矢量332211→→→→++=a l a l a l R l 的三个不共面的基本平移矢量a1、a2、a3;晶格并不对任意的平移不变,而只对一组离散平移矢量RL (L 为小写取整数)具有不变性的性质。
(完整版)固体物理基本概念题参考解答固体物理概念题1. ⾃由电⼦⽓体模型的三个基本近似是什么?两个基本参数是什么?⾃由电⼦近似;独⽴电⼦近似;弛豫时间近似⾃由电⼦数密度;弛豫时间2. 名词解释:K空间;k空间态密度把波⽮k看做空间⽮量,相应的空间称为k空间;K空间中单位体积内许可态的代表点数称为k空间态密度。
3. ⾃由电⼦模型的基态费⽶能和激发态费⽶能的物理意义是什么?费⽶能与哪些因素有关?物理意义:费⽶⾯上单电⼦态的能量称为费⽶能,表⽰电⼦从低到⾼填满能级时其最⾼能级的能量。
基费⽶能时指T=0 K时的费⽶能。
激发态费⽶能指的是T≠0 K时的费⽶能。
因素:费⽶能量与电⼦密度和温度有关。
4. 何为费⽶⾯?⾦属电⼦⽓模型的费⽶⾯是何形状?费⽶⾯:在K空间将占据态与未占据态分开的界⾯。
⾦属电⼦⽓模型的费⽶⾯是球形。
5. 说明为什么只有费⽶⾯附近的电⼦才对⽐热、电导和热导有贡献?对⽐热、电导和热导有贡献的电⼦是其能态能够发⽣变化的电⼦,只有费⽶⾯附近的电⼦才能从外界获得能量发⽣能态跃迁。
因为,在常温下,费⽶球内部离费⽶⾯远的状态全被电⼦占据,这些电⼦从格波获取的能量不⾜以使其跃迁到费⽶⾯附近或以外的空状态上。
只有费⽶⾯附近的电⼦吸收声⼦后能跃迁到费⽶⾯附近或以外的空状态上。
对电导,考虑到泡利不相容原理的限制,只有费⽶⾯附近的电⼦才有可能在外电场作⽤下,进⼊较⾼能级,因⽽才会对⾦属电导率有贡献。
热导与电导相似。
6. 简述化学势的意义,它与费⽶能级满⾜什么样的关系。
化学势的意义是:在体积不变的条件下,系统没增加⼀个电⼦所需要的⾃由能。
在温度接近于0时,化学势和费⽶能近似相等。
7. 什么是等离⼦体振荡?给出⾦属电⼦⽓的振荡频率。
等离⼦体中的电⼦在⾃⾝惯性作⽤和正负电荷分离所产⽣的静电恢复⼒的作⽤下发⽣的简谐振荡称为等离⼦体振荡。
⾦属电⼦⽓的振荡频率8.名词解释:晶格,单胞,原胞,基元,布拉维格⼦基⽮基元:在空间⽆限重复排列构成晶体的全同原⼦团晶格:将基元抽象为格点,格点的集合称为晶格晶胞:能够完整反映晶体的化学结构与晶体周期性的重复单元原胞:体积最⼩的晶胞布拉维格⼦基⽮:原胞的基⽮9.在三维情况下有多少种不同类型的晶格满⾜点对称群的要求?它们可以划分为哪7个晶系?14种布拉维格⼦,它们可以划分为7个晶系:三斜,单斜,正交,四⽅,三⾓,六⾓,⽴⽅。
《固体物理学》概念和习题固体物理基本概念和思考题:1.给出原胞的定义。
答:最小平行单元。
2.给出维格纳-赛茨原胞的定义。
答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。
3.二维布喇菲点阵类型和三维布喇菲点阵类型。
4. 请描述七大晶系的基本对称性。
5. 请给出密勒指数的定义。
6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。
7. 给出三维、二维晶格倒易点阵的定义。
8. 请给出晶体衍射的布喇格定律。
9. 给出布里渊区的定义。
10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么?11. 写出晶体衍射的结构因子。
12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。
13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。
14. 请写出晶格振动的波恩-卡曼边界条件。
15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。
(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)16. 给出声子的定义。
17. 请描述金属、绝缘体热容随温度的变化特点。
