变电所接地网的设计与安装
- 格式:doc
- 大小:26.50 KB
- 文档页数:4
变电站接地网施工方案变电站接地网施工方案一、施工概述变电站接地网施工是为了防止因电气设备的故障或雷电击中而造成的大面积电气设备损坏和人身安全事故,确保电气设备正常运行和人员安全。
本施工方案根据相关规定和标准,对变电站接地网的施工进行详细说明。
二、施工准备1. 准备相关施工图纸和设计文件,包括接地网布置图、接地装置参数表等。
2. 申请施工许可证,并按照施工规范成立施工班组。
3. 准备施工所需的材料和设备,包括接地极、接地线、连接件、焊接设备等。
4. 组织施工人员进行相关安全培训,确保施工安全。
三、施工流程1. 根据设计要求和布置图纸,确定接地网的布置位置和形式,并进行测量、定位。
2. 按照土质条件和接地装置参数表,选择适当的接地极类型,并合理布置。
3. 进行土质测试,确定接地电阻的设计值,并计算出适当数量的接地极。
4. 将接地极埋设到指定深度,并保证接地极与周围土壤的紧密接触。
5. 将接地极与变电站主体电气设备进行可靠连接,采用焊接或螺纹连接方式。
6. 安装接地线,保证接地线与接地极和电气设备之间的连续性。
7. 进行接地网的接线,确保各部分之间的导通性并采取相应的保护措施。
8. 进行接地系统的测量和测试,确保接地电阻符合规定要求。
9. 对接地系统进行记录和归档,包括接地极的位置和深度、接地线的型号和长度等。
四、施工安全措施1. 施工人员必须佩戴好相关的劳动防护用具,如手套、安全鞋等。
2. 在施工现场设置明显的警示标志,确保施工区域的安全。
3. 在施工过程中,尽量减少对周围环境的影响,避免损坏周边设施。
4. 施工结束后,对施工现场进行清理,恢复原状。
五、质量控制1. 施工前,进行相关设备和材料的验收,确保其符合要求。
2. 施工过程中,进行现场监督和检验,确保施工质量。
3. 施工结束后,进行接地系统的测试和整体验收,确保接地电阻符合要求。
4. 施工记录和验收报告进行归档,供后续参考。
通过以上施工方案的实施,可以保证变电站接地网施工的质量和安全,有效地减少因电气设备故障或雷击造成的损失和风险。
变电站防雷接地施工方案一、工程概况与依据1.1 工程概述本次施工的对象为变电站的防雷接地工程。
本工程位于XXXX区域,涉及的主要内容为新建变电站的防雷接地网的设计与施工。
本工程的主要目的是通过构建高效的防雷接地系统,提高变电站的抗雷能力,保障设备与人身安全。
1.2 工程依据本次施工方案的设计和施工将严格遵循以下规范和技术标准:《建筑物防雷设计规范》GB50057-2010《接地装置施工及验收规范》GB50169-2006其他相关的国家、行业和地方标准二、防雷接地网设计2.1 设计原则防雷接地网的设计应考虑到地形、土壤电阻率、变电站设备的分布情况等因素。
设计时应遵循均衡分流、合理布置、多重防护等原则。
2.2 设计方案接地网设计将采用环网加放射网的方式,材料采用镀锌扁钢和热镀锌圆钢,网格尺寸为XXm*XXm,具体方案将在现场进行详细勘查后确定。
三、接地材料准备3.1 材料采购按照设计要求,提前采购所需的接地材料,包括镀锌扁钢、热镀锌圆钢、接地极等。
所有材料应有合格证明,并符合相关标准。
3.2 材料检验材料到场后,应进行外观检查和质量检验,确保材料无损伤、无锈蚀,尺寸和规格符合设计要求。
四、施工工具检查4.1 工具准备施工前,应准备好所需的施工工具,如电焊机、切割机、锤子、扳手等。
4.2 工具检查对所有施工工具进行安全检查,确保其状态良好,能够满足施工要求。
五、接地网铺设与连接5.1 铺设要求按照设计方案,在变电站内铺设接地网。
铺设时应确保网格尺寸准确,连接牢固。
5.2 连接方式接地网的连接应采用焊接或螺栓连接,确保连接处导电良好,无锈蚀。
六、接地装置安装6.1 安装要求接地装置应按照设计要求进行安装,安装位置应准确,安装牢固。
6.2 安装过程接地装置的安装包括接地极的埋设、接地引下线的连接等。
安装过程中应注意保护接地材料,避免损坏。
七、质量与安全措施7.1 质量保证施工过程中应严格按照设计方案和施工规范进行,确保施工质量。
