数学史资料
- 格式:doc
- 大小:61.00 KB
- 文档页数:6
介绍数学史数学名人介绍数学史和数学名人的内容非常丰富,涉及许多重要的数学概念、理论和应用。
由于篇幅限制,我将简要概述数学史和几位著名的数学家,并提供一些详细的参考资料,以便您深入了解。
一、数学史数学是人类文明的重要组成部分,它的起源可以追溯到古代文明时期。
在古埃及、古巴比伦、古印度和古中国等文明中,人们开始使用数学来解决实际问题,如建筑、农业和天文学等。
随着时间的推移,数学逐渐发展成为一个高度抽象和严谨的学科。
在欧洲中世纪,阿拉伯和希腊的数学成果对欧洲数学产生了深远的影响。
文艺复兴时期,欧洲数学取得了巨大的进步,许多重要的数学家如笛卡尔、费马和牛顿等人都做出了杰出的贡献。
进入现代时期,数学的分支学科越来越多,包括代数、几何、概率论、统计学和拓扑学等。
二、数学名人1.欧几里得(约公元前330年—公元前275年):古希腊数学家,以其著作《几何原本》而闻名。
这部著作是西方数学的基础,包含了欧几里得几何的5个公理和48个命题。
2.阿基米德(公元前287年—公元前212年):古希腊数学家、工程师和物理学家。
他被誉为流体静力学的奠基人,并解决了许多重要的数学问题,如圆的面积和球的体积。
3.牛顿(1643年—1727年):英国数学家和物理学家。
他提出了万有引力定律和三大运动定律,并对微积分学做出了重大贡献。
4.高斯(1777年—1855年):德国数学家。
他在数学、物理和天文学等领域做出了杰出的贡献,被誉为“数学王子”。
他解决了许多重要的数学问题,如最小二乘法、二次互反律和微分几何等。
5.欧拉(1707年—1783年):瑞士数学家。
他是现代数学的重要人物之一,对代数、几何、数论和微积分等领域做出了杰出的贡献。
他解决了许多著名的数学问题,如哥尼斯堡七桥问题等。
6.柯西(1789年—1857年):法国数学家。
他对分析学、微积分学和复变函数等领域做出了重要的贡献。
他提出了极限、导数和积分等概念的定义,这些定义至今仍被广泛使用。
数学历史知识点总结第一部分:数学的古代历史数学的历史可以追溯到远古时代,最早的数学知识产生于人类最初的文明社会。
在古代,数学主要是与宗教、天文、建筑和商业等相关联。
古埃及人和美索不达米亚人是最早有数学知识的民族之一。
在古埃及,他们用数学知识解决了水文学问题,进行土地测量,并且建立了一套数学体系。
在美索不达米亚,人们用数学知识解决了土地测量、建筑和商业问题。
古印度人也在数学领域取得了一定的成就,诸如《苏尔达莱数》就是印度数学的一个重要成就。
此外,古希腊人也在数学领域取得了一定的成就,例如毕达哥拉斯学派提出的毕达哥拉斯定理就是古希腊数学的重要成就。
第二部分:数学的中世纪历史在中世纪,数学得到了快速发展。
在古印度的数学知识通过阿拉伯人传入西方后,欧洲的数学得到了巨大的发展。
一些著名的数学家如欧几里德、阿基米德、笛卡尔等相继出现。
同时,阿拉伯数学家的工作也在数学史上留下了浓墨重彩的一笔。
第三部分:数学的近代历史在近代,数学得到了空前的发展。
17世纪,微积分学的发明推动了数学的一次巨革。
微积分学的发明使得人们能够用数学语言更好地描述自然界的规律,从而推动了科学的发展。
同时,数学的其他分支如代数学、几何学、概率论等也得到了快速的发展。
著名的数学家如牛顿、莱布尼茨、高斯等相继出现,在数学领域取得了卓越的成就。
第四部分:数学的现代历史在现代,数学得到了前所未有的发展。
20世纪是数学发展的黄金时期。
在这个时期,数学的多个领域取得了空前的发展。
在代数学领域,人们发明了抽象代数学,从而使得代数学的研究范围得到了巨大的扩展。
在几何学领域,人们发现了非欧几何学,从而使得几何学的研究范围得到了巨大的扩展。
在概率论领域,人们发明了随机过程,从而使得概率论的研究范围得到了巨大的扩展。
同时,数学的应用也得到了前所未有的发展。
数值分析、计算数学、运筹学等新的数学学科相继出现,为现代科学和技术的发展奠定了数学基础。
第五部分:数学的未来发展在未来,数学将继续发展。
数学发展历程简要介绍数学作为一门古老而又充满魅力的学科,经历了漫长的发展过程。
从古代的埃及和巴比伦到现代的计算机时代,数学在人类思维和社会发展中发挥了巨大的作用。
本文将以简要的方式介绍数学的发展历程。
1. 古代数学数学的历史可以追溯到远古时代。
古代的埃及和巴比伦是数学的起源地之一。
埃及人和巴比伦人使用数学来解决土地测量、纳税和商业交易等实际问题。
埃及人还使用几何学来建造金字塔,并开发出了一套复杂的分数系统。
另一个重要的古代数学文化是古希腊。
希腊人在几何学方面取得了重大突破,欧几里德的《几何原本》是古代几何学的经典之作。
希腊人还研究了无理数,并建立了一套严密的逻辑推理。
2. 中世纪和文艺复兴时期的数学中世纪欧洲的数学发展相对较慢,但在文艺复兴时期出现了一系列重要的数学发现。
意大利数学家斯卡拉蔡在13世纪开创了代数学的先河,他提出了使用字母表示未知数的思想,并发展了求解方程的方法。
