三角形相似及尺规作图资料
- 格式:doc
- 大小:216.00 KB
- 文档页数:8
第一章三角形【夯实基础】一、认识三角形1.三角形的概念及其分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
分类:①按内角大小分为三类:锐角三角形、直角三角形、钝角三角形②按边分为两类:等腰三角形和等边三角形2.三角形的三边关系三角形任意两边之和大于第三边三角形任意两边之差小于第三边3.三角形的内角与外角(1)三角形的内角和为180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角③一个三角形中至少有两个内角是锐角(2)三角形的外角等于与它不相邻的两个内角的和4.三角形的角平分线、中线、高和垂直平分线(1)角平分线定义:三角形其中一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线性质:①角平分线可以得到两个相等的角②角平分线上的点到角两边的距离相等③三角形的三条角平分线交于一点,称作三角形内心。
三角形的内心到三角形三边距离相等④三角形一个角的平分线,此角平分线其对边所成的两条线段与这个角的两邻边对应成比例(2)中线定义:三角形的中线是连接三角形的一个顶点及其对边中点的线段,一个三角形有三条中线 性质:①三角形的三条中线总是相交于同一点,这个点称为三角形的重心,重心分中线为2:1 ②任意三角形的三条中线把三角形分成面积相等的六个部分。
中线都把三角形分成面积相等的两个部分③在一个直角三角形中,直角所对应的边上的中线为斜边的一半(3)高定义:从一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段 性质:①锐角三角形:三条高都在三角形内部,交点也在三角形内部 ②直角三角形:两条高分别在两条直角边上,另一条高在三角形的内部。
交点是直角的顶点。
③钝角三角形:钝角的两边上的高在三角形外部,交点在三角形的外部(4)垂直平分线(中垂线) 定义:经过某一条线段的中点,且垂直于这条线段的直线,叫做线段的垂直平分线,又称“中垂线” 性质:①垂直平分线垂直且平分其所在线段②垂直平分线上任意一点,到线段两端点的距离相等③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等 ④垂直平分线的判定:必须同时满足(1)直线过线段中点(2)直线垂直线段判定方法:1、利用定义:经过某一条线段的中点,且垂直于这条线段的直线是线段的垂直平分线 2、到一条线段两个端点距离相等的点,在这条线段的垂直平分线上(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)作图方法:① 尺规作图法a. 在纸上任意点出A 、B 两个点,连接AB 两点作为要做出垂直平分线的线段b. 分别以A 、B 为圆心,以大于线段AB 的二分之一长度为半径画圆弧,得到两个圆弧的交点C 、D(两交点交于线段的两侧)c. 连接CD ,与AB 相交于E ,则CD 为AB 的垂直平分线,AE=BEd. AB 、CD 相互垂直平分,即CD 是AB 的垂直平分线 ② 度量法③ 折纸法(折叠法)【拓展提升】尺规作图一、知识点梳理:(一)尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
相似三角形的构造与绘制相似三角形是指具有相同形状但大小不同的两个三角形。
在几何学中,相似三角形的构造与绘制是一项重要的基础技能。
本文将介绍相似三角形的构造方法以及如何使用尺规作图来绘制相似三角形。
一、相似三角形的构造方法1. 两边成比例构造相似三角形当两个三角形有两边成比例时,可以构造出一个相似三角形。
具体方法如下:首先,画出一个已知三角形ABC。
假设有一个数k表示两个三角形间的边比例关系,即AB∶DE=k。
接下来,在三角形ABC上以AB为底边,向外延长一段长度,记为BF。
然后,在BF上构建一段长度为DE的线段FG。
连接G和C,即可得到所求的相似三角形DEG。
2. 一个角相等构造相似三角形当两个三角形有一个角相等时,可以构造出一个相似三角形。
具体方法如下:假设已知三角形ABC和三角形DEF,其中∠A=∠D。
首先,在三角形ABC上任意取一点P,向外延长AP得到一条线段。
接下来,通过点P,以∠D的角度构造一条射线。
将射线与线段AC和线段BC分别相交于点E和点F。
连接点F和点B,即可得到所求的相似三角形DEF。
二、使用尺规作图绘制相似三角形除了通过构造方法,我们还可以使用尺规作图的方法来绘制相似三角形。
尺规作图是一种古老的几何作图方法,使用直尺和圆规来完成。
以下是使用尺规作图绘制相似三角形的步骤:1. 给定一个已知的三角形ABC和一个比例因子k。
2. 以A为圆心,以AB的长度为半径,画一条圆弧与AC相交于点D。
3. 以D为圆心,以AD乘以k的长度为半径,画一条圆弧与AC相交于点E。
4. 连接点E和B,即可得到所求的相似三角形AEB。
通过以上步骤,我们可以使用尺规作图方法来绘制相似三角形。