变电站接地网施工方案一、施工前的准备1.1施工单位应严格按照变电站接地设计方案进行施工准备。
施工前应认真查阅图纸和设计文件,了解接地系统的布置和施工要求。
1.2施工人员应熟悉相关的接地施工规范和标准,具备接地工程施工经验和技术能力。
1.3施工前应编制详细的施工计划,并进行合理的资源调配,确保施工进度和质量。
1.4施工单位应组织人员进行安全技术交底,对施工人员进行安全教育和培训,确保施工人员的安全作业。
1.5施工单位应准备好必要的施工工具和仪器设备,并经过检测和校准,确保施工的准确性和可靠性。
二、施工方法与流程2.1接地线的敷设2.1.1根据设计要求,选用合适的材料和规格的接地线,确保接地电阻符合要求。
2.1.2在施工前,应对接地线进行测量和检查,确保其质量满足设计要求。
2.1.3接地线的敷设应按照设计图纸进行,采用合适的敷设方式和固定方法,确保接地线的稳定性和安全性。
2.1.4接地线与设备金属构件的连接应牢固可靠,采用合适的连接方式,防止腐蚀、松动和电气接触不良。
2.1.5在接地线沿线应设立接地标志牌,以确保接地线的可视性和易识别性。
2.2构筑物接地2.2.1根据设计要求,对变电站建筑物进行接地处理。
施工前应对建筑物的金属构件进行清洁处理,确保与接地线的连接良好。
2.2.2接地网的黄铜接地极由施工方负责制作,并按照设计要求进行焊接和固定,保证其与接地线的连接良好。
2.2.3黄铜接地极应埋设在混凝土基底中,埋深要求按照设计要求进行,确保接地极的稳定性和接地效果。
2.2.4施工方应进行接地系统的绝缘测试和接地电阻测试,确保接地系统的安全可靠。
2.3环形接地网施工2.3.1接地网环的敷设应按照设计图纸进行,采用合适的材料和规格的导体,确保接地电阻符合要求。
2.3.2接地网环的焊接应符合焊接工艺规范,并经过质量检测。
2.3.3接地网环的固定应采用合适的方法,确保接地网环的稳定性和安全性。
2.3.4接地网环与接地极的连接应牢固可靠,防止松动和电气接触不良。
地网设计目前的情况是,变电所网络仅有一张接地网总平面布置图及其简要说明,在布置图中只画出了主干线,一些特殊设备的接地线未标出,也未考虑设备密集区的地线连接,控制室、高压室及穿墙套管的接地网无单独的接地设计图,且设计部门既没有提供接地网设计计算说明书,也不标明一些重要参数是如何取得的。
有的设计人员并不知道土壤电阻率是由哪个部门提供、如何测量、是否能反映土壤的分层情况等,计算接地短路电流时,未能合理选择点分流和避雷线分流系数,致使设计的接地网电阻值可信度很低。
对接地网设计是否全面、合理关系到接地网的安全稳定运行,设计参数决定了接地网的基本状况,设计参数包括入地短路电流、土壤电阻率、接地电阻值等,现分析如下。
1.1关于接地短路电流的计算电力行业标准DL/T6211997中的计算公式为I=(Imax-In)(1-Kel)和I=In(1-Ke2),取其最大值,式中I为接地短路电流,即通过接地网进行散流的电流。
Imax为接地短路时的最大接地短路电流,上述公式仅适用于有效接地系统,该值可向运行部门或继电保护部门索取,也可自己计算,一般采用单相接地时,最大运行方式下的最大短路接地电流。
In为发生最大接地短路时,流往变电所主变压器中性点的短路电流。
当所内主变压器中性点不接地时,In=0,此是上述可简化为I=Imax(1-Kel);当变压器只有1个中性点,发生所内接地时,In=30%Imax,有2个中性点时,In约等于50%Imax,实际值应以继电保护部门计算和实测为准。
Kel为短路时,与变电所接地网相连的所有避雷线的分流系数,据专家分析,Kel应由避雷线的出线回路数确定,出线为1路时,取0.15,2路时取0.28,3路时取0.38,4路时取0.47,5路以上时取0.5~0.58,且应根据出线所跨走廊的分流效果做出相应的增减。
Ke2为所外接地时,避雷线向两侧的分流系数,一般取0.18,这仅适于变电所内有变压器中性点接地的所外接地。
浅析变电站电气一次主接地网的设计【摘要】对变电站建设电气一次主接地网的设计与施工中存在的问题进行分析,并根据有关规程和标准的要求提出了一些解决问题的建议和方案。