18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。
19. 简述晶体热膨胀的原因。
20. 请描述晶体中声子碰撞的正规过程和倒逆过程。
21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)?22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。
23. 写出金属的电导率公式。
24. 给出魏德曼-夫兰兹定律。
25. 简述能隙的起因。
26. 请简述晶体周期势场中描述电子运动的布洛赫定律。
27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。
28. 给出空穴概念。
29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。
固体物理课后习题答案固体物理课后习题答案固体物理是物理学中的一个重要分支,研究物质的结构和性质。
它涉及到晶体学、电子结构、磁性、声学等多个方面。
在学习固体物理的过程中,课后习题是巩固知识、提高能力的重要途径。
下面是一些固体物理课后习题的答案,供大家参考。
1. 问题:什么是晶体?晶体的特点是什么?答案:晶体是由周期性排列的原子、离子或分子组成的固体。
晶体的特点包括:- 长程有序性:晶体的原子、离子或分子按照一定的规则排列,形成周期性的结构。
- 均匀性:晶体的结构在宏观和微观尺度上都是均匀的。
- 可预测性:晶体的结构可以通过晶体学方法进行研究和预测。
- 具有特定的物理性质:晶体的结构和周期性排列导致了其特定的物理性质,如光学性质、电学性质等。
2. 问题:什么是晶体的晶格常数?答案:晶体的晶格常数是指晶体中原子、离子或分子排列的周期性重复单位的尺寸。
晶格常数可以用来描述晶体的结构和性质。
在晶体学中,晶格常数通常用晶格常数矢量a、b、c表示,它们分别表示晶格沿着三个坐标轴的长度。
3. 问题:什么是布拉维格子?答案:布拉维格子是指晶体中的离散的点阵结构,用来描述晶体的对称性。
布拉维格子的点阵可以通过晶体的晶格常数和晶体的对称操作得到。
布拉维格子的对称性决定了晶体的物理性质,如晶体的能带结构和声子谱。
4. 问题:什么是声子?声子与固体的性质有什么关系?答案:声子是固体中的一种元激发,它代表了晶格振动的量子。
声子的能量和动量由固体的结构和性质决定。
声子的存在对固体的性质有重要影响,如导热性、电导性等。
声子的研究可以揭示固体的热力学和动力学性质。
5. 问题:什么是费米面?费米面与固体的导电性有什么关系?答案:费米面是描述固体中电子分布的一个表面,它代表了能量最高的占据态和能量最低的未占据态之间的边界。
费米面的形状和位置由固体的电子结构决定。
费米面的性质与固体的导电性密切相关。
在导电体中,费米面与导电性能直接相关,如费米面的形状和移动可以解释固体的电导率和磁性等性质。
固体物理学概念和习题固体物理基本概念和思考题:1.给出原胞的定义..答:最小平行单元..2.给出维格纳-赛茨原胞的定义..答:以一个格点为原点;作原点与其它格点连接的中垂面或中垂线;由这些中垂面或中垂线所围成的最小体积或面积即是维格纳-赛茨原胞..3.二维布喇菲点阵类型和三维布喇菲点阵类型..4. 请描述七大晶系的基本对称性..5. 请给出密勒指数的定义..6. 典型的晶体结构简单或复式格子;原胞;基矢;基元坐标..7. 给出三维、二维晶格倒易点阵的定义..8. 请给出晶体衍射的布喇格定律..9. 给出布里渊区的定义..10. 晶体的解理面是面指数低的晶面还是指数高的晶面为什么11. 写出晶体衍射的结构因子..12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式..13. 写出分子晶体的雷纳德-琼斯势表达式;并简述各项的来源..14. 请写出晶格振动的波恩-卡曼边界条件..15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点..