氨法脱硫计算书
- 格式:xls
- 大小:66.50 KB
- 文档页数:6
氨法脱硫计算过程风量(标态):,烟气排气温度:168℃:工况下烟气量:还有约5%得水份如果在引风机后脱硫,脱硫塔进口压力约800Pa,出口压力约—200Pa,如果精度高一点,考虑以上两个因素、1、脱硫塔(1)塔径及底面积计算:塔内烟气流速:取D=2r=6、332m即塔径为6。
332米,取最大值为6、5米。
底面积S=πr2=3.14×3、252=33、17m2塔径设定时一般为一个整数,如6、5m,另外,还要考虑设备裕量得问题,为以后设备能够满足大气量情况下符合得运行要求。
(2)脱硫泵流量计算:液气比根据相关资料及规范取L/G= 1.4(如果烟气中二氧化硫偏高,液气比可适当放大,如1.5、)①循环水泵流量:较高,脱硫塔喷淋层设计时应选取为4层设计,每层喷淋设计由于烟气中SO2安装1台脱硫泵,476÷4=119m3/h,泵在设计与选型时,一定要留出20%左右得裕量。
裕量为:119×20%=23.8 m3/h, 泵总流量为:23。
8+119=142.8m3/h,参考相关资料取泵流量为140 m3/h。
配套功率可查相关资料,也可与泵厂家进行联系确定。
(3)吸收区高度计算吸收区高度需按照烟气中二氧化硫含量得多少进行确定,如果含量高,可适当调高吸收区高度、2。
5米×4层/秒=10米,上下两层中间安装一层填料装置,填料层至下一级距离按1米进行设计,由于吸收区底部安装有集液装置,最下层至集液装置距离为3。
7米-3。
8米进行设计、吸收区总高度为13.7米—13、8米。
(4)浓缩段高度计算浓缩段由于有烟气进口,因此,设计时应注意此段高度,浓缩段一般设计为2层,每层间距与吸收区高度一样,每层都就是2.5米,上层喷淋距离吸收区最下层喷淋为3、23米,下层距离烟气进口为5米,烟气进口距离下层底板为2。
48米。
总高为10、71米。
(5)除雾段高度计算除雾器设计成两段、每层除雾器上下各设有冲洗喷嘴。
1 基本数据尾气流量:105000 m3/h〔70℃〕;尾气温度:70℃;尾气SO2含量:2000mg/m3;吸收介质:15%NH3溶液;撞击速度:15m/s〔12~18m/s〕;操作液气比:V L/V G=0.5~0.8L/m3处理尾气出口浓度到达:≤100 mg/Nm³;现场条件:气温15.8 ℃〔平均〕,相对湿度76%,当地大气压100.85 kPa。
2 设计的基本考虑2.1 反应器为保证尾气SO2脱除至≤100 mg/Nm³〔折算后为0.08723g/ m3〕,且气量较大,采用一级二层撞击流气液反应器吸收,每层三对;气体导管数为12。
2.2 进气和撞击速度由所给条件可知,尾气流量为105000 m3/h〔70℃〕;进气和撞击速度皆取为15m/s。
3 设备尺寸计算3.1撞击流气液反应器〔吸收塔〕设备计算3.1.1气体导管直径气体导管直径d 0应满足S m d V G /3600/10500015412320=⨯⨯=π 故 m d 454.0360015785.0121050002/10=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯=取d 0=0.45m核算撞击速度 s m u /29.151245.0785.03600/1050002=⨯⨯= u 在12~18m/s 范围内,故d 0=0.45 m 是可行的。
3.1.2 吸收塔直径D R取D R =8d 0,有m d D R 6.345.0880=⨯=⨯=所计算塔径为最小塔径,还应根据气体在塔内的轴向空塔流速进行计算。
取空塔气速为1.4m/s 时,有m D R 15.54.1785.03600/1050002/1=⎪⎪⎭⎫ ⎝⎛⨯=实际取塔径 D R = 5.2m 。
