空气中声速的测量——驻波法数据处理表
- 格式:xlsx
- 大小:15.55 KB
- 文档页数:3
声速测量实验报告声速测量实验数据一、实验目的1、了解声速测量的基本原理和方法。
2、学习使用驻波法和相位比较法测量声速。
3、掌握示波器和信号发生器的使用方法。
二、实验原理1、驻波法声波在介质中传播时,在入射波和反射波相遇处会形成驻波。
驻波的相邻波腹(或波节)之间的距离为半波长。
通过测量相邻两个波腹(或波节)之间的距离,就可以计算出声波的波长。
已知声波的频率,由公式$v =fλ$ (其中$v$ 为声速,$f$ 为频率,$λ$ 为波长)即可求出声速。
2、相位比较法当发射波和接收波之间存在相位差时,通过示波器可以观察到李萨如图形。
改变接收端的位置,使相位差发生变化。
当相位差变化一个周期,即李萨如图形从直线变为椭圆再变回直线时,接收端移动的距离等于一个波长。
三、实验仪器1、声速测量仪2、示波器3、信号发生器四、实验步骤1、驻波法连接实验仪器,将信号发生器的输出端连接到声速测量仪的发射端,将示波器的 CH1 通道连接到声速测量仪的接收端。
调节信号发生器的频率,使其在声速测量仪的谐振频率附近,观察示波器上的波形,找到最大振幅对应的频率,即为谐振频率。
缓慢移动声速测量仪的接收端,观察示波器上驻波的形成,记录相邻两个波腹(或波节)之间的距离。
重复测量多次,取平均值计算波长,进而求出声速。
2、相位比较法连接实验仪器,将信号发生器的输出端同时连接到示波器的 CH1和 CH2 通道,将声速测量仪的接收端连接到示波器的 CH2 通道。
调节信号发生器的频率为声速测量仪的谐振频率。
缓慢移动声速测量仪的接收端,观察示波器上的李萨如图形,记录李萨如图形变化一个周期时接收端移动的距离。
重复测量多次,取平均值计算波长,求出声速。
五、实验数据1、驻波法测量数据|测量次数|相邻波腹(或波节)距离(mm)|||||1|_____||2|_____||3|_____||4|_____||5|_____|2、相位比较法测量数据|测量次数|李萨如图形变化一个周期时接收端移动距离(mm)|||||1|_____||2|_____||3|_____||4|_____||5|_____|六、数据处理1、驻波法计算相邻波腹(或波节)距离的平均值:$\overline{d} =\frac{d_1 + d_2 + d_3 + d_4 + d_5}{5}$波长:$λ = 2\overline{d}$声速:$v =fλ$ (其中$f$ 为谐振频率)2、相位比较法计算李萨如图形变化一个周期时接收端移动距离的平均值:$\overline{D} =\frac{D_1 + D_2 + D_3 + D_4 + D_5}{5}$波长:$λ =\overline{D}$声速:$v =fλ$ (其中$f$ 为谐振频率)七、误差分析1、系统误差仪器本身的精度限制,如声速测量仪的刻度误差、示波器的测量误差等。
《大学物理实验》
实
验
报
告
实验名称:空气中声速的测量
专业班级:组别:
姓名:学号:
合作者:日期:
然要求S1和S2端面严格平行?说明理由。
答:因为只有当S1和S2表面保持互相平行且正对时,S1和S2间才能形成驻波,才会出现波腹和波节,S2表面才会出现声压极大值,屏幕上才会出现正弦波振幅变化,由此可测超声波波长。
在相位比较法中不要求S1和S2端面严格平行。
因为相位比较法是通过李萨如图形来观察相位的变化,图形的形成是两个相互垂直的振动的叠加。
不需要形成驻波,故不要求S1和S2端面严格平行。
实验十三声速的测定声波是一种在弹性媒质中传播的机械波。
声速是描述声波在媒质中传播特性的一个基本物理量,它的测量方法可分为两类;第一类方法是根据关系式V=L/t,测出传播距离L和所需时间t 后,即可算出声速V;第二类方法是利用关系式V=fλ,从测量其频率f和波长λ来算出声速V。
本实验所采用的共振干涉法和相位比较法属于后者,时差法则属于前者。
由于超声波具有波长短、易于定向发射及抗干扰等优点,所以在超声波段进行声速测量是比较方便的。
通常利用压电陶瓷换能器来进行超声波的发射和接收。
一、实验目的1.学会用驻波共振法和位相比较法测定超声波在空气中的传播速度。
2.进一步学习使用示波器和信号发生器。
