当此类材料发生相变后,材料的物理性质 会发生巨大的改变,故人们可以利用材料 的物性的改变,设计出各种功能的元件应 用于不同的装臵中. 如:superconducting transition 可用于电 力载送,magenetic transition 可用于资料 存储.
三个方向同时退化━0D或准0D团簇系统
Graphite
Diamond
低维电子系统,德布罗意波长,
2 2m* E
2
为一特征长度,微观描述中,该尺度下,量 子尺寸效应将显露出来
E 100meV, m* 0.1eV , : 10 ~ 100nm
介观的界定
在空间尺寸上介于宏观和微观之间(这种 说法有点笼统). 介观系统:电子行为的主要特征是电子通 过样品之后仍能保持自身波函数的相位 相干性. 微观尺寸范围的系统里,如0.1nm左右尺 度的一个原子或一个小分子,所有的能级 都是分立的, 因而系统的物理性质主要 由量子行为控制.
M. Ratner, Nature 397, 480 (1999)
1D模型(SSH):
H H el H lat
ˆ n
n,s N t u u c c c n,s n 0 n 1 n n , s n 1, s n 1, s cn , s
聚硫氮(SN)x的分子结构
当温度降低时,这些一维导体会发生相 变,出现超晶格和电荷密度波 (CDW) 或 自旋密度波 (SDW),很多材料在相变后 成为导体(Peierls相变)。它们的分子式、 相变温度 Tc、超晶格的晶格常数即 CDW 波长、电导率等见表5.1.1(P116)。
聚合物通常由碳链组成,电子沿链方向的耦合比垂直于链 方向的耦合强得多,成为准一维体系,代表材料有聚乙炔、 聚噻吩、聚苯胺等。常温下,它们呈现二聚化结构,绝缘 基态,但在高温下,二聚化消失,发生Peierls相变。常温 下的聚合物通过掺杂电导率可增加几个甚至十几个数量级, 高达 105(cm)-1,成为有机导体。高分子聚合物还具有重 要的电致发光性能和潜在的铁磁性能。以聚对苯乙炔作为 发光材料研制的有机发光器件,其量子发光效率可达 4%, 亮度可与通常的液晶显示相比。目前已发现近百种有机高 分子材料具有电致发光特性,发光颜色已覆盖整个可见光 谱区。聚合物 m-PDPC(m-polydiphenylcarbene) 可具有潜 在铁磁特性,来源于每个基团内的局域自旋与 电子的自 旋耦合,这类材料还有 poly-BIPO,pyro-PAN 等。由于不 含任何无机金属离子,其磁性机理及材料合成中均出现很 多新概念和新方法。