塔内实际空速:s m U GR /37.12.5785.03600/1050002=⨯= 3.1.3 进气总管与分气管直径总管气速假定为15m/s ,则总管直径m D GT 57.1360015785.01050002/1=⎪⎪⎭⎫ ⎝⎛⨯⨯=取D GT =1.6m 根据承担的送气任务,分气管横截面积取为气体导管的2倍,有m d D b 636.045.0220=⨯==取D b =0.60m ,分气管横截面积为22283.060.0785.0m A =⨯=假设分气管置于塔内设计成非圆异形管,应保证其横截面积不小于0.283 m 2。
氨法脱硫计算过程风量(标态):,烟气排气温度:168℃:工况下烟气量:还有约5%的水份如果在引风机后脱硫,脱硫塔进口压力约800Pa,出口压力约-200Pa,如果精度高一点,考虑以上两个因素。
1、脱硫塔(1)塔径及底面积计算:塔内烟气流速:取D=2r=6.332m 即塔径为6.332米,取最大值为6.5米。
底面积S=πr2=3.14×3.252=33.17m2塔径设定时一般为一个整数,如6.5m,另外,还要考虑设备裕量的问题,为以后设备能够满足大气量情况下符合的运行要求。
(2)脱硫泵流量计算:液气比根据相关资料及规范取L/G= 1.4(如果烟气中二氧化硫偏高,液气比可适当放大,如1.5。
)①循环水泵流量:由于烟气中SO2较高,脱硫塔喷淋层设计时应选取为4层设计,每层喷淋设计安装1台脱硫泵,476÷4=119m3/h,泵在设计与选型时,一定要留出20%左右的裕量。
裕量为:119×20%=23.8 m3/h, 泵总流量为:23.8+119=142.8m3/h,参考相关资料取泵流量为140 m3/h。
配套功率可查相关资料,也可与泵厂家进行联系确定。
(3)吸收区高度计算吸收区高度需按照烟气中二氧化硫含量的多少进行确定,如果含量高,可适当调高吸收区高度。
2.5米×4层/秒=10米,上下两层中间安装一层填料装置,填料层至下一级距离按1米进行设计,由于吸收区底部安装有集液装置,最下层至集液装置距离为3.7米-3.8米进行设计。
吸收区总高度为13.7米-13.8米。
(4)浓缩段高度计算浓缩段由于有烟气进口,因此,设计时应注意此段高度,浓缩段一般设计为2层,每层间距与吸收区高度一样,每层都是2.5米,上层喷淋距离吸收区最下层喷淋为3.23米,下层距离烟气进口为5米,烟气进口距离下层底板为2.48米。
总高为10.71米。
(5)除雾段高度计算除雾器设计成两段。
每层除雾器上下各设有冲洗喷嘴。
脱硫计算书一、参数确定1、过量空气系数α确定烟气计算时的空气过量系数与燃烧设备型式、燃料种类有关。
常用一般链条炉采用烟煤的过量空气系数为1。
3;,对于油气炉为1。
1,流化床炉为1。
1~1.2,ﻪ过剩空气系数计算方法按GB/T 15317一94工业锅炉节能监测方法中公式1计算.2、锅炉热效率:75~85%3、按锅炉110%工况计算二、燃煤烟气量计算1、1k g煤完全燃烧烟气量计算➢ 理论空气量:a0ar ar ar ar =8.88226.46 3.332V C H ++(S -O )➢ 实际空气量:a1a0=V V α•➢ 理论干烟气量:d0ar ar ar a0=1.8860.70.800.79V C S N V +++➢ 理论湿烟气量:w0d0ar a ad ar =11.12 1.24V V H ++•0(V M +M )➢ 实际干烟气量:d1d0a =V V α+0(-1)V➢ 实际湿烟气量:w1w0ad a =V V α+0(-1)(1+1.24M )V2、烟气组成)d (24.112.11)1(21.080.079.0700.0866.1ar a a ar 0a ara arar22222M V H V V V N V V S V C V O H O N SO CO ++=-=+===α1w 22V V CO CO = 1w 22V V SO SO = 1w 22V V N N =1w 22V V O O =1w 22V V O H OH =3、烟气密度烟气ρO H O N SO O C C C C C 22222804.0429.125.1927.2977.1C ++++=烟气ρ 4、蒸汽与燃料用量换算生产1t 蒸汽需热量2446820kJ.根据燃料得到低位燃烧发热量,根据热平衡计算。