3.加强对驻波及振动合成等理论的理解。
二、实验仪器声速测定仪为观察、研究声波在不同介质中传播现象,测量这些介质中声波传播速度的专用仪器。
1.声速测定仪图1 声速测试架外型示意图2.仪器配套性表1 超声速测量实验仪器配套性表声速测定仪1台双踪示波器1台信号发生器1台信号连接线3根三、实验原理1.超声波与压电陶瓷换能器- 1 -- 2 -频率20Hz-20kHz 的机械振动在弹性介质中传播形成声波,高于20kHz 称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射等优点。
声速实验所采用的声波频率一般都在20~60kHz 之间,在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳。
图2 纵向换能器的结构简图压电陶瓷换能器根据它的工作方式,分为纵向(振动)换能器、径向(振动)换能器及弯曲振动换能器。
声速教学实验中所用的大多数采用纵向换能器。
图7-2为纵向换能器的结构简图。
2.驻波共振法测定声速假设在无限声场中,仅有一个点声源S 1(发射换能器)和一个接收平面(接收换能器S2)。
当点声源发出声波后,在此声场中只有一个反射面(即接收换能器平面),并且只产生一次反射。
在上述假设条件下,发射波11cos(2/)A t x ξωπλ=+。
声速的测量实验报告及数据处理一、实验目的1、了解声速测量的基本原理和方法。
2、学习使用驻波法和相位法测量声速。
3、掌握数据处理和误差分析的方法。
二、实验原理1、驻波法声波在介质中传播时,入射波和反射波相互叠加形成驻波。
在驻波中,相邻两个波腹(或波节)之间的距离为半波长。
通过测量相邻两个波腹(或波节)之间的距离,就可以计算出声波的波长,再结合声波的频率,即可求出声速。
2、相位法利用两个同频率、振动方向相同但存在相位差的声波,通过测量它们的相位差来计算声波的波长,从而求得声速。
三、实验仪器1、声速测量仪2、示波器3、信号发生器四、实验步骤1、驻波法(1)连接好实验仪器,将信号发生器的输出信号接入声速测量仪的发射端,示波器的输入通道分别连接声速测量仪的接收端和信号发生器的同步输出端。
(2)调节信号发生器的频率,使示波器上显示出稳定的正弦波。
(3)缓慢移动声速测量仪的接收端,观察示波器上波形的变化,找到相邻的波腹(或波节),记录下接收端的位置。
(4)重复测量多次,求出相邻波腹(或波节)之间的平均距离,即为半波长。
2、相位法(1)按照驻波法的连接方式连接好实验仪器。
(2)调节信号发生器的频率,使示波器上显示出两个同频率、振动方向相同但存在相位差的正弦波。
(3)通过示波器上的李萨如图形,测量两个声波的相位差。
(4)根据相位差和声波的频率计算出声波的波长。
五、实验数据记录与处理1、驻波法|测量次数|相邻波腹(或波节)之间的距离(mm)||||| 1 |____ || 2 |____ || 3 |____ || 4 |____ || 5 |____ |平均值:____已知信号发生器的频率 f =____ Hz,根据波长λ = 2×平均值,计算出声波的波长λ =____ 。
声速 v =λ×f =____ 。
2、相位法|测量次数|相位差(度)||||| 1 |____ || 2 |____ || 3 |____ || 4 |____ || 5 |____ |平均值:____已知信号发生器的频率 f =____ Hz,根据波长λ = 360°/(平均值×2π)×λ,计算出声波的波长λ =____ 。
声速的测定实验报告 1、实验目的(1)学会用驻波法和相位法测量声波在空气中传播速度。
(2)进一步掌握示波器、低频信号发生器的使用方法。
(3)学会用逐差法处理数据。
2、实验仪器超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。
3、实验原理3.1 实验原理声速V 、频率f 和波长λ之间的关系式为λf V =。
如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。
常用的测量声速的方法有以下两种。