【关键词】变电站;主接地网;设计;施工安装中图分类号: tm411 文献标识码: a 文章编号:变电站电气一次主接地网设计1.1 变电站电气一次主接地网设计存在的问题在设计阶段只给出一张整体布置图和一些简要说明,并未对入地电流和土壤的电阻率等重要数据的情况提供设计计算说明书,也不知道如何获取,因此在这种条件下设计出来的地网电阻值可信度极低。
将整体布置图作为竣工图纸交给运行单位存在一些不妥之处,因为在实际施工阶段存在许多改动的地方,很难做到横平竖直、拐弯的增减情况都存在。
整体布置图只将主干线画出,一些特殊设备的接地线怎样连接,例如电缆沟(要求一米之外有一条主干线,每间隔十至十五米要与电缆沟地线相接)主变中性点接地地点(要求有两根引下线引到不同的主干线连接)等与主干线的连接点位置在什么地方,均应在图中进行标注。
整体布置图未对设备密集区的接地线连接进行考虑,例如ct、开关、闸刀均排成一列,中间几乎没有主干线,将主干线连接至远处,不但材料消耗大而且增大了接地引下线的长度,对接地效果产生影响,施工中会出现一些问题,所以最好增加一至两条的临时主干线,如果按图施工则会出现考虑不周的情况。
控制室,高压室以及穿墙套管的接地网没有单独的接地设计图,运行单位无据可查,不清楚引入了几条主干线,也不知道主干线是否穿过了房子地下。
防雷设置的接地也并未在图上进行标注,只是简单在大致位置画了几个垂直接地极,在实际施工中到底往哪个方向进行布置,还应结合周围设备情况。
不能太靠近公路也不能离设备太近,尤其是端子箱和电缆沟,由于没有图纸,施工人员时常出现随意布置导致不合理情况和安全隐患出现。
变电站引外与金属管道引内接地的方法通常也为进行仔细考虑,设计上也为进行任何说明和采取其他措施。
变电站主接地网施工工艺流程及操作要点4第2页1.7接地沟土回填接地网的某个区域施工结束后,并通过了隐蔽工程检查验收,应及时利用原土(素土)进行回填土工作。
回填土内不得夹有石块和建筑垃圾,回填土应分层夯实,不得用水夯。
利用原土(素土)进行回填回填平整后待最后夯实,再铺石子1.8设备接地安装(电气施工队安装)1.1.29与设备连接的接地体应采用螺栓搭接,搭接面要求紧密,不得留有缝隙。
1.1.30构架接地的数量应按设计规定进行布置,除带避雷针、避雷线的构架外其余构架柱采用单点接地。
隔离开关支架接地整齐美观1.1.31为了保证接地可靠,凡强制性条文规定的重要设备和设备架构接地,要求采用两根接地引下线,应分别引至接地网不同位置;对于两柱及以上安装的设备构支架,两根接地线应分别敷设在不同支柱上,连接引线应便于定期检查测试。
1.1.32带避雷针的构架,其避雷针应与接地网连接,并按设计要求在其附近装设集中接地装置,且与接地网对称连接。
1.1.33电气设备的接地,应以单独的接地线与接地网(或接地干线)相连接,不得在一条接地线上串联两个及以上电气设备的接地。
1.1.34电气设备接地引线的规格和数量应按设计要求进行施工,当设计无明确规定时,按有关规定的要求进行施工。
1.1.35电气设备的接地,其引至主接地网(或接地干线)的方向宜一致或有规律。
做到横平竖直、整齐美观,在直线段上不得有高低起伏和弯曲等情况。
构支架接地方向宜一致或有规律,横平竖直、整齐美观1.1.36电气设备接地的位置选择既要便于检查,又要不妨碍设备的检修和方便拆卸。
1.1.37活动的金属门、网门、金属爬梯等都应进行接地和跨接地工作。
电容器网门接地安装规范1.1.38电气设备接地引线的截面大小应按设计规定。
当设计无规定时,按GB50169规范进行施工。
设备支架体接地引下线安装主变本体接地引下线安装1.9主接地网测试1.1.39主接地网验收测试应在土建完工后尽快安排进行;对高土壤电阻率地区的接地装置,在接地电阻难以满足要求时,应由设计确定采取相应措施,验收合格后方可投入运行。
35kv变电站的接地系统设计与施工在变电站施工中,安全问题一直都是关注的重点,在施工中一旦出现安全隐患问题将会出现很多的不良后果。
导致变电站施工中安全隐患出现的原因非常多,其中,变电站系统中存在的不足,或者是变电站接地系统类型过于复杂都会导致施工中出现很大的危险。