在实际操作中,需要确保准确使用尺规、直尺,并按照给定的比例因子来进行作图。
这种方法不仅能够绘制出相似三角形,还能够精确地控制三角形的大小比例。
总结:本文介绍了相似三角形的构造方法和使用尺规作图绘制相似三角形的步骤。
相似三角形的构造主要有两种情况:两边成比例构造和一个角相等构造。
三角形的相似性质三角形是几何学中的重要概念,研究三角形的性质是几何学的基础内容之一。
其中,相似性质是三角形性质中的重要组成部分。
本文将介绍三角形的相似性质及其相关定义、定理和证明。
一、相似三角形的定义两个三角形如果对应的角相等,对应的边成比例,那么这两个三角形就是相似的。
其中,“对应的角相等”指的是两个三角形的三个内角分别相等,“对应的边成比例”指的是两个三角形的对应边的长度比例相等。
相似三角形的定义提供了研究相似性质的基础,让我们能够通过已知条件来推导出其他未知性质。
二、相似三角形的性质1. 全等三角形的相似性质全等三角形是特殊的相似三角形,其对应边的比例为1:1。
当两个三角形全等时,它们的所有对应边都相等。
2. AAA相似判定定理如果两个三角形的对应角分别相等,那么它们是相似的。
这是三角形相似性质中最重要的一个定理,也是推导其他相似性质的基础。
3. AA相似判定定理如果两个三角形的一个角相等,且它们有一个对应边成比例,那么它们是相似的。
4. SSS相似判定定理如果两个三角形的对应边成比例,那么它们是相似的。
通过以上相似性质的定理,我们可以判断两个三角形是否相似,从而推导出其他未知性质。
三、相似三角形的应用相似三角形的性质在实际问题中有广泛的应用。
下面将介绍几个常见的应用场景。
1. 测量高度当无法直接测量高塔、电线杆等高度时,可以利用相似三角形的性质通过测量阴影或其他已知长度来计算其高度。
2. 直角三角形的性质在直角三角形中,根据相似性质可以推导出勾股定理,从而应用于解决各种实际问题。
3. 尺规作图在尺规作图中,可以利用相似三角形的性质通过已知长度来构造出相似的三角形,进而构造出所需的图形。
四、相似三角形的证明相似三角形的性质可以通过数学证明进行验证。
数学证明可以使用各种方法,如数学归纳法、反证法等。
以证明AAA相似判定定理为例,假设有两个三角形ABC和DEF,设∠A=∠D,∠B=∠E,∠C=∠F。
三角形与尺规作图知识点(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一部分三角形考点一、三角形(3~8分)1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。
4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“∆”表示,顶点是A、B、C的三角形记作“∆ABC”,读作“三角形ABC”。
5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
三角形相似及尺规作图(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--AB C图形的相似【知识点归纳】1.在同一单位长度下,两条线段的长度之比叫做两条线段的比.2.在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.3.若a:b=b:c 或cbb a =,则b 叫做a ,c 的比例中项. 4.比例的基本性质:b a =d c⇔ad=bc(bd ≠0). 5.合比性质:b a =d c ⇔d dc b b a ±=±.6.等比性质:.n...d b m...c a b a )0n ....d b (n m ....d c b a ++++++=⇒≠+++=== 7.若线段AB 上一点P 把线段AB 分成AP 、BP 两部分,并且使AP2=BP ·AB ,则这种分割叫做黄金分割.8.如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形. 9.相似三角形的判定:(1)两个角对应相等的两个三角形相似;(2)两边对应成比例,且夹角相等的两个三角形相似; (3)三边对应成比例的两个三角形相似;(4)直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 10.相似三角形的性质:(1)对应角相等; (2)对应边成比例; (3)周长比等于相似比; (4)面积比等于相似比的平方11.如果两个图形相似,并且它们的对应点所在的直线交于一点,那么这两个图形叫位似图形.这一点叫位似中心,对应边的比叫位似比,位似比等于相似比.习题巩固1.如图1,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC 相似的是【 】图1 A . B . C . D .2.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值 【 】A .只有一个 B.可以有2个 C.有2个以上但有限 D.有无数个3.