5、烟气量计算燃料用量燃料用量湿干•=•=1w 1d V Q V Q 考虑除尘器和烟道漏风率§:除尘器漏风率:<5%烟道漏风率:每10m取1%。
氨法脱硫系统工艺优化分析与应用氨法脱硫技术是一种常用于燃煤电厂和工业锅炉中的脱硫技术。
通过将氨水与烟气中的二氧化硫进行反应,将其转化为硫酸铵,从而达到减少空气污染物排放的目的。
在实际应用中,氨法脱硫系统存在一些问题和不足之处,如脱硫效率不高、氨逃逸严重、脱硫废水处理难等,因此需要对其工艺进行优化分析和改进。
一、工艺原理氨法脱硫技术的基本原理是将含有二氧化硫的烟气经过喷雾塔,与氨水进行接触反应,生成硫酸铵颗粒并形成脱硫废水。
其中主要的反应方程式为:SO2 + 2NH3 + H2O = (NH4)2SO3(NH4)2SO3 + H2SO4 = 2NH4HSO4在这个反应过程中,氨水起到了中和和还原作用,将二氧化硫转化为相对无害的硫酸铵颗粒,从而达到净化烟气的目的。
二、系统组成氨法脱硫系统主要由喷雾塔、吸收器、氧化器、堆肥池、除氨设备、再生器和脱硫废水处理设施等部分组成。
喷雾塔是氨法脱硫系统的核心部件,用于将烟气和氨水进行充分接触和反应;吸收器用于收集并处理含有硫酸铵颗粒的烟气;氧化器用于将硫酸铵颗粒转化为硫酸铵;堆肥池用于暂存和处理脱硫废水;除氨设备用于去除脱硫废水中的氨气;再生器用于再生氨法脱硫系统中使用的氨水;脱硫废水处理设施用于处理脱硫废水中的污染物。
三、存在问题虽然氨法脱硫技术已经在国内外的燃煤电厂和工业锅炉中得到广泛应用,但在实际操作中还存在一些问题和难点:1. 脱硫效率不高。
由于烟气中的湿度和温度变化较大,以及烟气中存在着除硫剂的分布不均匀问题,导致氨法脱硫系统的脱硫效率不稳定,难以保证达标排放。
2. 氨逃逸严重。
在氨法脱硫过程中,由于氨水蒸气的挥发和气泡塔的氨泄漏等原因,导致氨气逃逸严重,不仅对环境造成污染,还会引起安全隐患。
3. 脱硫废水处理难。
由于氨法脱硫系统产生的废水中含有大量的硫酸铵和氨,难以直接排放,需要进行专门的处理和再利用。
四、优化分析针对氨法脱硫系统存在的问题和难点,可以从以下几个方面进行优化分析和改进:1. 提高脱硫效率。
氨法脱硫计算过程风量(标态):,烟气排气温度:168℃:工况下烟气量:还有约5%的水份如果在引风机后脱硫,脱硫塔进口压力约800Pa,出口压力约-200Pa,如果精度高一点,考虑以上两个因素。
1、脱硫塔(1)塔径及底面积计算:塔内烟气流速:取D=2r=6.332m 即塔径为6.332米,取最大值为6.5米。
底面积S=πr2=3.14×3.252=33.17m2塔径设定时一般为一个整数,如6.5m,另外,还要考虑设备裕量的问题,为以后设备能够满足大气量情况下符合的运行要求。
(2)脱硫泵流量计算:液气比根据相关资料及规范取L/G= 1.4(如果烟气中二氧化硫偏高,液气比可适当放大,如1.5。
)①循环水泵流量:较高,脱硫塔喷淋层设计时应选取为4层设计,每层喷淋设计由于烟气中SO2安装1台脱硫泵,476÷4=119m3/h,泵在设计与选型时,一定要留出20%左右的裕量。
裕量为:119×20%=23.8 m3/h, 泵总流量为:23.8+119=142.8m3/h,参考相关资料取泵流量为140 m3/h。
配套功率可查相关资料,也可与泵厂家进行联系确定。
(3)吸收区高度计算吸收区高度需按照烟气中二氧化硫含量的多少进行确定,如果含量高,可适当调高吸收区高度。
2.5米×4层/秒=10米,上下两层中间安装一层填料装置,填料层至下一级距离按1米进行设计,由于吸收区底部安装有集液装置,最下层至集液装置距离为3.7米-3.8米进行设计。
吸收区总高度为13.7米-13.8米。
(4)浓缩段高度计算浓缩段由于有烟气进口,因此,设计时应注意此段高度,浓缩段一般设计为2层,每层间距与吸收区高度一样,每层都是2.5米,上层喷淋距离吸收区最下层喷淋为3.23米,下层距离烟气进口为5米,烟气进口距离下层底板为2.48米。
总高为10.71米。
(5)除雾段高度计算除雾器设计成两段。