3.2 实验方法3.2.1 驻波共振法(简称驻波法)S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。
当波源的频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。
驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中,S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为:3,2,1,2==n nL λ(1)即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。
在示波器上得到的信号幅度最大。
当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。
移动S 2,可以连续地改变L 的大小。
由式(1)可知,任意两个相邻共振状态之间,即S 2所移过的距离为:()22211λλλ=⋅-+=-=∆+n n L L L n n (2)可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。
此距离2λ可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ⋅=λ,就可求出声速。
3.2.2 两个相互垂直谐振动的合成法(简称相位法)在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。
其轨迹方程为:()()φφφφ122122122122-=--⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛Sin Cos A A XY A Y A X (5)在一般情况下,此李沙如图形为椭圆。
【实验目的】1.了解压电换能器的功能,加深对驻波及振动合成等理论知识的理解。
2.学习用共振干涉法、相位比较法和时差法测定超声波的传播速度。
3.通过用时差法对多种介质的测量,了解声纳技术的原理及其重要的实用意义。
【实验原理】在波动过程中波速V 、波长λ和频率f 之间存在着下列关系:λ∙=f V ,实验中可通过测定声波的波长λ和频率f 来求得声速V 。
常用的方法有共振干涉法与相位比较法。
声波传播的距离L 与传播的时间t 存在下列关系:t V L ∙= ,只要测出L 和t 就可测出声波传播的速度V ,这就是时差法测量声速的原理。
1.共振干涉法(驻波法)测量声速的原理:当二束幅度相同,方向相反的声波相交时,产生干涉现象,出现驻波。
对于波束1:)/X 2t cos(A F 1λ∙π-ω∙=、波束2:()λ∙π+ω∙=/X 2t cos A F 2,当它们相交会时,叠加后的波形成波束3:()t cos /X 2cos A 2F 3ω∙λ∙π∙=,这里ω为声波的角频率,t 为经过的时间,X 为经过的距离。
由此可见,叠加后的声波幅度,随距离按()λ∙π/X 2cos 变化。
如图28.1所示。
压电陶瓷换能器1S 作为声波发射器,它由信号源供给频率为数千周的交流电信号,由逆压电效应发出一平面超声波;而换能器2S 则作为声波的接收器,正压电效应将接收到的声压转换成电信号,该信号输入示波器,我们在示波器上可看到一组由声压信号产生的正弦波形。
声源1S 发出的声波,经介质传播到2S ,在接收声波信号的同时反射部分声波信号,如果接收面(2S )与发射面(1S )严格平行,入射波即在接收面上垂直反射,入射波与发射波相干涉形成驻波。
我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器2S 处的振动情况。
移动2S 位置(即改变1S 与2S 之间的距离),你从示波器显示上会发现当2S 在某些位置时振幅有最小值或最大值。
根据波的干涉理论可以知道:任何二相邻的振幅最大值的位置之间(或二相邻的振幅最小值的位置之间)的距离均为2/λ。
空气中超声传播规律的研究、超声声速的测量1、掌握用驻波法和相位比较法测量空气中的声速。
2、加深对驻波和振动合成理论知识的理解,了解超声压电换能器的结构和原理。
3、进一步掌握信号源和示波器的使用,培养综合使用仪器的能力。