文艺复兴时期的数学家卡尔丹提出了无穷级数的概念,并解决了许多几何和代数问题。
同时,卡尔丹的学生费马提出了著名的费马大定理,引发了数学界几个世纪的研究热潮。
3. 近代数学17世纪是数学发展的重要转折点。
牛顿和莱布尼茨同时独立发明了微积分学,为物理学和工程学等应用学科提供了坚实的数学基础。
微积分的发展不仅丰富了数学理论,还在研究天体运动和物体运动等领域发挥了重要作用。
18世纪的数学史上最重要的事件之一是欧拉的工作。
欧拉是一位多产的数学家,他在分析学、数论、几何学等领域都有重要贡献。
19世纪是数学发展的繁荣时期。
高斯、拉格朗日、阿贝尔等杰出的数学家出现,并在代数、数论和几何学等领域取得突破性进展。
数学的抽象化程度越来越高,从而推动了现代数学的诞生。
4. 现代数学20世纪以来,数学的发展进入了一个全新的阶段。
在此期间,数学分支不断扩张,涉及到概率论、拓扑学、数理逻辑、组合数学等领域。
计算机的发明也催生了计算数学学科的诞生。
数学的发展并不仅限于理论层面,它也在科学、工程和金融等领域产生了广泛的应用。
李文林认为数学史的研究具有三重目的:一是历史的目的,即恢复历史本来的面目;二是数学的目的,即古为今用,为现实的数学研究与自主创新提供历史借鉴;三是教育的目的,即在数学教学中利用数学史,作为数学史研究的根本方法与手段,常有历史考证、数理分析、比拟研究等方法。
周脾算经:天文学与数学的著作九章算术:总结性的数学著作宋元全盛时期〔1000年-14世纪初〕中国数学的全盛时期数书九章:秦九韶贾宪三角阵〔二项展开式系数〕郭守敬的球面三角朱世杰的四元术〔四元高次方程论〕完整的系统与完备的算法历史学家往往把兴起于埃及、美索不达米亚、中国与印度等地域的古代文明称为“河谷文明〞。
早期数学就是在尼罗河、底格里斯河与幼发拉底河、黄河与长江、印度河与恒河等河谷地带首先开展起来的。
亚历山大大帝〔前356~前323 〕是欧洲历史上最伟大的军事天才,马其顿帝国最富盛名的征服者。
亚历山大大帝,古代马其顿国王,世界古代史上著名的军事家与政治家泰勒斯生于公元前624年,是公认的希腊哲学鼻祖。
泰勒斯在数学方面的奉献是开场了命题的证明,它标志着人们对客观事物的认识从感性上升到理性,这在数学史上是一个不寻常的飞跃。
泰勒斯是演绎几何学的鼻祖,开数学证明之先河,“毕达哥拉斯学派万毕达哥拉斯非常重视数学,企图用数来解释一切。
万物皆数〞是历史上第一次用数来观察、解释世界的学说。
无理数的发现是毕达哥拉斯学派最卓越的功绩,也是整个数学史上一项重大发现。
雅典时期的希腊数学黄金时代——亚历山大学派成就最大的是亚历山大前期三大数学家欧几里得、阿基米德与阿波罗尼奥斯。
欧几里得的几何原本是一部划时代的著作。
其伟大的历史意义在于它是用公理法建立起演绎体系的最早典范。
阿基米德他根据力学原理去探求解决面积与体积问题,已经包含积分学的初步思想。
阿波罗尼奥斯的主要奉献是对圆锥曲线的深入研究。
阿基米德“智慧之都〞“力学之父〞阿基米德原理〞(浮力定律)亚历山大后期,公元前146年以后,在罗马统治下的亚历山大学者仍能继承前人的工作,不断有所创造。
大学课本每册数学史资料整理1. 引言本文档旨在对大学教材中每册关于数学史方面的资料进行整理和归纳。
通过对这些资料的梳理,学生可以更好地理解数学的历史背景和发展过程,增强对数学的兴趣和理解能力。
2. 第一册2.1 数学史概述- 介绍数学史的定义和研究范围- 引导学生了解数学史的重要性和价值- 简要介绍数学史的主要发展时期和学派2.2 古代数学- 对古希腊、古埃及、古巴比伦等古代文明的数学成就进行概述- 介绍古代数学家如欧几里得、阿基米德等的贡献和成就- 探讨古代数学的应用领域和作用2.3 中世纪数学- 简要阐述中世纪欧洲数学的发展情况- 介绍中世纪数学家如勒让德、斐波那契等人的研究成果- 讨论中世纪数学与宗教、哲学等其他学科的关系3. 第二册3.1 文艺复兴数学- 介绍文艺复兴时期欧洲数学的兴起和发展- 引导学生了解文艺复兴数学家对数学思维的重要贡献- 分析文艺复兴数学对科学革命的影响和推动作用3.2 近代数学- 介绍近代数学的起源和发展背景- 探讨近代数学家如牛顿、莱布尼兹等的创新成果- 分析近代数学和科学革命、工业革命的相互关系3.3 现代数学- 对现代数学的重大突破和发展进行概述- 介绍现代数学家如高斯、欧拉等的影响力和贡献- 探讨现代数学的应用领域和对其他学科的影响4. 结论通过对大学课本中每册数学史资料的整理,学生能够系统地了解数学史的发展脉络和重要人物,加深对数学的认识和理解。
数学史能够激发学生的兴趣和好奇心,帮助他们更好地应用数学知识解决实际问题,促进数学思维的形成和发展。
以上是对大学课本每册数学史资料整理的简要概述,希望能对广大学生有所帮助和启发。
数学简史_完整版数学,作为一门研究数量、结构、变化和空间等概念的学科,是人类文明的重要组成部分。
它不仅是一种工具,更是一种语言,一种思维方式。