晶体含N个原胞;每个原胞含p个原子;问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式16. 给出声子的定义..17. 请描述金属、绝缘体热容随温度的变化特点..18. 在晶体热容的计算中;爱因斯坦和德拜分别做了哪些基本假设..19. 简述晶体热膨胀的原因..20. 请描述晶体中声子碰撞的正规过程和倒逆过程..21. 分别写出晶体中声子和电子分别服从哪种统计分布给出具体表达式22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义..23. 写出金属的电导率公式..24. 给出魏德曼-夫兰兹定律..25. 简述能隙的起因..26. 请简述晶体周期势场中描述电子运动的布洛赫定律..27. 请给出在一级近似下;布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系..28. 给出空穴概念..29. 请写出描述晶体中电子和空穴运动的朗之万Langevin方程..30. 描述金属、半导体、绝缘体电阻随温度的变化趋势..31. 解释直接能隙和间接能隙晶体..32. 请说明本征半导体与掺杂半导体的区别..33. 请解释晶体中电子的有效质量的物理意义..34. 给出半导体的电导率..35. 说明半导体的霍尔效应与那些量有关..36. 请解释德哈斯-范阿尔芬效应..37. 什么叫费米液体38. 请给出纯金属的电导率随温度的关系..39. 请解释刃位错、螺位错、晶界和小角晶界并画出示意图..40. 请列出顺磁性、抗磁性的主要区别..41. 请列出铁磁性固体的主要特征..42. 请列出亚铁磁性与反铁磁性的主要区别..43. 什么是格波和声子晶体中声子有多少种可能的量子态44. 请说明Debye热容量模型的基本假设;为什么说Debye热容量模型在低温下是正确的45. 什么是近自由电子近似和紧束缚近似46. 请用能带论解释晶体的导电性;并试述导体、半导体、绝缘体能带的特点47. 什么是n型半导体和p型半导体什么是本征半导体48. 试分析晶格热振动引起晶体热膨胀的原因以及限制声子自由程的原因..固体物理学习题注意:固体物理习题集黄波等编写上波矢q的定义q=1/λ与课堂上所用的波矢k相差2πk=2π/λ;另外习题集上的量纲多采用厘米克秒制;注意其与国际单位制之间的转换1.在14种布喇菲格子中;为什么没有底心四方、面心四方和底心立方格子2.在六角晶系中常用4个指数h;k;i;l来表示;如图;前三个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a1;a2;a3上的截距为:a1/h;a2/k;a3/i;第4个指数表示该晶面在六重轴c上截距为c/l;证明:i=-h+k;并将下列用h;k;l表示的晶面改用h;k;i;l表示:0011̅331 1̅032̅3100010 21̅̅̅̅3..答:根据几何学可知;三维空间独立的坐标轴最多不超过三个..前三个指数中只有两个是独立的;它们之间存在以下关系:i=- h + k ..0001;1323;1100;3213;1010;0110;2133..3.证明理想六角密堆积结构的c/a比是√8/3=1.633;如果c/a值比这个值大得多;可以把晶体视为由原子密集平面所组成;这些面是疏松堆垛的..4.在单晶硅中;哪个晶面的原子面密度最大在面心立方晶格中;哪个晶面的原子面密度最大答:单晶硅中;晶面上的原子密度是111>110>100;面心立方晶格中;晶面原子排列密度111> 100 >110..5. 如图的两种正六边形边长为a平面格子是布喇菲格子还是复式格子应如何选取其基矢和原胞6. 六角空间点阵;六角空间点阵的基矢可以取为:a⃗=√3a2x̂+a2ŷ;b⃗⃗=−√3a2x̂+a2ŷ;c⃗=cẑ;1 证明:原胞的体积是√32a2c;2证明:倒易点阵的基矢是:A⃗=√3a x̂+2πaŷ;B⃗⃗=√3ax̂+2πaŷ;C⃗=2πcẑ;因此直接点阵就是它本身的点阵;但轴经过了转动;3 描述并绘出六角空间点阵的第一布里渊区..7. 证明第一布里渊区的体积是(2π)3V c此处V c是晶体初基晶胞的体积..8. 