如图,已知AD 为ABC 的角平分线,DE3132 C.52 D.534.如图是跷跷板示意图,横板AB 绕中点O 上下转动,立柱OC 与地面垂直,设B 点的最大高度为h1.若将横板AB 换成横板A ′B ′,且A ′B ′=2AB ,O 仍为A ′B ′的中点,设B ′点的最大高度为h2,则下列结论正确的是【 】=2h1 = =h1 =21h15.如图,平行四边形ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F,CD=2DE .若△DEF 的面积为a,则平行四边形ABCD 的面积为________________(用a 的代数式表示).6.如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y1和过P 、A 两点的二次函数y2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D ,当OD=AD=3时,这两个二次函数的最大值之和等于 【 】A. B.7.如图,在菱形ABCD 中,AB=BD ,点E 、F 分别在AB 、AD 上,且AE=DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H ,下列结论: (1)△AED ≌△DFB ; (2)S 四边形BCDG=43CG2;(3)若AF=2DF ,则BG=6GF.(第11题其中正确的结论:A.只有①② B.只有①③ C.只有②③ D.①②③7.如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧BC于点D,连接CD、OD,给出以下四个结论:①AC∥OD;②CE=OE;③∠OED∽∠AOO;④2CD2=CE·AB,其中正确结论的序号是____________8.如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交GD、CA于点E、F,与过点A且垂直于的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是_______________.9.如图,AB = 3AC,BD = 3AE,又BD∥AC,点B,A,E在同一条直线上.(1) 求证:△ABD∽△CAE;2BD,设BD = a,求BC的长.(2) 如果AC =BD,AD =210.在圆内接四边形ABCD中,CD为∠BCA外角的平分线,F为弧AD上一点,BC=AF,延长DF与BA 的延长线交于E.⑴求证△ABD为等腰三角形.⑵求证ACAF=DFFE尺规作图基本作图:作一条线段等于已知线段作一个角等于已知角作角的平分线作线段的垂直平分线过一点做一已知线段的垂线作黄金分割点B AFDCM1. 作一个角等于已知角, 已知AOB ∠求作:∠B O A ''',使∠B O A '''=AOB ∠ 作法:(1)作射线A O '';(2)以O 点为圆心,以任意长为半径画弧,交OA 于点C ,交OB 于点D ; (3)以O 点为圆心,以OC 长为半径画弧,交OA 于点C ; (4)以C 点为圆心,以CD 为半径画弧,交前面的弧于点D ; (5)过点D 作射线OB 。
三角形相似及尺规作
图
A
B C
图形的相似
【知识点归纳】
1.在同一单位长度下,两条线段的长度之比叫做两条线段的比.
2.在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.
3.若a:b=b:c 或c b
b a =,则b 叫做a ,
c 的比例中项.
4.比例的基本性质:
b a =d c
⇔ad=bc(bd ≠0). 5.合比性质:b a =d c ⇔d d
c b b a ±=
±. 6.等比性质:.n
...d b m
...c a b a )0n ....d b (n m ....d c b a ++++++=⇒≠+++===
7.若线段AB 上一点P 把线段AB 分成AP 、BP 两部分,并且使AP ²=BP ·AB ,则这
种分割叫做黄金分割.
8.如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形. 9.相似三角形的判定:
(1)两个角对应相等的两个三角形相似;
(2)两边对应成比例,且夹角相等的两个三角形相似; (3)三边对应成比例的两个三角形相似;
(4)直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 10.相似三角形的性质:
(1)对应角相等; (2)对应边成比例; (3)周长比等于相似比; (4)面积比等于相似比的平方
11.如果两个图形相似,并且它们的对应点所在的直线交于一点,那么这两个图形叫位似图形.这一点叫位似中心,对应边的比叫位似比,位似比等于相似比.
习题巩固
1.如图1,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC 相似的是【 】
图1 A . B . C . D .