数学的发展历程,如同一条源远流长的河流,承载着人类智慧的结晶,见证着人类文明的进步。
数学的起源可以追溯到古代,那时的人们为了解决生活中的实际问题,如测量土地、分配资源等,开始运用简单的数学概念。
在中国,最早的数学文献可以追溯到公元前一世纪的《九章算术》,它详细介绍了分数、比例、开方等基本数学概念,并解决了许多实际问题。
在古希腊,数学家毕达哥拉斯提出了勾股定理,这是数学史上第一个被广泛认可的定理。
在古印度,数学家阿耶波多提出了零的概念,并发展了十进制计数法。
随着文明的进步,数学逐渐成为一门独立的学科。
在17世纪,牛顿和莱布尼茨分别独立发明了微积分,这是数学史上的一次重大突破。
微积分的发明,使得人们能够更准确地描述和预测自然现象,从而推动了科学技术的快速发展。
在18世纪,欧拉提出了复数和欧拉公式,进一步丰富了数学的内涵。
19世纪是数学发展的黄金时代,数学家们开始研究抽象的数学概念,如群论、环论、域论等。
德国数学家高斯提出了代数基本定理,证明了每一个非零的复数多项式方程都有复数根。
法国数学家庞加莱提出了拓扑学,研究几何图形在连续变换下的不变性质。
英国数学家罗素提出了集合论,试图为数学提供一个坚实的基础。
20世纪以来,数学的发展更加迅速,计算机科学的兴起为数学提供了新的研究方向和应用领域。
数学家们开始研究复杂系统、混沌理论、分形几何等新兴领域。
同时,数学在经济学、生物学、物理学等领域的应用也越来越广泛。
例如,在经济学中,数学被用于建立模型和分析市场行为;在生物学中,数学被用于研究生物系统的动态变化;在物理学中,数学被用于描述和预测自然现象。
数学的发展历程充满了挑战和机遇。
它不仅需要数学家们不断探索和创新,更需要全社会的支持和参与。
让我们共同关注数学的发展,为人类的进步贡献自己的力量。
数学史简介数学,作为人类智慧的结晶,自古以来就与人类文明的发展紧密相连。
从最初的计数和测量,到抽象的代数和几何,再到现代的计算机科学和量子力学,数学始终在各个领域发挥着重要作用。
本文将简要介绍数学的发展历程,以展示这一学科的无穷魅力。
一、古代数学数学的起源可以追溯到史前时期,当时的人们为了解决实际问题,如土地测量、天文观测等,开始研究数学。
古埃及和巴比伦是数学发展最早的地区之一,他们研究了几何学和算术,并制定了一些数学规则。
约公元前300年,古希腊数学家欧几里得发表了《几何原本》,这是一部系统地阐述了平面几何知识的著作,对后世产生了深远影响。
二、中世纪数学在中世纪,阿拉伯世界成为了数学研究的中心。
阿拉伯数学家对古希腊数学进行了翻译和传承,并在此基础上进行创新。
他们引入了印度数学中的数字系统,即阿拉伯数字,这一系统在当时比罗马数字更为先进。
阿拉伯数学家还研究了代数学,提出了方程的解法和代数符号。
三、文艺复兴时期数学文艺复兴时期,欧洲数学迅速发展。
这一时期的数学家开始研究更为复杂的数学问题,如三次方程的解法、无穷级数等。
意大利数学家伽利略和德国数学家开普勒在天文学领域取得了重要成果,为后来牛顿和莱布尼茨创立微积分奠定了基础。
四、现代数学17世纪,英国数学家牛顿和德国数学家莱布尼茨几乎同时发明了微积分。
这一学科的出现标志着现代数学的诞生。
此后,数学家们开始研究更为抽象的数学问题,如拓扑学、群论等。
19世纪,法国数学家庞加莱提出了拓扑学的基本概念,为现代几何学的发展奠定了基础。
20世纪,数学家们继续深入研究各个领域,如概率论、数论、计算机科学等,使数学得到了空前的发展。
五、数学在中国中国古代数学也有着悠久的历史。
早在商周时期,我国就有了甲骨文中的数学记载。
汉代,数学家赵爽提出了勾股定理的证明,被称为“赵爽定理”。
唐代,数学家李冶、秦九韶等人研究了高次方程的解法。
宋代,数学家贾宪、杨辉等人研究了几何学和算术。
《数学史》复习资料名词解释:1、可公度量:对于任何两条给定的线段,总能找到某第三线段,以它为单位线段能将给定的两条线段划分为整数段。
这样的两条线段为“可公度量”,即有可公度量的度量单位。
这是古希腊毕达哥拉斯学派对世界任何量都能表示成两个整数比信念的反应。
2、出入相补原理:一个几何图形(平面或立方体的)被分割成若干部分后,面积或体积总保持不变。
3、费马大定理:关于X、Y、Z的不定方程X n+Y n =Z n ,对于任意大于2的自然数n无非零整数解。
4、大数定律:概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。
概率论中讨论随机变量序列的算术平均值向常数收敛的定律。
P128 帕斯卡曾提出的n为正数时的二项式定理,得到所谓伯努利定理:若p是某一事件单独出现一次的概率,q是不出现该事件的概论,则在n次试验中,该事件至少出现m次的概率等于二项式(p+q)n 的展式中的从p n 项到p m q n-m 项的各项之和。
容易看出,这实际上就是概率论中最重要的定律之一——“大数定律”的最早表现形式。
5、倍立方体:就是已知一立方体,求作另一立方体,使它的体积等于已知立方体的两倍。