为了更好的保证变电站接地系统的安全性,在进行设计时,一定要对其科学性、安全性以及可行性进行很好的分析,在施工中能够实现更好的效果。
标签:35kv;变电站;接地系统设计;施工;分析1 变电站接地的各种形式和接地方法1.1 电气设备和防雷接地的措施要保持一定的距离,通常情况下,要将距离控制在很远的位置,然后按照接地的原则来进行接地。
防雷保护装置在进行接地时要按照一定的顺序,分别是避雷线、避雷针以及避雷器,然后将电气设备直接接到防雷装置上。
对于室内的变电站在进行防雷装置安装时,将装置放置在建筑的顶部,这种方法在施工中比较常见。
避雷带在施工中经常会出现和其他接地体或者是建筑的金属体进行接触的情况,在出现这种情况时,可以采取必要的措施进行避免。
通常情况下,变电站在进行施工时,场地都比较空旷,这样也使得变电站在运行过程中容易受到雷击的影响,因此,在进行防雷装置设置时,可以采用等电位法来进行接线,将建筑的各个楼面以及墙体的金属件联合在一起,这样能够形成一个大的防雷整体。
1.2 很多的电气装置在运行过程中需要其他辅助要素的配合才能正常的工作,因此,在接地工作中要对这方面问题进行重视,在实际施工中,接地工作也慢慢成为了电气装置正常运行的辅助要素。
1.3 保护接地。
在对高压系统设备进行接地时,其有专业的接地原则,在进行接地时,要将设备或者是一组设备连接在一起,然后利用一根引线对其进行独立的接地。
但是,在实际施工中,也存在着两根接地线分别进行接地的情况,对于二次元件中存在的一次设备进行接地时,通常使用这种方式。
高压系统设备进行接地的方式,对出现的一些不良现象能够起到很好的预防作用,例如出现的高压电穿过二次回路的情况,或是二次设备损坏的情况。
目录1 编制依据......................................................................................... 错误!未定义书签。
2 工程概况 (2)3 施工准备 (2)4 施工流程图 (3)5 施工质量要求 (4)6 安全要求: (5)7 危险点、环境因素辨识与控制措施 (5)8 验收依据及资料: (6)9 主接地网安装标准工艺 (7)10 主接地网安装涉及强条内容 (9)11 主接地网安装涉及质量通病内容 (13)1 编制依据1、***500kV变电站电气安装工程施工图(与接地有关的土建、电气施工图)及设计变更的证明文件2、《电气装置安装工程接地装置施工及验收规范》(GB50169-2006)3、《电力建设安全工作规程》(变电所部分)DL5009.3-19974、《交流电气装置接地》DL/T621-19975、《工程建设标准强制性条文》(**工程部分)(2011版)6、质量通病防止措施及相关反措要求7、《国家电网公司输变电工程工艺标准库》(2011版)2 工程概况500kV**变电站位于溧阳市以北30km的前马镇余桥村。
主地网采用网格布置,以水平接地体为主,垂直接地极为辅。
水平接地体采用-80﹡8镀锌扁钢,垂直接地体采用-80﹡10,接地极采用-50﹡6镀锌角钢,构支架接地引下线采用-80×10镀锌扁钢,电缆沟接地采用-50*6的镀锌扁钢;二次铜网采用-25×4铜排。
镀锌扁铁材料接地的施工,根据施工合同,我项目部负责开挖接地沟、敷设接地材料。
镀锌扁铁材料焊接采用电焊方式。
3 施工准备2.1 人员组织及施工机具技***责人:陈宁飞接地负责人:薛双生施工安全员:吴文鹤项目质检员:陶双柱电气试验负责人:凌杨试验人员:8名电气安装工: 12名2.3 施工准备1)施工人员应熟悉施工图及本措施,严格按照施工图及措施认真执行。
变电所接地网的设计与安装
1、接地网设计
目前的情况是,变电所网络仅有一张接地网总平面布置图及其简要说明,在布置图中只画出了主干线,一些特殊设备的接地线未标出,也未考虑设备密集区的地线连接,控制室、高压室及穿墙套管的接地网无单独的接地设计图,且设计部门既没有提供接地网设计计算说明书,也不标明一些重要参数是如何取得的。