1、理解驻波法和位相法测声波波长的原理。
2、掌握用驻波法和相位比较法测超声波波长的方法。
理论联系实际;实验观察与比较;精讲与指导讨论相结合。
3个学时一、前言声波是在弹性介质中传播的一种机械波。
振动频率在20 ~ 20000Hz的声波为可闻声波,频率超过20000Hz的声波称为超声波。
对于声波特性(如频率、波长、波速、相位等)的测量是声学技术的重要内容。
声速的测量在声波定位、探伤、测距中有广泛的应有。
在石油工业中,常用声波测井获取孔隙度等地层信息,在勘探中常用地震波勘测地层剖面寻找油层。
测量声速最简单的方法之一是利用声速与振动频率f和波长λ之间的关系(即u fλ=)来进行的。
由于超声波具有波长短、能定向传播等特点,所以在超声波段进行声速测量是比较方便的。
本实验就是测量超声波在空气中的传播速度。
超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常见的是利用压电效应和磁致伸缩效应。
在实际应用中,对于超声波测距、定位测液体流速、测材料弹性模量、测量气体温度的瞬间变化等方面,超声波传播速度都有重要意义。
二、实验仪器SVX-3声速测定仪,信号源,双踪示波器,屏蔽导线等。
三、实验原理声波的传播速度u与其频率f和波长λ之间的关系为u fλ=,实验时,测得声波的频率f和波长λ,即可算出u。
测定声速常用的方法有相位比较法和驻波法等。
1.驻波法如下图所示由声源S 1发出的平面简谐波沿x 轴正方向传播,接收器S 2在接收声波的同时还反射一部分声波,当S 1和S 2表面互相平行时,声波在S 1、S 2之间,S 1发出的声波和S 2反射的声波之间形成干涉而出现驻波共振现象。
设沿x 方向入射波的方程为:沿x 负方向反射波方程为:两波相遇干涉时,在空间某点的合振动方程为(驻波方程):12cos 2()cos 2()x xy y y A ft A ft ππλλ=+=-++(2cos 2)cos 2xA ft ππλ=当2/λn x =;(n =1,2,…)位置时,声振动振幅最大,为2A ,称为波腹,当4/)12(λ-=n x ,(n =1,2,…)位置上声振动振幅为零,这些点称为波节。
实验3-5 声速的测量声波是一种在弹性媒质中传播的机械波,由于其振动方向与传播方向一致,故声波是纵波。
振动频率在20~20Hz KHz 的声波可以被人们听到,称为可闻声波;频率超过20KHz 的声波称为超声波。
对于声波特性的测量(如频率、波速、波长、声压衰减和相位等)是声学应用技术中的一个重要内容,特别是声波波速(简称声速)的测量,在无损检测、测距和定位、测气体温度的瞬间变化、测液体的流速、测材料的弹性模量等应用中具有重要的意义。
如测量氯气等气体或蔗糖溶液的浓度、橡胶乳液的密度以及测定输油管中不同油品的分界面等,这些问题都可以通过测定这些物质中的声速来解决。
声速的测量方法可分为两类;第一类方法是根据关系式/L t =v ,测出传播距离L 和所需时间t 后,即可算出声速v ;第二类方法是利用关系式λf ⋅v =,从测量其频率f 和波长λ来算出声速v .本实验所采用的共振干涉法和相位比较法属于后者,时差法则属于前者。
声速与声波的频率无关,只决定于弹性介质的性质。
由于超声波具有波长短、易于定向发射及抗干扰等优点,所以在超声波段进行声速测量是比较方便的。
对声速这一非电量的测量本实验是利用压电陶瓷换能器来进行。
【实验目的】①学会用共振干涉法和相位法测量空气中的声速;②学会使用示波器和信号发生器;③加强对驻波及振动合成等理论的理解。
【预习思考题】①实验中是如何获得超声波的?②驻波法和相位法测声速的方法有何异同?【实验原理】声波的传播速度与其频率和波长的关系为λf ⋅v = (3-5-1)测得声波的频率和波长,就可得到声速。
同样,传播速度亦可用/L t =v 表示,若测得声波传播所经过的距离L 和传播时间t ,也可求得声速。
1.超声波与压电陶瓷换能器超声波具有波长短,易于定向发射、易被反射等优点。
在超声波段进行声速测量的优点还在于超声波的波长短,可以在短距离较精确地测出声速。
本实验超声波的发射和接收采用的是压电陶瓷制成的换能器(探头),它利用压电效应和磁致伸缩效应可以在机械振动与交流电压之间双向换能。