也即求作一立方体的边,使该立方体的体积为给定立方体的两倍。
6、祖氏原理:P65“幂势既同,则积不容异”,即夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,若所得截面总相等,则此二几何体积相等。
它被称为“祖暅原理”。
1、简述古希腊数学的特点。
答案二:(1)追求理性和唯理的论证数学特点;(2)欧氏几何开创了公理化理论体系;(3)欧式几何形成了演绎思维的特征;总之,希腊数学是追求理性,主要以演绎几何为特征的数学。
2、简述欧几里得《原本》中所确立的公理化思想。
答:公理化思想是古希腊时期在欧氏几何中确立数学演绎范式。
这种范式要求一门学科中的每个命题必须是在它之前已建立的一些命题的逻辑结论,而所有这样的推理链的共同出发点,就是一些基本定义和被认为不证自明的基本原理——公理或公设。
1、数学发展史上的三次危机。
①第一次数学危机:无理数的发现毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家,他曾创立毕达哥拉斯学派,“一切数均可表成整数或整数之比”则是这一学派的数学信仰。
毕达哥拉斯定理(勾股定理)提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数2的诞生。
这在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。
由2000年后的数学家们建立的实数理论才消除它。
②第二次数学危机导源于微积分工具的使用。
x(n是正整数)求导时既把△x不当做0 1734年英国哲学家、大主教贝克莱一针见血地指出牛顿在对n看而又把△x当作0看是一个严重的自相矛盾,从而几乎使微积分停滞不前。
后来还是柯西和魏尔斯特拉斯等人提出无穷小是一个无限向0靠近,但是永远不等于0的变量,这才把微积分重新稳固地建立在严格的极限理论基础上,从而消灭的这次数学危机。
③第三次数学危机:集合论悖论(或罗素悖论)的产生十九世纪下半叶,康托尔创立了著名的集合论。
后来集合概念逐渐渗透到众多的数学分支中,并且实际上集合论成了数学的基础。
可是,1903年,英国数学家罗素提出:集合论是有漏洞的!这就是著名的罗素悖论。
罗素构造了一个集合S:S由一切不是自身元素的集合所组成。
然后问:S是否属于S呢?如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。
无论如何都是矛盾的。
它所引起的巨大反响则导致了第三次数学危机。
危机产生后,数学家纷纷提出自己的解决方案。
比如ZF公理系统。
这一问题的解决现在还在进行中。
罗素悖论的根源在于集合论里没有对集合的限制,以至于让罗素能构造一切集合的集合这样“过大”的集合,对集合的构造的限制至今仍然是数学界里一个巨大的难题。
数学史复习资料数学史是研究数学发展历史的学科,对于数学的理解有着至关重要的作用。
这篇文章将为您提供数学史的一些复习资料,以便您更好地理解数学发展的历史。
一、古代数学的发展古代数学的发展可以追溯到古埃及和古巴比伦时期。
在古埃及,人们就已经开始运用几何学知识解决土地测量和建筑设计等问题。
古巴比伦人则发明了计数系统,并在商业交易中广泛使用。
随着时间的推移,许多数学家依然保留他们的研究成果,比如毕达哥拉斯学派、欧几里得和阿拉伯数学家阿尔-哈齐米等。
二、数学的新发现随着时间的推移,许多心智独特的数学家公布了原创性研究成果,把数学从算术和几何范畴推向了更广泛的领域。
例如,追随欧几里得之后的流派发现了大量的几何学定理和公式,而曾在印度和中东进行研究的数学家则发明了代数学。
印度人的代数学发展在9世纪至12世纪达到高峰,主要研究整式方程以及计算三角函数值。
三、数学家们的贡献许多数学家在数学史上留下了永恒的印记。
例如:欧几里得研究出几何概念,毕达哥拉斯发现拓展的数学原理,牛顿发明了微积分等等。
我们也不能忽视中国古代的数学家贡献,如祖冲之、刘徽、李善兰等人。
祖冲之在几何学和数学推理方面有着重要的贡献,刘徽则发明了中国古代的曲线和三角函数。
四、数学发展的重要事件在数学发展的历史上,有着许多重大事件。
例如,欧几里得的《几何原本》被认为是几何学的代表作品。
这本书是一部范性几何学的典范,成为后世几何学的标志作品。
同时,笛卡尔对代数几何的发现使数学家们换了一个角度看待几何题目。
更有甚者,微积分学的诞生为数学迎来了全新的视野。
五、结语总的来说,数学史是非常有趣也很重要的一门学科。
对于理解数学的本质、发展以及数学家们的贡献,数学史提供了足够的准确的信息和素材。
它能够让我们洞察数学的本质,从而更好地把握数学的发展方向,同时帮助我们更好地应用数学知识。
希望本文所提供的数学史复习资料对于您的学习有所帮助。
数学史资料数学作为一门古老的学科,在人类历史上已经有着数千年的历史。
从最原始的计算工具,到现代复杂的数学理论,数学一直是人类社会持续发展的重要组成部分。