2.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值 【 】
A .只有一个 B.可以有2个 C.有2个以上但有限 D.有无数个
3.
如图,已知AD为ABC的角平分线,DE//AB交AC于E,如果AE/EC=2/3,求AB/AC的值是【】
A.31 B.32 C.52 D.53
4.如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂
直,设B点的最大高度为h1.若将横板AB 换成横板A ′B′,且A′B′
=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则下列结论正确
的是【】
A.h2=2h1
B.h2=1.5h1
C.h2=h1
D.h2=2
1
h1
5.如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为a,则平行四边形ABCD的面积为________________(用a的代数式表示).
6.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D,当OD=AD=3时,这两个二次函数的最大值之和等于【】
A. B. C.3 D.4
(第11题
7. 如图,在菱形ABCD 中,AB=BD ,点E 、F 分别在AB 、AD 上,且AE=DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H ,下列结论:
(1)△AED ≌△DFB ; (2)S 四边形BCDG=
4
3CG2;(3)若AF=2DF ,则BG=6GF.
其中正确的结论:
A .只有①②
B .只有①③
C .只有②③
D .①②③
7.如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连接CD 、OD ,给出以下四个结论:①AC ∥OD ;②CE=OE ;③∠OED ∽∠AOO ;④2CD2=CE ·AB ,其中正确结论的序号是____________
8.如图,在Rt △ABC 中,∠ABC=90°,BA=BC .点D 是AB 的中点,连接CD ,过点B 作BG 丄CD ,分别交GD 、CA 于点E 、F ,与过点A 且垂直于的直线相交于点G ,连接DF .给出以下四个
结论: ①;②点F 是GE 的中点;③AF=AB ;④S △ABC=5S △BDF ,其中正确的结论
序号是_______________.
9.如图,AB = 3AC,BD = 3AE,又BD∥AC,点B,A,E在同一条直线上.
(1) 求证:△ABD∽△CAE;
(2) 如果AC =BD,AD =2
2BD,设BD = a,求BC的长.
10.在圆内接四边形ABCD中,CD为∠BCA外角的平分线,F为弧AD上一点,BC=AF,延长DF 与BA的延长线交于E.
⑴求证△ABD为等腰三角形.
⑵求证AC•AF=DF•FE
B A
F
D
C
M
尺规作图
基本作图:作一条线段等于已知线段 作一个角等于已知角 作角的平分线 作线段的垂直平分线 过一点做一已知线段的垂线 作黄金分割点
1. 作一个角等于已知角, 已知AOB ∠
求作:∠B O A ''',使∠B O A '''=AOB ∠ 作法:
(1)作射线A O '';
(2)以O 点为圆心,以任意长为半径画弧,交OA 于点C ,交OB 于点D ; (3)以O 点为圆心,以OC 长为半径画弧,交OA 于点C ; (4)以C 点为圆心,以CD 为半径画弧,交前面的弧于点D ; (5)过点D 作射线OB 。
∠B O A '''就是所求的角.
2. 作角的平分线
求作:作∠ABC 的角平分线:
1.以B 点为圆心,任意长为半径,在BA 和BC 上取BD=BE ;
2.分别以D 、E 为圆心,任意长为半径做弧线,两弧线相交于F 点(两个弧半径相同);
3.过F 点作射线OF. 则OF 为∠ABC 的角平分线.
3. 作线段的垂直平分线
如图,如图24.4.6,已知线段AB,画出它的垂直平分线.
作法:1、分别以A、B两点为圆心,以大于1
2
AB长为半径画弧,两弧相
交于C、D两点;
2、过C、D两点作直线CD。
所以,直线CD就是所求作的.
4.过一点做一已知线段的垂线。
如图,点C在直线l上,试过点C画出直线l的垂线。
作法:(1)以C为圆心,任一线段的长为半径画弧,交l于A、B两点;
(2)分别以A、B两点为圆心,以大于1
2
AB长为半径画弧,两
弧相交于C、D两点;
(3)过C、D两点作直线CD.
则直线CD就是所求作的.
5.作AB的黄金分割点
作法:
1.过已知直线AB的端点B作BC⊥AB,使BC=0.5AB;
2.连接AC,在AC上截取CD=CB;
图24.4.6
3.在AB上截取AP=AD.
则P点就是线段AB的黄金分割点.。