空气中声速的测量实验报告一、实验目的1、了解声波在空气中传播的基本特性。
2、掌握测量空气中声速的几种方法。
3、学会使用相关实验仪器,并提高实验数据处理和误差分析的能力。
二、实验原理声音是一种机械波,其在空气中的传播速度与空气的温度、湿度、压强等因素有关。
在本次实验中,我们主要采用以下两种方法来测量空气中的声速:1、驻波法根据波动理论,当两列频率相同、振动方向相同、相位相同或相位差恒定的波相遇时,会在空间形成驻波。
在一根两端固定的弦线上,当弦线的长度等于半波长的整数倍时,就会形成驻波。
对于声波,在一端开口、一端封闭的管中,当入射波与反射波叠加形成驻波时,在封闭端形成波节,开口端形成波腹。
相邻两波节或波腹之间的距离等于半波长。
通过测量管中形成驻波时的长度,就可以计算出声波的波长,再结合声源的频率,即可求出声速。
2、相位比较法利用李萨如图形来比较发射波和接收波的相位差。
当发射波和接收波的相位差为 0 或2π 的整数倍时,李萨如图形为直线;当相位差为π的奇数倍时,李萨如图形为椭圆。
通过移动接收端,观察李萨如图形的变化,记录相位变化相同的两点之间的距离,从而计算出声波的波长,进而求出声速。
三、实验仪器1、声速测量仪包括超声发射换能器、超声接收换能器、游标卡尺、固定支架等。
2、信号发生器用于产生一定频率的电信号,驱动超声发射换能器发射声波。
3、示波器用于观察发射波和接收波的波形以及李萨如图形。
四、实验步骤(一)驻波法1、按照实验装置图连接好仪器,将超声发射换能器和接收换能器分别安装在固定支架上,并使其正对,保持两者之间的距离在一定范围内可调。
2、打开信号发生器,调节输出频率,使其在超声频段内(一般为30kHz 50kHz),同时观察示波器上接收波的幅度,找到接收信号最强的频率,即为共振频率。
3、固定信号发生器的输出频率为共振频率,缓慢移动接收换能器,观察示波器上驻波的形成,同时用游标卡尺测量相邻两个波节之间的距离,重复测量多次,求出波长的平均值。
××大学实验预习报告(××组)××学院 ××系 ××专业××级 ××姓名 ××学号 ××日期实验七:声速的测量一:实验目的1. 用极值法和位相法测量空气中的声速2. 掌握用电声换能器进行电声转换的测量方法3. 学会用逐差法处理实验数据4. 进一步学习示波器的应用 二:实验仪器SV6型超声速测量组合仪,SV5型声速测定专用信号源,双踪示波器三:实验内容及数据记录 1. 确定仪器组最佳工作频率f2. 将测试方法设置到连续方式,观察示波器,移动2S 找出接受波形的最大值,记录幅度为最大值时的距离;记下2S 位置0x ,调节2S ,逐次记下振幅最大的1x ,2x ……12x 共12个点,12i ix x λ+=-,用逐差法处理12个数据即可得到接受波长λ,而声速v f λ=,得到声速v 。
3. 相位法:接受波接“CH1”,发射波接“CH2”,设置为“x-y ”方式。
适当调节示波器,出现李萨茹图。
转动鼓轮,使波形成一斜线,记下2S 位置i x ,再向相同方向移动2S ,直至变化成同一斜线,记下2S 位置1ix +,则1i i ix x λ+=-,多次测定取其平均值即可得到波长λ v =f·λ数据表格:实验前t 1= ℃ 试验后t 2= ℃××大学实验报告(××组)××学院××系××专业××级××姓名××学号××日期实验七:声速的测量一.实验目的1.用极值法和位相法测量空气中的声速2.掌握用电声换能器进行电声转换的测量方法3.学会用逐差法处理实验数据4.进一步学习示波器的应用二.实验仪器SV6型超声速测量组合仪,SV5型声速测定专用信号源,双踪示波器三.实验原理1.驻波法测声速S作为声波发射器,它由信号源供给频率37KHz 压电陶瓷换能器1左右的交流电信号,由逆压电效应发出一平面超声波,形成沿X方向传播的平面纵波,该纵波在传播过程中遇到作为声波接收器的声波换S,2S接受声波信号的同时发射部分声波信号,如果接受面2S 能器2S严格平行,入射波即在接受面上垂直反射,入射波与发射波相与1干涉形成驻波,正压电效应将接受到的声压转换成电信号,该信号输入示波器,在示波器上可以看到一组由声压信号产生的正弦波形,实际上是两个相干波合成后在接收器2S 处的振动情况,移动2S 位置,由于声波传播的阻尼衰减,在示波器上显示会发现当2S 在某些位置时,振幅会有驻波衰减变化的最小值或最大值。
