半导体器件物理第三章PN结作业
- 格式:ppt
- 大小:1.03 MB
- 文档页数:13
半导体器件物理课后作业第二章对发光二极管(LED)、光电二极管(PD)、隧道二极管、齐纳二极管、变容管、快恢复二极管和电荷存储二极管这7个二端器件,请选择其中的4个器件,简述它们的工作原理和应用场合。
解:发光二极管它是半导体二极管的一种,是一种固态的半导体器件,可以把电能转化成光能;常简写为LED。
工作原理:发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性。
当给发光二极管加上正向电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN结附近数微米内分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。
不同的半导体材料中电子和空穴所处的能量状态不同。
当电子和空穴复合时释放出的能量多少是不同的,释放出的能量越多,则发出的光的波长越短;反之,则发出的光的波长越长。
应用场合:常用的是发红光、绿光或黄光的二极管,它们主要用于各种LED显示屏、彩灯、工作(交通)指示灯以及居家LED节能灯。
光电二极管光电二极管(Photo-Diode)和普通二极管一样,也是由一个PN结组成的半导体器件,也具有单方向导电特性,但在电路中它不是作整流元件,而是把光信号转换成电信号的光电传感器件。
工作原理:普通二极管在反向电压作用时处于截止状态,只能流过微弱的反向电流,光电二极管在设计和制作时尽量使PN结的面积相对较大,以便接收入射光,而电极面积尽量小些,而且PN结的结深很浅,一般小于1微米。
光电二极管是在反向电压作用下工作的,没有光照时,反向电流极其微弱,叫暗电流;当有光照时,携带能量的光子进入PN结后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子—空穴对,称为光生载流子。
它们在反向电压作用下参加漂移运动,使反向电流迅速增大到几十微安,光的强度越大,反向电流也越大。
这种特性称为“光电导”。
光电二极管在一般照度的光线照射下,所产生的电流叫光电流。
如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。
半导体器件物理作业半导体器件物理1. 画出pn结在零偏、正偏和反偏时的能带图2. 什么是耗尽区势垒电容、扩散电容?势垒电容:当所加的正向电压升⾼时,PN结变窄,空间电荷区变窄,结中空间电荷量减少,相当于电容放电。
同理,当正向电压减⼩时,PN结变宽,空间电荷区变宽,结中空间电荷量增加,相当于电容充电。
加反向电压升⾼时,⼀⽅⾯会使耗尽区变宽,也相当于对电容的充电。
加反向电压减少时,就是P区的空⽳、N区的电⼦向耗尽区流,使耗尽区变窄,相当于放电。
PN结电容算法与平板电容相似,只是宽度会随电压变化。
扩散电容:在PN结反向偏置时,少⼦数量很少,电容效应很少,也就可以不考虑了。
在正向偏置时,P区中的电⼦,N区中的空⽳,会伴着远离势垒区,数量逐渐减少。
即离结近处,少⼦数量多,离结远处,少⼦的数量少,有⼀定的浓度梯度。
正向电压增加时,N区将有更多的电⼦扩散到P区,也就是P区中的少⼦----电⼦浓度、浓度梯度增加。
同理,正向电压增加时,N区中的少⼦---空⽳的浓度、浓度梯度也要增加。
相反,正向电压降低时,少⼦浓度就要减少。
从⽽表现了电容的特性。
PN结反向偏置时电阻⼤,电容⼩,主要为势垒电容。
正向偏置时,电容⼤,取决于扩散电容,电阻⼩。
频率越⾼,电容效应越显著。
在集成电路中,⼀般利⽤PN结的势垒电容,即让PN结反偏,只是改变电压的⼤⼩,⽽不改变极性。
在PN结反向偏置时,少⼦数量很少,电容效应很3什么是耗尽区产⽣-复合电流?复合电流:产⽣电流:4什么是隧道效应、雪崩效应?隧道效应:隧道效应由微观粒⼦波动性所确定的量⼦效应。
⼜称势垒贯穿。
考虑粒⼦运动遇到⼀个⾼于粒⼦能量的势垒,按照经典⼒学,粒⼦是不可能越过势垒的;按照量⼦⼒学可以解出除了在势垒处的反射外,还有透过势垒的波函数,这表明在势垒的另⼀边,粒⼦具有⼀定的概率,粒⼦贯穿势垒。