本文将介绍数学史的发展历程和一些数学领域的基础知识。
1、古代数学古代数学是指在西方古希腊和早期东方文明中,诞生的数学学科。
古代数学起源于公元前3000年左右的巴比伦和古埃及。
在那个时代,人们使用简单的计算工具,如木板、羊皮纸和算盘等,来进行基础的运算和计算。
古希腊数学的起源可以追溯到公元前6世纪。
希腊数学家发展了几何学,并设计了可以精确测量角度的工具,如量角器。
这些成果使得希腊文明成为古代数学的鼻祖。
在古代数学的发展历程中,爱因斯坦公认的古代数学家欧几里得是一位伟大的数学家。
他的著作《几何原本》包含许多几何学的基本定理和公式。
另一位著名的古代数学家是阿基米德。
他发展了物理学和几何学,并设计了可以测量园的周长和面积的工具。
这些古代数学家的成就对现代数学的发展产生了深远的影响。
2、中世纪数学中世纪数学是在公元5世纪至16世纪期间,在欧洲和阿拉伯国家发展起来的数学学科。
在这个时期,数学逐渐成为了一种独立的学科,并且与其他学科密切相关。
中世纪数学包括代数学、几何学和三角学等领域。
在这个时期,阿拉伯数学家也做出了许多重要的贡献。
阿拉伯数学家发明了数值法,并且开发出了一些解方程的方法。
中世纪时期最著名的数学家是阿拉伯数学家阿尔-哈里兹米。
他的书《代数的胜利》详细介绍了代数学的原理与应用。
尼可洛和勒让德则深入研究几何学,并发现了许多重要的公式和定理。
此外,中世纪数学家还开发出了用于计算圆周率的公式,并开发了几何学中的平滑曲线和三角函数。
3、现代数学现代数学是从17世纪开始,在欧洲和美国等国家快速发展起来的一门学科。
现代数学中的代数学、几何学、解析几何学、数论、分析数学、微积分等领域的发展,是近现代科学发展和工业化进程的基础。
17世纪的法国数学家笛卡尔提出了解析几何学,这使得人们能够在基于坐标的几何分析中使用代数学的方法。
数学发展史时间轴及事件1.古埃及数学(公元前3000年-公元前1000年)数学在古埃及有着悠久的历史。
古埃及人发展出了一套完整的计数系统,以及用于计算和测量的一系列实用技术和工具。
例如,他们使用了“象形数字”来表达数值,同时发明了一种称为“祭坛测量的土地”的算法,用于计算矩形或金字塔的面积。
2.古希腊数学(公元前600年-公元500年)古希腊数学在西方数学史上占据了重要的地位。
在这个时期,出现了许多杰出的数学家,如毕达哥拉斯、欧几里得和阿基米德等。
他们为数学界的发展做出了巨大的贡献,如毕达哥拉斯提出了著名的勾股定理,欧几里得写下了著名的《几何原本》,阿基米德则发明了微积分的基本原理。
3.中世纪欧洲数学(公元500年-1500年)在中世纪欧洲,数学得到了进一步的发展。
在这个时期,出现了许多修道士和学者,如奥尔本修道士和尼科马科斯等。
他们对数学进行了深入的研究,并在代数、几何和三角学等领域取得了一些重要成果。
同时,中世纪欧洲的数学教育也变得日益重要,一些大学纷纷开设数学课程。
4.文艺复兴时期数学(公元1500年-1700年)在文艺复兴时期,数学经历了巨大的变革和发展。
人们重新审视古希腊数学,并在此基础上进行创新。
代数学逐渐成为数学的主流,同时平面几何和立体几何也得到了极大的发展。
一些重要的数学思想和方法开始形成,如极限、导数和微积分等。
在这个时期,一些重要的数学家如雷科德、韦达和牛顿等为数学界的发展做出了巨大贡献。
雷科德在其著作《大术》中系统地阐述了代数符号和算术方法,韦达则发展出了符号代数,为现代代数奠定了基础。
牛顿则在微积分和物理学等领域做出了杰出的贡献。
5.近现代数学(公元1800年至今)近现代数学的发展可以说是日新月异。
在19世纪,数学家们开始研究更抽象的问题,如数论、抽象代数和拓扑学等。
同时,概率论和统计学也得到了迅速的发展。
20世纪初,数学开始与物理学、工程学等领域紧密联系,出现了许多应用数学分支,如量子力学、计算机科学、经济学等。
数学史知识点●中世纪的中国数学1.周髀算经在现存的中国古代数学著作中,(周髀算经)是最早的一部。
卷上叙述的关于荣方与陈子的对话,包含了勾股定理的一般形式。
〔我国最早记载勾股定理,中国历史上最早完成勾股定理证实的数学家是三国时期的赵爽。
〕我国古代著作(周髀算经)中的“髀〞是指竖立的表或杆子。
2.九章算术第一章“方田〞:田亩面积计算;提出了各种多边形、圆、弓形等的面积公式;分数的通分、约分和加减乘除四则运算的完好法则。
后者比欧洲早1400多年。
第二章“粟米〞:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术;第三章“衰分〞:比例分配问题;介绍了开平方、开立方的方法,其程序与现今程序基本一致。
这是世界上最早的多位数和分数开方法则。
它奠定了中国在高次方程数值解法方面长期领先世界的基础。
第四章“少广〞:已知面积、体积,反求其一边长和径长等;第五章“商功〞:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法;〔(九章算术)中的“阳马〞是指一种特殊的棱锥〕第六章“均输〞:合理摊派赋税;用衰分术解决赋役的合理负担问题。