金刚石的晶体结构是一类典型的结构;如果晶胞是惯用立方体;基元由八个原子组成;1 给出这个基元的结构因子;2 求结构因子的诸零点并证明金刚石结构所允许的反射满足h+k+l=4n;且所有指数都是偶数;n是任何整数;否则所有指数都是奇数..体心立方、面心立方晶胞的结构因子和消光条件..如:面心立方晶体惯用晶胞基元包含几个原子;写出其基元原子的位置和其衍射的结构因子;并给出消光条件 9. 如果a 表示晶格常数;θ表示入射光束与衍射光束之间的交角;证明对于简 单立方晶格;sinθ2=λ2a(ℎ2+k 2+l2)12式中h k l 为密勒指数; 为入射光波长..10. 画出体心立方和面心立方晶体结构的金属在100;110;111面上的原子排列.. 11. 若一晶体的总互作用能可表示为:U (r )=N2(−αr m +βr n );试求: 1 平衡间距r 0; 2 结合能W ; 3 体弹性模量;4 若m=2;n=10;r 0=3 ;W=4eV;求α、β的值..12. 黄昆教材2.6用雷纳德-琼斯势计算Ne 在体心立方和面心立方结构中的结 合能之比..13. 黄昆教材 2.7对于H 2;从气体的测量得到雷纳德-琼斯势中的参数为:ε=50×10-23J;σ=2.96 ;计算一摩尔氢原子结合成面心立方固体分子氢时的结合能..A 12=12.13; A 6=14.4514. 固体物理习题集1.15和黄昆教材1.11 证明六角晶体的介电常数张量为(ε1000ε200ε2) 15. 固体物理习题集2.1设两原子间的互作用能可表示为:u (r )=−αrm+βr n式中;第一项为引力能;第二项为排斥能;α、β均为正常数..证明;要使这两原子系统处于平衡状态;必须n>m..16. 固体物理习题集2.2设两原子间的互作用能可由:u(r)=−αr m +βr n表述..若m=2;n=10;而且两原子构成稳定的分子;其核间距离为:3×10-10m;离解能为4eV;试计算:1α和β;2使该分子分裂所必须的力和当分裂发生时原子核间的临界间距;3使原子间距比平衡距离减少10%时所需要的压力..17. 固体物理习题集2.11有一晶体;平均每对离子的互作用能为:u(R)=λA n R n−αe2R式中;R是最RR近邻离子间距;α是马德隆常数;λ、A n为常数..若n=10; α=7.5;平衡时最近邻距离R0=2.81×10-10m..求由2N=2×1022个离子组成的这种晶体平衡时的总互作用能..18. 固体物理习题集2.21设LiF晶体NaCl结构的总互作用能可写成:U=N2(Zλe−R/ρ−αe2/R); 式中;N、Z、R分别代表晶体的离子总数、任一离子的最近邻数和离子间的最短间距;α是马德隆常数;λ、ρ为参量..求平衡时最近邻间距R0、总结合能U0和体积弹性模量B 的表达式..19. 固体物理习题集2.32设NaCl晶体的互作用能可表示为:U(R)=−N2(αe2/R−Ae−R/ρ)式中的N、R、ρ、A分别为晶体中的离子数、近邻离子间距、排斥核半径和排斥能参数..实验测定;NaCl 晶体近邻离子的平衡间距R0=2.82×10-10m;体积弹性模量K=2.4×1011dyn/cm2;已知NaCl结构的马德隆常数α=1.7476;试求NaCl晶体的排斥核半径ρ和排斥能参数A..20. 2N个正负离子组成一个一维链晶体..平衡时两个最近邻正负离子间距为R0..试证:1该晶体的马德隆常数为μ=2ln2..2自然平衡状态下的结合能为E b(R0)=2Nq2ln24πε0R0(1−1n)..-q +q21. 固体物理习题集3.5已知由N个相同原子组成的一维单原子晶格格波的密度可以表示为:g(ω)= 2Nπ(ωm2−ω2)−1/2式中ωm是格波的最高频率..求证它的振动模总数恰好等N..22. 固体物理习题集3.8设有一维原子链如图;第2n个原子与第2n+1个原子之间的恢复力常数为β;第2n个原子与第2n-1个原子之间的恢复力常数为β'β'<β..设两种原子的质量相等;最近邻原子间距均为a;试求晶格振动的振动谱以及波矢q=0和q=±1/4a时的振动频率..s23. 