每层除雾器上下各设有冲洗喷嘴。
化工行业氨回收法脱硫系统的设计与计算作为当前工业烟气脱硫应用中的主流技术,湿法脱硫的基本原理都是以一种的吸收剂,即脱硫剂。
按脱硫剂的种类划分,烟气脱硫技术碱性物质作为SO2可分为如下几种方法:1、钙法;2、镁法;3、氨法;4、碱法。
世界上普遍使用的商业化技术是钙法,所占比例在90%以上。
但因钙法脱硫存在二次污染等问题,不适合中国国情,故不推荐使用。
与湿法脱硫中所采用的其他几种脱硫剂相比,氨法具有明显优势。
首先,氨与硫氧化物之间的反应是选择性优先反应,只要反应条件控制得当,不会与其他物质化合,氨利用充分,脱硫效率高。
其次,脱硫剂用量小无废渣废水。
从反应,需2mol 的NH3。
每吸收1 t SO2 ,需NH3 0. 59 物质的量来看,吸收1 mol 的SO2t。
商品液氨的纯度近似达到100 % ,因此脱硫剂利用率高,脱硫产物量少,易处理。
第三,氨法工艺的热利用效率高。
以氨为脱硫剂时,热效应好,此外,氨剂可达到充分利用,不会无效地带走热量。
最后,脱硫脱硝一举两得。
相对于其他行业而言,化工类企业在烟气脱硫在应用氨法时具有先天优势—作为工业副产品的氨水供应十分充足,因此,氨法特别适合化工行业采用。
现就一例3台45t/h燃煤锅炉共用一套氨法脱硫装置的工程作以下设计和计算。
1 锅炉系统概况某化工集团现有3台45t/h循环流化床锅炉,采用三电场电除尘器进行锅炉后的烟气除尘,需要对3台锅炉增加烟气脱硫装置,使脱硫后的烟气能够达标排放。
3台锅炉系统的设计参数见表1。
设计技术指标见表2。
表1 设计参数表2 设计技术指标2 脱硫工艺选择和工艺流程2.1 脱硫工艺选择根据企业提供的3台锅炉的燃煤实际情况和工况实际参数,本方案选择氨回收法作为本工程的脱硫工艺,并增加硫酸铵回收装置以回收脱硫副产物硫酸铵,在保证高效脱硫的同时增加效益。
2.2 工艺流程工艺流程见图1。
图1 工艺流程2.2.1 气路系统从引风机出口至主烟道间的烟管开口把烟气引入FGD(烟道气脱硫)系统,在引风机后的烟管上设置旁路挡板,以阻止烟气直接从烟道排入烟囱。
220t/h锅炉烟气脱硫工程技术方案目录1 项目概况 (3)2 基本参数及设计要求 (4)3 规范和标准(不仅限于此) (5)4 脱硫系统技术指标 (11)二、技术方案及工艺特点 (12)1设计原则 (12)2 氨法脱硫概述 (13)4本工艺技术特点 (15)5脱硫及硫酸铵回收工艺系统描述 (16)6 主要经济技术指标 (27)7脱硫系统运行费用与硫酸铵回收统计(年运行时间按7500小时计) . 27 8主要设备选型及设备表 (28)三、投资概算 (35)四、工程施工周期 (35)五、施工组织计划....................................................... 错误!未定义书签。
六、施工准备......................................................... 错误!未定义书签。
补充说明: ................................................................. 错误!未定义书签。
一、技术方案设计大纲1 项目概况随着工业经济的不断发展,世界环境日益恶化。
尤其是随着发展中国家的工业化进程的不断推进,排向大气的污染物绝对量快速增长.人类越来越被因自己而造成的恶果而感到疲于应付、甚至恐惧。
燃煤电厂所排放烟气中的二氧化硫是造成大气污染主要的因素之一,它不仅能造成酸雨危害人类,而且据最近世界环境专家断言,还是破坏大气臭氧层的一个重要因素。
因此,二氧化硫的治理迫在眉睫.燃煤电厂S02排放超过全国SO2排放总量的50%.随着新型能源基地的发展战略逐渐向煤电并举,输电为主的方向转变,在燃煤电厂的设计或脱硫改造工程中,如何合理选用脱硫工艺,并以较低的初投资和运行费用达到脱硫后SO2排放量符合国家排放标准的规定以及建设机组环境评价要求,是燃煤电厂烟气脱硫行业健康发展的关键问题。