今有术、衰分术及其应用方法,构成了包括今天正、反比例、比例分配、复比例、连锁比例在内的整套比例理论。
西方直到15世纪末以后才构成类似的全套方法。
第七章“盈缺乏〞:即双设法问题;提出了盈缺乏、盈适足和缺乏适足、两盈和两缺乏三种类型的盈亏问题,以及若干能够通过两次假设化为盈缺乏问题的一般问题的解法。
这也是处于世界领先地位的成果,传到西方后,影响极大。
第八章“方程〞:一次方程组问题;采用分离系数的方法表示线性方程组,相当于如今的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致。
这是世界上最早的完好的线性方程组的解法。
在西方,直到17世纪才由莱布尼兹提出完好的线性方程的解法法则。
这一章还引进和使用了负数,并提出了正负术——正负数的加减法则,与现今代数中法则完全一样;解线性方程组时实际还施行了正负数的乘除法。
数学史资料
数学作为一门学科,其历史可以追溯到古代文明时期。
以下是一些数学史资料:
1. 早期数学:古代埃及和巴比伦都有广泛的数学实践。
埃及人使用简化的分数和几何形状来进行地量测和计算。
巴比伦人则使用一种基于60的数字系统,发明了现在我们称之为“圆盘”或“天平”的仪器来测量重量。
2. 古希腊数学:古希腊数学家如毕达哥拉斯、欧多克索斯和阿基米德等人开创了许多重要的数学理论,包括毕达哥拉斯定理、几何学原理和求圆周率的方法。
3. 中世纪数学:中世纪时期,数学在阿拉伯世界得到了重大发展,阿拉伯数学家如穆罕默德·本·穆萨(Al-Khwarizmi)和阿尔托西(Al-Tusi)等人发明了代数学和三角学的基础概念,以及阿拉伯数字系统。
4. 文艺复兴数学:文艺复兴时期,欧洲数学经验开始得到恢复和发展,一些著名数学家如卡尔丹(Cardano)和维达(Vieta)等人开创了代数学和解析几何学的新领域。
5. 现代数学:现代数学是从19世纪末开始的,这个时期数学家开始探索新的概念和理论,如无限集合理论、拓扑学和数学分析。
20世纪数学的发展更加广泛,包括数学物理学、组合数学和计算机科学等新领域。
总之,数学在整个人类历史中都发挥着重要作用,不断地推动着
科学技术的进步。
数学史期末复习资料数学史的三大危机:初等:第一次危机:毕达哥拉斯学派主张←万物皆数(有理数)→无理数→欧多克斯→近代(17C):第二次:微积分→极限→柯西→运动与变化→函数现代(19C下半叶):第三次危机:罗素悖论(集合)→公理化0-数学史1.数学史的分期通常采用的线索:(1)按时代顺序(2)按数学对象、方法等本身的质变过程(3)按数学发展的社会背景。
2.数学史的四个分期:I数学的起源与早期发展(萌芽时期,公元前6世纪前)II初等数学时期(公元前6世纪-16世纪)(1)古希腊数学(公元前6世纪-16世纪)(2)中世纪东方数学(3世纪-15世纪)(3)欧洲文艺复兴时期(15世纪-16世纪)III近代数学时期(或称变量数学建立时期,17世纪-18世纪)IV现代数学时期(1820-现在)(1)现代数学酝酿时期(1820-1870)(2)现代数学形成时期(1870-1940)(3)现代数学繁荣时期(或称当代数学时期,1950-现在)3.使用位值制的两种数字:巴比伦楔形数字和中国筹算数码。
最早使用位值制的国家是古巴比伦,最早使用十进制位值得国家是中国。
4.埃及数学:古埃及人用纸莎草书写,关于古埃及数学知识主要依据莱茵德纸草书和莫斯科纸草书。
5.美索不达米亚数学:主要著作泥版文书。
2.古代希腊数学1.泰勒斯证明了四条定理:(1)圆的直径将圆分为两个相等的部分(2)等腰三角形两底角相等(3)两直线相交形成的对顶角相等(4)如果一三角形有两角、一边分别与另一三角形的对应角、边相等,那么这两个三角形全等。
他是最早的希腊数学家和古希腊论证几何学鼻祖。
2.毕达哥拉斯学派的基本信条是:万物皆数。
毕达哥拉斯可公度量:对于任何两条给定的线段,总能找到某第三线段,以它为单位线段能将给定的两条线段划分为整数段。
3.普鲁塔克的面积剖分法证明勾股定理。
4..雅典时期的希腊数学学派:(1)伊利亚学派(2)诡辩学派(3)雅典学院(柏拉图学派)(4)亚里士多德学派5.三大几何问题:(1)化圆为方,即做一个与给定面积相等的正方形。
数学史是研究数学发展和演变的历史学科,它涵盖了人类对数学的认识和应用的整个历史过程。
以下是对数学史资料的简要介绍:
1. 《《几何原本》》:希腊数学家欧几里得所著的《几何原本》被认为是古代几何学的基石。
它系统地阐述了平面和立体几何的基本概念、公理和证明方法,并以其逻辑严谨性和清晰的结构而闻名。
2. 《高数术》:中国古代数学经典之一,《高数术》是刘徽所撰写的一本数学著作,记录了中国古代数学家在算术、代数、几何和三角学等领域的贡献。
它对于中国古代数学史有着重要的影响。
3. 《数学原理》:西方数学史上的重要著作,《数学原理》是英国数学家牛顿所著,被认为是现代数学的奠基之作。