固体物理习题集3.14设有一维双原子链;链上最近邻原子间的恢复力常数交错地等于β和10β..若两种原子的质量相等;并且最近邻间距为a/2;试求在波矢k=0和k=π/a处的ωk;并画出其色散关系曲线..24. 固体物理习题集3.21考虑一个由相同原子组成的二维正方格子的横振动..设原子质量为M;点阵常数为a;最近邻原子间的恢复力常数为β;试求:1格波的色散关系;2长波极限下格波的传播速度..25. 边长为L的正方形二维晶体;含N个原胞;试求:1 该点阵振动的模式密度Dω;2 德拜截止频率νD 和德拜温度θD ;3 点阵振动内能表达式和低温下比热表达式.. 其中∫x 2e x −1dx≈2.4∞026. 固体物理习题集3.30已知一个频率为ωi 的谐振动在温度T 下的平均能量εi̅=12ℎωi +ℎωi e ℎωi /k B −1试用爱因斯坦模型求出由N 个原子组成的单原子晶体晶格振动的总能量;并求其在高温和低温极限情况下的表达式.. 27. 固体物理习题集3.53设一维原子链中;两原子的互作用能由下式表示u (x )=u 0[(σx )12−2(σx)6]式中x 为相邻原子间距..求原子链的线胀系数α.. 28. 固体物理习题集3.56 设某离子晶体中离子间的互作用能u (r )=−e 2r +Br9式中;B 为待定常数;r 为近邻离子间距..求该离子晶体的线胀系数..已知近邻离子的平衡间距为3×10-10m..29. 具有简立方结构的晶体;原子间距为2 ;由于晶体中非谐作用的存在;一但个沿1;1;0方向传播的波矢为1.3×1010m -1的声子同另一个波矢大小相等;沿1;-1;0方向传播的声子相互作用;合并成第三个声子;试求新形成的第三个声子的波矢.. 30. 固体物理习题集5.10已知金属铯的E F =1.55eV;求每立方厘米的铯晶体中所含的平均电子数..31. 固体物理习题集3.14证明:在T=0K时;费米能级E0F处的能态密度为g(E F0)=3N 2E F0式中N为金属中的自由电子总数..32. 固体物理习题集5.16证明:低温下金属中电子气的费米能E F=E F0[1−π212(k B TE F0)2]其中E F0=ℎ22m(3n8π)2/3为绝对零度的费米能;n为电子浓度..33. 固体物理习题集5.22证明;在T=0K时;金属中自由电子气的压强和体积弹性模量分别为:P=25NVE F0; B=23NVE F0式中E F0为T=0K时的费米能;V、N分别代表金属的体积和自由电子总数..已知锂体心立方结构的晶格常数a=3.5×10-10m;费米能E F0=7.6×10-19J;试估计锂中自由电子对体积弹性模量的贡献..34. 固体物理习题集5.25证明:1T=0K时;金属中自由电子的能量密度E0 V =4πℎ2k F55m式中;k F 为费米球半径;V 为金属体积.. 2金属中电子的平均能量E 0N =3ℎ2k F210m35. 固体物理习题集5.12铜的费米能级EF=7.1eV;试计算每单位体积铜的平均电子数;并与从密度计算得到的电子浓度相比较..已知铜的密度等于8.96g/cm 3.. 代入数据得:n=8.5322cm 10⨯ 36. 固体物理习题集问答6.5一维晶格能量E 和波矢k 的关系如图所示..设电子能谱与自由电子相同;试写出与简约波矢k=π/2a 对应的点A 第一能带、B 第二能带和C 第三能带处的能量.. 37. 固体物理习题集问答6.7对简单立方、体心立方和面心立方晶格;由紧束缚近似导出的能带底部电子的有效质量均可表示为m ∗=ℎ28π2a 2J能否据此断言:具有这三种结构的晶体;在能带底部的电子具有同样大小的有效质量38. 固体物理习题集6.1证明:在三维晶格中;电子能量在k 空间中具有周期性:Ek=Ek+G 式中;G 为任一倒格矢..证明:所以:()()()r G G k i GG k e G G k C r ⋅-++-+=∑00ϕ定义:G G G →-0 则有:()()r r k G k ϕϕ=+0所以:EK=EK+G39. 固体物理习题集6.8设有一单价金属;具有简单立方结构;晶格常数a=3.345×10-10m;试求1费米球的半径;2费米球到布里渊区边界的最短距离..40. 