实验28 空气中声速的测定1 实验仪器超声声速测定仪、低频信号发生器(DF1027B)、示波器(ST16B)。
2 教学内容及要求2.1 教学内容2.1.1 驻波法测量声速1)按教材中的实验图接好线路,换能器S1接到低频信号发生器的“功率输出”,换能器S2接到示波器的“Y input”端,输入方式为AC ;X输入方式为“自动”,触发源选择“内”。
2)打开低频信号发生器的电源开关,频率范围选择10K-100KHz,电压输出为5-8V,电压衰减为20dB;波形选择为正弦波。
3)打开示波器的电源开关,Y衰减开关VOLTS/DIV可选择0.5v档,扫描时间TIME/DIV可选择20us档。
4)移动S2位置,目测S1与S2的距离约为3cm,调整低频信号发生器的“频率调节”和“频率微调”旋钮,并观察示波器上波形幅度为最大,说明换能器S1处于共振状态,记下频率f值。
(共振频率范围约36--38KHz之间。
)5)调节示波器上有关旋钮的作用,使屏幕上的波形清晰、对称,波形幅度适中。
(若波形幅度超过屏幕,可调节示波器上的Y增益旋钮。
)6)向右稍移S2,同时观察示波器上波形的变化,使波形幅度最大,记下S2的初始位置L0。
(若幅度超过屏幕,可调整Y增益,使波形满屏。
)7)由近至远慢慢移动接收器S2,逐个记下若干个幅度最大的位置(即Li值)。
2.1.2 相位法测声速1)按上述1)步骤;将示波器“X输入”端接到低频信号发生器的电压输出(注意不能接同步输出),触发方式选择“外接”。
2)将S2移回距S1大约3cm的距离,向右慢慢移动S2,调节游标卡尺微调螺丝,同时观察示波器上的图形变化,使图形为“/”,记下S2初始位置L O。
3)由近至远慢慢移动S2,并观察图形变化,逐个记下每发生一次半周期变化(即图形由“/”直线变到“\”直线)接收换能器S2的位置读数Li值,共测若干个数据。
2.2 教学要求1)熟悉超声声速测定仪的组成及作用;2)利用已学过的示波器使用方法,独立完成本实验有关示波器的调节步骤;3)理解驻波法和相位法测量声波在空气中传播速度的原理;4)理解影响声波传播速度的几个因素;准备报道实验结果。
【实验目的】1.了解压电换能器的功能,加深对驻波及振动合成等理论知识的理解。
2.学习用共振干涉法、相位比较法和时差法测定超声波的传播速度。
3.通过用时差法对多种介质的测量,了解声纳技术的原理及其重要的实用意义。
【实验原理】在波动过程中波速V 、波长λ和频率f 之间存在着下列关系:λ∙=f V ,实验中可通过测定声波的波长λ和频率f 来求得声速V 。
常用的方法有共振干涉法与相位比较法。
声波传播的距离L 与传播的时间t 存在下列关系:t V L ∙= ,只要测出L 和t 就可测出声波传播的速度V ,这就是时差法测量声速的原理。
1.共振干涉法(驻波法)测量声速的原理:当二束幅度相同,方向相反的声波相交时,产生干涉现象,出现驻波。
对于波束1:)/X 2t cos(A F 1λ∙π-ω∙=、波束2:()λ∙π+ω∙=/X 2t cos A F 2,当它们相交会时,叠加后的波形成波束3:()t cos /X 2cos A 2F 3ω∙λ∙π∙=,这里ω为声波的角频率,t 为经过的时间,X 为经过的距离。
由此可见,叠加后的声波幅度,随距离按()λ∙π/X 2cos 变化。
如图28.1所示。
压电陶瓷换能器1S 作为声波发射器,它由信号源供给频率为数千周的交流电信号,由逆压电效应发出一平面超声波;而换能器2S 则作为声波的接收器,正压电效应将接收到的声压转换成电信号,该信号输入示波器,我们在示波器上可看到一组由声压信号产生的正弦波形。
声源1S 发出的声波,经介质传播到2S ,在接收声波信号的同时反射部分声波信号,如果接收面(2S )与发射面(1S )严格平行,入射波即在接收面上垂直反射,入射波与发射波相干涉形成驻波。
我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器2S 处的振动情况。
移动2S 位置(即改变1S 与2S 之间的距离),你从示波器显示上会发现当2S 在某些位置时振幅有最小值或最大值。