该书系统地阐述了微积分的基本原理和方法,对数学分析和物理学的发展产生了深远影响。
4. 《算术大全》:阿拉伯数学家穆罕默德·本·穆萨·哈瓦里兹米尔所著的《算术大全》是一部包含了当时阿拉伯世界各种数学知识的百科全书。
它在代数和算术
领域有着重要的贡献,并对欧洲的数学发展起到了重要的桥梁作用。
5. 《数学原理证明》:法国数学家费马的《数学原理证明》是他在数论领域的重要著作,其中包含了著名的费马大定理。
该书为数论奠定了坚实的基础,并激发了许多后续数学家的研究兴趣。
除了这些经典著作外,还有许多关于数学史的研究文献、学术论文和专题资料可供参考。
通过研究数学史,人们可以了解不同时期和地区数学思想的发展与交流,深入理解数学的演变和应用的进步。
数学史资料(仅供参考)一、中国14---16世纪数学发展停滞的原因是什么?答:宋、元全盛时期之后,特别是朱世杰的名著《四元玉鉴》之后(1303)近三百年间,中国数学出现了明显的停滞。
社会方面的因素有:1、长期闭关锁国,自给自足的封建落后经济,对数学的需要有限,使数学事业发展失去动力。
2、《四书》、《五经》称霸,“八股”之风盛行,耗尽了人们的天才和智慧,挤掉了数学的论坛。
特别是“八股”风之害,使数学远离人们的头脑,哪里还能容下关于数学的思维。
3、知识分子地位低下,学术空气薄弱。
俗称“一官二吏三僧四道五医六工七猎八民九儒十丐”,又称“七匠八娼九儒十丐”,知识分子真成了“臭老九”。
元、明、清,文字狱几度兴起,知识界无发表意见的自由,在这样情况下,哪里谈得上研究数学。
4、由于政治和经济因素,很少出现职业数学家,很难出现什么数学研究机构,学者不专,数学得不到官方及社会支持,必然影响数学发展。
数学的内部因素有:1、中国古算多为具体的计算,忽视抽象的推理论证。
这样,很难形成数学自身的科学体系,很难建立各种数学成就之间的联系,从而推动数学向前发展。
2、中国古算的最薄弱环节是缺乏适当的、系统的数学符号。
3、我国古代,各地区数学家之间“鸡犬之声相闻,老死不相往来”,没有团体,缺乏交流,人们各自为战,集中不了群体的智慧,也是数学发展的障碍。
——缺乏交流二、何谓《算经十书》?答:唐代国子监内设立算学馆,置博士、助教知道学生学习数学,唐高宗规定《周髀算经》、《九章算术》、《孙子算经》、《五曹算经》、《夏侯阳算经》、《张丘建算经》、《海岛算经》、《五经算术》、《缀术》、《缉古算经》十部汉、唐一千多年间著名数学著作作为国家最高学府的算学教科书,用以进行数学教育和考试,后世统称《算经十书》。
其中《缀术》失传,有人以《数术记遗》代替,“算经十书”记载的中国传统数学成就。
三、古希腊和罗马帝国数学衰退的原因有哪些?答:公元前3世纪初,罗马控制了希腊西部的意大利半岛,经过一百多年的“布匿战争”同时又打败了马其顿人,成立了罗马帝国.公元前146年,希腊全部灭亡于罗马帝国。
罗马文化虽然也有一定成就,但却逐步衰退了。
其原因是多方面的。
外部因素:1、罗马人热衷扩张他们的政治势力,并不热心传播他们的文化,歧视数学,视数学为异端2、“坑儒”——迫害数学家3、焚书4、公元529年,东罗马王封闭所有希腊学校内部因素:1、古希腊人在数学研究中过于强调逻辑和严密性,他们不承认无理数是数,于是他们将严密的数学仅限于几何。
2、古希腊人强调把抽象同实践分开,这便阻碍了人们的视野,使数学家们接受不到新思想和新方法。
3、古希腊人的数学观也限制了古希腊数学的发展。
他们相信数学事实不是人创造的而是先于人而存在的,人只要肯定这些事实并记录下来就行了。
—鸟!4、古希腊数学家未能领会无穷大、无穷小和无穷步骤,认为无穷是不完美的,不可思议的,不成形的。
四、何谓第一次数学危机?答:1、毕达哥拉斯学派规定:“鉴于我们是依靠自己的智慧合力进行研究,我们获得的成果绝对不许外传。
”2、无理数的第一个发现者希帕萨斯向外界透露,抛进了茫茫大海,葬身鱼腹,引起了所谓“第一次数学危机”。
五、何谓黄金分割?答:把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。
其比值是(√5-1):2,取其小数点后三位的近似值是0.618。
由于按此比例设计的造型十分美丽柔和,因此称为黄金分割。
这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
六、何谓第二次数学危机?答:1、微积分的主要理论基础是极限论。
可是,当时“极限”、“无穷小”、“连续”等基本概念是不精湛的,极限论是不完善的。
微积分不稳固的缺点,被一些唯心主义者抓住进行了猛烈的攻击。
2、英国神学家贝克莱是攻击微积分的典型代表。
1734年他写书咒骂牛顿的微积分的推导是“分明的诡辩”,污蔑微积分“招摇撞骗,把人们引入歧途”。
3、与此同时,莱布尼茨在大陆上也遭到荷兰纽文提的责难。
纽文提认为莱布尼茨说不清“无穷小量”与“0”的区别,并认为在推导过程中不该略去无穷小量。
连上面谈到的罗尔起初也反对过微积分。