有的设计人员并不知道土壤电阻率是由哪个部门提供、如何测量、是否能反映土壤的分层情况等,计算接地短路电流时,未能合理选择点分流和避雷线分流系数,致使设计的接地网电阻值可信度很低。
对接地网设计是否全面、合理关系到接地网的安全稳定运行,设计参数决定了接地网的基本状况,设计参数包括入地短路电流、土壤电阻率、接地电阻值等,现分析如下。
2、关于接地短路电流的计算
电力行业标准DL/T 6211997中的计算公式为:
I=(Imax-In)(1-Kel) 和 I=In(1-Ke2),取其最大值;
式中I为接地短路电流,即通过接地网进行散流的电流; Imax为接地短路时的最大接地短路电流。
上述公式仅适用于有效接地系统,该值可向运行部门或继电保护部门索取,也可自己计算,一般采用单相接地时,最大运行方式下的最大短路接地电流。
In 为发生最大接地短路时,流往变电所主变压器中性点的短路电流。
当所内主变压器中性点不接地时,In=0,此是上述可简化为I=Imax(1-Kel);当变压器只有1个中性点,发生所内接地时,In=30%Imax,有2个中性点时,In约等于50%Imax,实际值应以继电保护部门计算和实测为准。
Kel为短路时,与变电所接地网相连的所有避雷线的分流系数,据专家分析,Kel应由避雷线的出线回路数确定,出线为1路时,取0.15,2路时取0.28,3路时取0.38,4路时取0.47,5路以上时取0.5~0.58,且应根据出线所跨走廊的分流效果做出相应的增减。
Ke2为所外接地时,避雷线向两侧的分流系数,一般取0.18,这仅适于变电所内有变压器中性点接地的所外接地。
取值时,要考虑10年以上的发展规划,需乘以1.2~1.5的发展系数;在散流比较困难的地方,还应乘以散流系数1.25。
由上述取值可得出,只有当变电所内有两个中性点接地时,所外接地时的入地短路电流才有可能大于所内短路的入地短路电流。
土壤电阻率ρ的取值
土壤电阻率ρ是决定接地网的关键参数,选择变电所所址时,要考虑所在地的土质情况,接地网处的土壤分层情况,不能仅取表层土壤的电阻率ρ,若土壤电阻率?太大,接地网的接地电阻值满足不了R≤2000/I的要求。
接地电阻值的要求
根据电力行业标准DL/T 621197规定,接地装置的接地电阻值应满足R≤2000/I,即IR<2000V。
由于现在普遍采用微机保护,其对接地电阻值的要求很高,即
R<1ρ,2000V难以满足要求,故有的采取铺设接地铜排等措施来降低接地电阻值,国外有的已要求IR<650V。
3、接地网工程安装
由于部分施工单位的技术水平较差,在工程监理水平有限的情况下,难以保证接地网的施工质量,如虚焊、断开、主网未留活动检查点,甚至设备接地引下线都未接到主网干线上。
另外,施工单位将总体布置图当作竣工图给运行单位,未标出施工过程中改动的地方。
为防止上述违规事件的发生,接地网的检查、试验应由专业人员认真进行通电检查,做好中间验收和竣工验收,发现不规范的地方,及时要求施工队返工,这样才能保证工程质量。
施工时,还应注意以下问题:主网干线上的镀锌扁钢应竖直放置,减少锈蚀速度。
控制室的接地应形成环网,主干线穿过控制室时,应从两侧往楼上引接地线,且楼房的基石钢筋应与接地主干线连接,以改善接地效果。
穿墙套管的接地应设在室外,且每组的接地线都应引至主干线,以提高运行人员和室内二次设备的安全性。
一次设备的接地线不得往电缆沟内的接地扁钢上连接,也不应悬空穿越电缆沟。
接地网水平接地极铺设后,回填土时,接地网下要用干净的原土,不得将脏土或碎石填到下部。
4、接地网阻抗的测试
接地网施工完后,必须准确测试接地电阻值,以验证设计计算的准确程度,为运行单位提供确切的接地网参数。
由于接地网的特性,随土壤的成分和物理状态,以及随接地极的延伸范围和形状而变化,还随季节变化。
测试接地电阻时,接地棒离变电所较远,其间的土壤情况可能很复杂,有分层或埋有金属物等现象,引起电阻值测试不准确,或与设计计算值相差较远。
因此,测试接地网的接地电阻值时应在相似气侯和湿度条件下进行。
接地网的质量是保证变电所安全、可靠运行的重要因素,应引起电力有关部门的重视,并且从设计上、施工上、测量验收上下功夫,尽可能做到设计合理、施工精细、测试准确。