雪崩效应:雪崩倍增效应:如果碰撞电离过程发⽣很频繁,不断产⽣出电⼦-空⽳对,这是⼀系列相继的连锁过程,瞬间即可产⽣出⼤量的电⼦-空⽳对——雪崩倍增效应。
半导体物理与器件习题目录半导体物理与器件习题 (1)一、第一章固体晶格结构 (2)二、第二章量子力学初步 (2)三、第三章固体量子理论初步 (2)四、第四章平衡半导体 (3)五、第五章载流子输运现象 (5)六、第六章半导体中的非平衡过剩载流子 (5)七、第七章pn结 (6)八、第八章pn结二极管 (6)九、第九章金属半导体和半导体异质结 (7)十、第十章双极晶体管 (7)十一、第十一章金属-氧化物-半导体场效应晶体管基础 (8)十二、第十二章MOSFET概念的深入 (9)十三、第十三章结型场效应晶体管 (9)一、第一章固体晶格结构1.如图是金刚石结构晶胞,若a 是其晶格常数,则其原子密度是。
2.所有晶体都有的一类缺陷是:原子的热振动,另外晶体中常的缺陷有点缺陷、线缺陷。
3.半导体的电阻率为10-3~109Ωcm。
4.什么是晶体?晶体主要分几类?5.什么是掺杂?常用的掺杂方法有哪些?答:为了改变导电性而向半导体材料中加入杂质的技术称为掺杂。
常用的掺杂方法有扩散和离子注入。
6.什么是替位杂质?什么是填隙杂质?7.什么是晶格?什么是原胞、晶胞?二、第二章量子力学初步1.量子力学的三个基本原理是三个基本原理能量量子化原理、波粒二相性原理、不确定原理。
2.什么是概率密度函数?3.描述原子中的电子的四个量子数是:、、、。
三、第三章固体量子理论初步1.能带的基本概念◼能带(energy band)包括允带和禁带。
◼允带(allowed band):允许电子能量存在的能量范围。
◼禁带(forbidden band):不允许电子存在的能量范围。
◼允带又分为空带、满带、导带、价带。
◼空带(empty band):不被电子占据的允带。
◼满带(filled band):允带中的能量状态(能级)均被电子占据。
导带:有电子能够参与导电的能带,但半导体材料价电子形成的高能级能带通常称为导带。
价带:由价电子形成的能带,但半导体材料价电子形成的低能级能带通常称为价带。
《半导体物理与器件》课程教学大纲一、课程基本信息英文名称 Semiconductor Physics and Devices 课程代码 PHY2028课程性质 专业必修课程 授课对象 物理学 学 分 4学分 学 时 72学时 主讲教师 修订日期 2021.9指定教材 施敏,李明达(著)王明湘,赵鹤鸣(译),《半导体器件物理与工艺》,苏州大学出版社,2014年二、课程目标(一)总体目标:本课程的知识目标:掌握半导体物理学的基础知识;掌握典型半导体器件的工作原理和制备方法;了解半导体科学的发展历史和未来发展趋势;了解半导体物理与器件在现代科技中的重要意义。
能力目标:掌握半导体科学的研究方法和前沿进展,提高解决交叉学科领域复杂问题的能力,锤炼科学思维能力和科研创新能力。
素质目标:掌握辩证唯物主义基本原理,建立科学的世界观和方法论;富有科学精神,勇于在物理学前沿及交叉领域探索、创新与攀登。
(二)课程目标:课程目标1:了解半导体科学的发展历史和未来发展趋势;了解半导体物理与器件在现代科技中的具体应用;了解半导体科学前沿进展和应用前景;使学生认识到半导体理论在现代科学研究领域的重要性,掌握辩证唯物主义基本原理,建立科学的世界观和方法论。
课程目标2:掌握半导体物理基本原理,学会运用能带理论分析半导体的光电特性;掌握载流子在平衡和非平衡状态下的性质;训练学生运用物理学基本原理分析复杂系统的能力,培养和提高学生建立物理图像的能力和解决交叉学科领域问题的能力。
课程目标3:掌握典型半导体器件的工作原理和制备方法;了解典型半导体器件的独特性和应用范围;了解先进半导体制造关键工艺技术;帮助学生建立科学观念和科学素养;培养和提高学生对应用物理科学的兴趣,锤炼科学思维能力和科研创新能力。
(三)课程目标与毕业要求、课程内容的对应关系表1:课程目标与课程内容、毕业要求的对应关系表课程目标对应课程内容对应毕业要求课程目标1 第一章 能带和热平衡载流子浓度第二章 载流子输运现象第三章 p-n结毕业要求3:了解物理学前沿和发展动态,新技术中的物理思想,熟悉物理学新发现、新理论、新技术对社会的影响。