固体物理习题集6.14应用紧束缚方法于一维单原子链;如只计及最近邻原子间的相互作用;试证明其S态芯电子的能带为Ek=E min+4Jsin2πak 式中;E min为能带底部的能量;J为交迭积分..并求能带的宽度及能带底部和顶部附近的电子有效质量..41. 固体物理习题集6.20一矩形晶格;原胞边长a=2×10-10m;b=4×10-10m;1画出倒格子图;2以广延图和简约图两种形式;画出第一布里渊区和第二布里渊区;3 画出自由电子的费米面设每个原胞有两个电子..42. 固体物理习题集8.23;8.24试证明:如只计及最近邻原子间的相互作用;用紧束缚方法导出的体心立方晶体的S态电子的能带为Ek=E0-A-8Jcosπak x cosπak y cosπak z式中J为交迭积分;试求:1体心立方晶格能带的宽度;2能带底部和顶部电子的有效质量;3画出沿k x方向k y=k z=0Ek x和vk x的曲线..43. 固体物理概念题与习题指导5.14已知某简立方晶体的晶格常数为a;其价电子的能带: E= Acosak x cosak y cosak z +B 其中常数A;B>0 1 已测得带顶电子的有效质量m ∗=−22a 2;试求参数A;2 试求能带宽度;3 试求布里渊区中心点附近电子的态密度.. 所以能态密度为44. 固体物理习题集7.13设v F ; T F 分别为费米面电子的速度和平均自由时间;gE F 为费米能级处的状态密度;证明:对于球形费米面的情况;电导率σ=e 2 vF 2T F gE F /3 45. 固体物理习题集8.1证明:在一给定温度下;当电子浓度n=n i μh /μe 1/2;空穴浓度p=n i μe /μh 1/2时;半导体的电导率为极小..这里n i 是本征载流子浓度;μe 和μh 分别为电子和空穴的迁移率.. 46. 固体物理习题集8.27实验得到一锗样品不呈现任何霍尔效应..已知锗中电子迁移率为3500cm 2/V s;空穴迁移率为1400cm 2/V s;问电子电流在该样品的总电流中所占的比例等于多少 47. 黄昆教材4.12设有二维正方晶格;晶体势场为U (x,y )=−4Ucos (2πa x)cos (2πay)用近自由电子近似的微扰论简并微扰近似求出布里渊区顶角π/a;π/a 处的能隙..本题类似于基特尔教材7.6 48. 黄昆教材5.1设有一维晶体的电子能带可以写成E(k)=ℎ2ma2(78−cos ka+18cos2ka)其中;a是晶格常数;试求:1能带的宽度;2电子在波矢k状态的速度;3能带底部和能带顶部的有效质量..49. 黄昆教材5.2晶格常数为2.5 的一维晶格;当外加102V/m和107V/m电场时;试分别估算电子自能带底运动到能带顶所需要的时间..50. 黄昆教材5.6若已知Ek=Ak2+ck x k y+k y k z+k z k x;导出k=0点上的有效质量张量;并找出主轴方向使用空间旋转矩阵..51. 黄昆教材6.1He3的自旋为1/2;是费米子..液体He3在绝对零度附近的密度为0.081g/cm3..计算费米能E F和费米温度T F..52. 黄昆教材6.3若把银看成具有球形费米面的单价金属;计算以下各量:1费米能和费米温度;2费米球半径;3费米速度;4费米球面的横截面积;5在室温及低温时电子的平均自由程..银的密度等于10.5 g/cm3;原子量等于107.87;电阻率等于1.61×10-6Ω cm在295K0.038×10-6Ω cm在20K..53. 黄昆教材7.1InSb的电子有效质量me=0.015mm为电子静质量;介电常数ε=18;晶格常数a=6.479 ;试计算:1施主的电离能;2基态的轨道半径;3若施主均匀分布;相邻杂质原子的轨道之间发生交叠时;掺有的施主杂质浓度应高于多少54. 黄昆教材7.3已知Si中只含施主杂质ND=1015/cm3..现在40K下测得电子浓度为1012/cm3;试估算施主杂质的电离能..E i=1.381×10−23×40ln (1015−1012)×1.266×10181024=1.156×10−20J=0.0722eV55. 