根据波的干涉理论可以知道:任何二相邻的振幅最大值的位置之间(或二相邻的振幅最小值的位置之间)的距离均为2/λ。
驻波法测声速实验数据篇一:驻波法测量声速驻波法测量声速声波是一种在弹性媒质中传播的机械波,频率低于20Hz的声波称为次声波;频率在20Hz-20KHz的声波可以被人听到,称为可闻声波;频率在20KHz以上的声波称为超声波。
超声波在媒质中的传播速度与媒质的特性及状态因素有关。
因而通过媒质中声速的测定,可以了解媒质的特性或状态变化。
声速测定在工业生产上具有一定的实用意义。
一、实验内容1、用驻波法测定空气中的声速。
2、用李萨茹图形的变化,观测位相差。
3、了解时差法测定超声波的传播速度。
二、实验仪器SVX-5型声速测试仪信号源 SV-DH系列声速测试仪实验装置三、预备知识介绍1.声波频率介于20Hz~20kHz的机械波振动在弹性介质中的传播就形成声波,介于20kHz~500MHz的称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射和会聚等优点,声速实验所采用的声波频率一般都在20KHz~60kHz之间。
在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器、效果最佳。
2.压电陶瓷换能器压电陶瓷换能器是由压电陶瓷片和轻重两种金属组成。
压电陶瓷片是由一种多晶结构的压电材料(如石英、锆钛酸铅陶瓷等),在一定温度下经极化处理制成的。
它具有压电效应,即受到与极化方向一致的应力T时,在极化方向上产生一定的电场强度E且具有线性关系:E?g?T,即力→电,称为正压电效应;当与极化方向一致的外加电压U加在压电材料上时,材料的伸缩形变S与U之间有简单的线性关系:S?d?U,即电→力,称为逆压电效应。
其中g为比例系数,d为压电常数,与材料的性质有关。
由于E与T,S与U之间有简单的线性关系,因此我们就可以将正弦交流电信号变成压电材料纵向的长度伸缩,使压电陶瓷片成为超声波的波源。
即压电换能器可以把电能转换为声能作为超声波发生器,反过四、实验原理根据声波各参量之间的关系可知????f,其中?为波速, λ为波长,频率。
实验报告声速的测定-驻波法测声速2013301020142 吴雨桥 13级弘毅班物理科学与技术学院本实验利用超声波采用驻波法来测定空气中的声速。
【实验目的】(1)学会用驻波法测定空气中的声速。
(2)了解压电换能器的功能,熟悉低频信号发生器和示波器的使用。
(3)掌握用逐差法处理实验数据。
【实验器材】声波驻波仪、低频信号发生器、数字频率计、毫伏表、示波器、屏蔽导线。
【仪器介绍】声波驻波仪如图所示,在量程为50cm的游标尺的量爪上,相向安置两个固有频率相同的压电换能器。
移动游标及借助其微动装置就可精密地调节两换能器之间的距离L。
压电换能器是实现声波(机械振动)和电信号相互转换的装置,它的主要部件是压电陶瓷换能片。
当输给一个电信号时,换能器便按电信号的频率做机械振动,从而推动空气分子振动产生平面声波。
当它受到机械振动后,又会将机械振动转换为电信号。
压电换能器S1作为平面声波发射器,电信号由低频信号发生器供给,电信号的频率读数由数字频率计读出;压电换能器S2作为声波信号的接收器被固定于游标尺的附尺上,转换的电信号由毫伏表指示。
为了在两换能器的端面间形成驻波,两端面必须严格平行。
【实验原理】声波是一种在弹性媒质中传播的机械波,它和声源振动的频率f、波长λ有如下关系:v=fλ如果已知声源振动的频率f,只要测定声波在空气中的波长λ,即可由上式求得空气中的声速。
本实验采用驻波法测定声波在空气中的波长λ。
两列振幅相同传播方向相反的相干波叠加形成驻波,它不受两个波源之间距离等条件的限制。
驻波的强度和稳定性因具体条件的不同有很大差异。
只有当波源的频率和驻波系统的固有频率相等时,驻波振幅才达到最大值,该现象称为驻波共振。
改变S1、S2端面之间的距离L,当S1、S2端面之间的距离L恰好等于超声波半波长的整数倍时,即L=nλ/2 (n=1,2,3…)在S1、S2之间的介质中出现稳定的驻波共振现象,此时逐波振幅达到最大;同时,在接受面上的声压波腹也相应的达到极大值,转化为电信号时,电信号的幅值也会到达极大值。