4、在贝克莱的挑动下,造成了数学史上的“第二次数学危机”,展开了一场微积分奠基问题的大论战,长达10年之久。
5、广大科学家、数学家如麦克劳林、泰勒等,对贝克莱进行了强烈的反驳。
同时,这场论战也激励着大批数学家,如法国的达朗贝尔、拉格朗日等对微积分的基础概念的深入研究,促进了微积分理论基础的建设,微积分在实践中的胜利,迫使贝克莱后来也不得不承认“流数术是一把万能的钥匙,借着它,近代数学家打开了几何以至大自然的秘密”。
七、简述常微分方程的发展答:1、所谓常微分方程是指包括一个自变量和它的未知函数以及未知函数的微商的等式。
常微分方程几乎是同微积分同时发展起来的。
早在牛顿、莱布尼茨创立微积分之时,他们就已经接触到常微分方程了。
牛顿提出的“由含流数的方程求流量之间的关系”实际上就是一个通过含有导数的方程(常微分方程)来求原函数的问题。
“微分方程”的名称最早是由莱布尼茨提出的,他曾尝试用现在的“求积分法”来解某些类型的一阶常微分方程。
2、17世纪,莱布尼茨及伯努利兄弟在微分方程已经取得不少成就。
1691年,莱布尼茨想到了微分方程的变量分离法,1694年,约翰研究了变量分离法,1695年,詹姆士提出了著名的伯努利方程3、18世纪关于微分方程论最杰出的工作属于欧拉。
欧拉给出了有关全微分方程的一系列理论,其中包括全微分方程的概念、判别条件、通过积分因子将一个非全微分方程化为全微分方程的方法。
4、19世纪、德国数学家利普希茨把哥西条件做了适当减弱,得出所谓“利普希茨条件”,是微分方程严格理论的奠基时期。
法国数学家皮卡又给出了确定微分方程解的存在性的第三个方法—逐次逼近法,皮卡逐次逼近法还提供了可以估计误差的近似解的求法,为微分方程的数值解法奠定了基础5、1841年刘维尔证明了黎卡提方程在一般情况下没有初等函数解等于向人们宣告:从17世纪起人们所走过的那条寻求微分方程初等解的道路,前途极为有限,因而迫使人们考虑一个新问题,即不解方程,能否确定方程的解的性态,这就是所谓定性理法国数学家庞加莱创立论定性理论。
在庞加莱之后,挪威数学家班狄克生发展了庞加莱的定性理论;俄国数学家李雅普诺夫于1892年建立了稳定性理论;美国数学家伯克霍夫于1927年建立了既在整个存在区域又在奇点的邻近研究解的性质的理论。
从而使定性理论得到进一步发展。
通过上述工作,微分方程已经可以脱离微积分而成为数学的一个重要分支。
八、简述华罗庚的数学成就答:1936年访学剑桥,两年发表10多篇数论方面的论文。
1938年回国任西南联大教授,完成20多篇论文,完成巨著《堆垒素数论》。
1946年,华罗庚到普林斯顿高级研究所工作,并被聘为伊里诺斯大学教授。
在此期间,他的研究方向从数论转向风格迥异的代数领域和分析领域。
取得一系列成果。
1950年回国。
1950年到1985 年,华罗庚全力以赴,将自己的一切聪明才智献给伟大的社会主义祖国。
重建中国数学会,筹建中科院数学研究所,筹建中国科大数学系。
编教材、普及数学知识、推广“双法”、倡导数学竞赛。
九、电子计算机产生的背景是怎么样的?答:1847年,英国著名数学家布尔创立了逻辑代数,为现代数字计算机的设计和制造奠定了理论基础。
特别在本世纪以来,电子技术趋于成熟,电器元件可以作为机器构件来代替齿轮,于是计算机的新时代开始了。
在第二次世界大战中,由于战争的迫切需要,火箭、原子能等现代科学技术正迅猛地发展,急需解决一些复杂的计算问题,而继电计算机也远远不能胜任了。
于是,电子计算机便应运而生了。
十、学习数学史的意义答:1、了解数学发展进程,理解数学文化作为人类文化一部分的重要作用,知道数学发展的规律,对数学有一个整体的看法和把握2、掌握数学的基本精神、思想和方法,提高数学修养,增强以数学作为工具为科学技术、为社会服务的自觉性3、有利于培养文理兼通的人才4、“历史使人明智”(Histories make men wise),“前事不忘,后事之师”,数学史充满哲理、充满感情与诗意、充满挫折与奋进,它给人以智慧和力量,使人们为数学真理而奋斗。
5、掌握数学史知识是数学教师的必要修养,可以把由学习数学史而产生的追求数学真理的激情带进中学数学的课堂,引导学生热爱数学、学习数学,从而进行情意教育,培养非智力因素十一、数学猜想的意义答:1、数学猜想五彩缤纷,除上述猜想外,还有许多其他猜想,徐本顺的《数学猜想集》就列有61个数学猜想;丰富了数学内容;2、“数学猜想”大都是经过对大量事实的观察、验证、归纳、概括而提出出来的。
这种从特殊到一般,从个性中发现共性的方法是数学研究的重要动力。
数学猜想的提出与研究,生动地体现了辩证法在数学中的应用。
推动了数学方法论的研究。
3、“数学猜想”往往成为数学发展水平的一项重要标志。
费马猜想产生了代数数论;哥德巴赫猜想促进了筛法的发展;黎曼猜想使素数定理得到证明;“四色猜想”通过电子计算机解决了,从而开辟了机器证明的新时代。
从这个意义上讲,“数学猜想”不仅是一颗颗璀璨的宝石,而且是一只只“能生金蛋的母鸡”。
推动数学发展。