黄昆教材7.4某一N型半导体电子浓度为1×1015/cm3;电子迁移率为1000cm2/Vs;求其电阻率..56. 基特尔教材4.5孔氏异常Kohn anomaly:假定晶面运动方程F s=∑C p(u s+p−u s)p中平面力常数C p取如下形式C p=A sin pk0apa;其中A和k0是常数;而p遍取所有的整数值..这种形式是对于金属的预期结果..利用这个公式和式ω̅2=2M ∑C pp>0(1−cos pKa)求出ω2和ω2/ K的表达式;证明K=k0时; ω2/ K是无穷大;于是在k0处ω2对K或ω对K的图形有一条垂直的切线:即在k057. 基特尔教材7.2约化能区中的自由电子能量..a在空点阵近似下考虑面心立方晶体在约化能区图式表示中的自由电子能带;在约化能区图式表示中所有的k都变换到第一布里渊区内..粗略绘出111方向上的所有能带的能量;直至相当于布里渊区边界k=2π/a1/2;1/2;1/2处的最低带能量的6倍..就令这个能量为能量的单位..这个问题表明;为什么带边不一定要在布里渊区中心..当考虑到晶体势场时;有几个简并能带交叉被消除.. 58. 基特尔教材7.4金刚石结构中的势能..a 试证对于金刚石结构;在G=2A 时;一个电子所感受的晶体势场的傅立叶分量U G 为零;其中A 是惯用立方晶胞的倒易点阵中的基矢..b 证明在周期点阵中波动方程通常的一级近似解中与矢量A 末端垂直的布里渊区边界面上的能隙为零;并且证明在二级近似中该能隙不为零.. 59. 基特尔教材7.6正方点阵..考虑在二维情况下具有晶体势场Ux;y= 4Ucos2πx/acos2πy/a的正方点阵..应用中心方程近似求出布里渊区角点π/a;π/a 处的能隙..这个问题只需解一个2×2的行列式方程就足够了..本题类似于黄昆教材4.12 60. 基特尔教材9.3六角密堆积结构. 考虑点阵常数为a 和c 的三维简单六角点阵晶体的第一布里渊区;令G c ⃗⃗⃗⃗⃗表示平行于晶体点阵的 c ⃗ 轴的最短倒易点阵矢量..a 证明六角密堆积晶体结构的晶体势U r ⃗的傅立叶分量U G c ⃗⃗⃗⃗⃗为零; b U2G c ⃗⃗⃗⃗⃗是否也为零 c 为什么原则上可以得到由处于简单六角点阵的阵点上的二阶原子所构成的绝缘体 d 为什么不可能得到六角密堆积结构的单价原子构成的绝缘体解:设原胞中有m 个原子;他们在原胞中的位置由n R 表示;则晶格势能为 其中()∑=⋅-=mn R iG n e G S 1正倒格矢分别为:()0,0,11a a = ⎪⎪⎭⎫⎝⎛-=0,23,212a a ()1,0,03c a =()⎪⎭⎫⎝⎛++-+=233223211m m m i eG S π ;对于平行于c 轴的最短的倒格矢G;有同理;对于六角密堆结构;当G=02G ±时;()()0222≠±=±c C G U G S 所以简单六角原胞中含有一个原子;第一个能带可容纳2N 个电子..若晶体是双价原子组成的;则N 个原子的体系可提供2N 个价电子;这样能带可能全被填满..所以在原则上其可构成绝缘体..同理:单价原子构成的六角密堆结构;是不可能成为绝缘体的..61. 方俊鑫教材32题平面正六方形晶格如图;六角形两个对边的间距是a;基矢a⃗=a2x̂+√3a2ŷ; b⃗⃗=−a2x̂+√3a2ŷ;试画出此晶体的第一、二、三布里渊区..如图所示:62. 方俊鑫教材38题某晶体中电子的等能量曲面是椭球面E(k⃗⃗)=22(k x2m1+k y2m1+k z2m1);求能量E到E+dE之间的状态数..63. 某二维晶体;其原胞的基矢|a1⃗⃗⃗⃗⃗|=2;|a2⃗⃗⃗⃗⃗|=2;a1⃗⃗⃗⃗⃗⊥a2⃗⃗⃗⃗⃗..设晶体有N个原胞;每个原胞内平均有1个电子:1画出该晶体的第一、二布里渊区;2在扩展布里渊区图上画出自由电子的费米面..。
固体物理学概念和习题答案固体物理学是物理学中的一个分支,主要研究固态物质的性质和行为。
固态物质是由原子和分子组成的,因此它具有一些特殊的性质。
本文将介绍一些固态物理学的概念和习题答案。
固态物质的结构固态物质的结构对其性质和行为有很大的影响。
在固体物理学中,人们通常将固态物质分为晶体和非晶体两类。
晶体晶体是由具有宏观周期性排列的原子或分子组成的固体物质。
晶体的周期性结构可以看作是由几何图形不断重复而成。
晶体中的原子或分子排列方式可以用晶体结构进行描述。
常见的晶体结构包括立方晶系、正交晶系、单斜晶系、三斜晶系、四方晶系和六方晶系。
非晶体非晶体是没有宏观周期性的固体物质,其原子或分子的排列具有无序性。
非晶体的结构一般用玻璃结构来进行描述。
固态物质的性质固态物质具有多种多样的性质。
在这里,我们介绍几种常见的性质。
热导率热导率是指在单位时间内,单位温度梯度下传热量的比率。
固态物质的热导率往往与其结构有关,例如晶体中的结构与热导率之间存在一定的相互关系。
电导率电导率是指在单位电场下,单位长度内电流的比率。
固态物质的导电性往往与其晶体结构有关,不同晶体结构的物质具有截然不同的导电性。
声波速度声波速度是指声波在介质中传播的速度。
固态物质的声波速度往往与其密度、弹性模量和波长等因素有关。
光学性质固态物质的光学性质很常见,包括折射率、吸收系数、透过率和反射率等。
这些光学性质往往与物质的电子结构和晶体结构有关。
固态物理学习题答案下面是一些固态物理学的习题答案。
习题1某个晶体中,某个方向上的原子排列方式为ABABAB…,另一个方向上的原子排列方式为ABCABCABC…,请确定该晶体的晶体结构。
答案:该晶体为六方晶系。
习题2一种固态物质的密度为2.5 g/cm3,它的弹性模量为4.0×1010 N/m2。
请计算该物质的声波速度。
答案:物质的声波速度为3.0×103 m/s。
习题3一种固态物质的热导率为0.1 W/m·K,其密度为2700 kg/m3。
《固体物理学》概念和习题固体物理基本概念和思考题:1.给出原胞的定义。
答:最小平行单元。
2.给出维格纳-赛茨原胞的定义。
答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。
3.二维布喇菲点阵类型和三维布喇菲点阵类型。
4. 请描述七大晶系的基本对称性。
5. 请给出密勒指数的定义。
6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。
7. 给出三维、二维晶格倒易点阵的定义。
8. 请给出晶体衍射的布喇格定律。
9. 给出布里渊区的定义。
10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么?11. 写出晶体衍射的结构因子。
12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。
13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。
14. 请写出晶格振动的波恩-卡曼边界条件。
15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。
(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)16. 给出声子的定义。
17. 请描述金属、绝缘体热容随温度的变化特点。
18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。
19. 简述晶体热膨胀的原因。
20. 请描述晶体中声子碰撞的正规过程和倒逆过程。
21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)?22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。
23. 写出金属的电导率公式。
24. 给出魏德曼-夫兰兹定律。
25. 简述能隙的起因。
26. 请简述晶体周期势场中描述电子运动的布洛赫定律。
27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。
28. 给出空穴概念。
29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。