5.5生态系统的稳定性.doc
- 格式:doc
- 大小:46.51 KB
- 文档页数:24
5.5 生态系统的稳定性【学习目标】 1.阐明生态系统的自我调节能力。
2.举例说明抵抗力稳定性和恢复力稳定性。
3.简述提高生态系统稳定性的措施。
4.设计并制作生态缸,观察其稳定性。
5.认同生态系统稳定性的重要性,关注人类活动对生态系统稳定性的影响。
【自主学习讨论】一、生态系统的自我调节能力1.生态系统的稳定性⑴概念:生态系统所具有的自身结构和功能相对稳定的。
⑵原因:生态系统具有。
2.生态系统的自我调节能力⑴实例:。
⑵基础:调节。
⑶调节限度:生态系统自我调节能力是的,当外界干扰因素的强度超过一定限度时,生态系统的自我调节能力会迅速丧失,这样,生态系统难以恢复。
二、抵抗力稳定性和恢复力稳定性1.抵抗力稳定性⑴概念:生态系统抵抗外界干扰并使自身的结构与功能 (不受损害)的能力。
⑵规律:生态系统中的组分越多,食物网越,其自我调节能力就,抵抗力稳定性就。
2.恢复力稳定性⑴概念:生态系统在受到外界干扰因素的破坏后的能力。
⑵特点:生态系统在受到不同的干扰(破坏)后,其恢复速度与恢复时间是。
三、提高生态系统的稳定性1.控制对生态系统的,对生态系统的利用应适度,不应超过生态系统的自我调节能力。
2.对人类利用强度较大的生态系统,应实施相应的的投入,保证生态系统内部的协调。
四、设计并制作生态缸及观察其稳定性1.制作小生态缸的目的:探究生态系统保持相对稳定的条件。
1.生态系统的自我调节能力主要取决于()A.生产者B.营养结构的复杂程度C.分解者D.非生物的物质和能量2.在下列4种措施中能提高区域生态系统自我调节能力的是()A.减少该生态系统内捕食者和寄生生物的数量B.增加该生态系统内各营养级生物的种类C.使该生态系统内生产者和消费者在数量上保持平衡D.减少该生态系统内生物种类3.如果将一处原始森林开辟为一个森林公园,为了继续维持森林生态系统的稳定性,应当采取的措施是()A.在森林中引入一些稀奇的野生动物,把生产者的能量尽量多地积蓄起来B.在森林里放入一些珍奇的野生动物,增加食物网的复杂程度C.定期清理小型灌木、杂草和枯枝落叶,便于游人观赏珍贵树种D.对森林适量采伐,使该生态系统处于长期相对稳定状态4.在设计和制作小生态缸探究保持生态系统相对稳定的条件时,应遵循一定的原理,下列设计中不合理的是()A.缸内各种生物之间应有营养关系B.缸内各种生物的数量搭配应合理C.缸口应敞开以保证生物有氧呼吸D.应给予缸内生态系统适当的光照5.关于生态系统稳定性的正确叙述是()①负反馈调节是生态系统具有自我调节能力的基础②“遭到破坏,恢复原状”属于抵抗力稳定性③人们对自然生态系统“干扰”不应超过其承受能力④热带雨林遭到严重的砍伐后,其恢复力稳定性仍很强⑤提高生态系统稳定性的措施之一是随意增加生物种类,改变其营养结构A.①③B.②④⑤C.②③D.①④⑤6.下列曲线表示四个不同的自然生态系统在受到同等程度的外来干扰后,初级消费者数量的变化情况。
第5节生态系统的稳定性问题探讨地球上、亚马逊森林,欧亚大陆草原,以及极地附近的苔原,都已经存在至少上千万年了,这些自然生态系统尽管经常遭受洪涝、火烧、虫害、也遭受人类的砍伐与放牧等活动的干扰。
但是现在依然基本保持着正常的森林、草原与苔原景观,仍能维系生态系统的正常功能。
讨论:为什么这些生态系统在受到干扰后,仍能保持相对稳定呢?本节聚焦:1、什么是生态系统的自我调节?2、怎样理解生态系统的抵抗力稳定性和恢复力稳定性?生态系统所具有的保持或恢复自身结构和功能相对稳定的能力,叫做生态系统的稳定性(stability of ecosystem)。
生态系统之所以能维持相对稳定,是由于生态系统具有自我调节(self-regulating)能力。
生态系统的自我调节能力说明生态系统具有自我调节能力的实例很多。
例如,当河流受到轻微的污染时,能通过物理沉降、化学分解和微生物的分解,很快消除污染,河流中的生物种类和数量不会受到明显的影响。
在森林中,当害虫数量增加时,食虫鸟类由于食物丰富,数量也会增多,这样,害虫种群的增长就会受到抑制。
这是生物群落内部负反馈调节的实例。
负反馈调节在生态系统中普遍存在,它是生态系统自我调节能力的基础。
旁栏思考:你还能举出说明生态系统中负反馈调节的其他实例吗?思考与讨论经小组讨论后,用文字、箭头,构建一个食虫鸟种群与害虫种群之间负反馈调节的概念模型。
如果有条件,可以在计算机上用Flash动画来模拟这种调节过程,构建动态的模型。
生态系统在受到外界干扰时,依靠自我调节能力来维持自身的相对稳定。
例如,一场火过后,森林中种群密度降低;但是由于光照更加充足、土壤中无机养料增多,许多种子萌发后,迅速长成新植株(图5-15)。
生态系统的自我调节能力不是无限的。
当外界干扰因素的强度超过一定限度时,生态系统的自我调节能力会迅速丧失,这样,生态系统就到了难以恢复的程度。
我国西北的黄土高原(图5-16),就是原有森林生态系统崩溃的鲜明例子!想像空间想像你每时每刻都在被病菌攻击的情景。
生态系统的稳定性一、知识结构二、教学目标1、知识目标:(1)理解生态系统稳定性的概念。
(2)理解抵抗力稳定性和恢复力稳定性概念,二者区别、联系。
具有抵抗力稳定性的原因。
(3)理解生态系统稳定性的保护。
2、能力目标:通过指导学生分析生态系统稳定性的概念,培养学生分析问题的思维能力。
3、情感目标:通过理解各种人为因素对生态系统稳定性的影响和破坏,渗透人与自然和谐发展的生态观点。
三、教学重点、难点[教学重点] 阐明生态系统的自我调节能力。
[教学难点] 抵抗力稳定性和恢复力稳定性的概念。
四、课时安排1课时。
五、教学方法讲解法。
六、教具准备图片、动画。
七、学生活动1、问题探讨、思考与讨论。
2、设计并制作生态缸。
八、教学程序(一)明确目标(二)重点、难点的学习与目标完成过程导入:[问题探讨]教材P109,引导学生从群落的种间关系,生态系统的结构与功能讨论生态系统具有稳定性;再设问:“人类能否在生物圈之外建造一个适于人类长期生活的生态系统呢?”引出“生物圈2号”实验,引导学生思考生物圈2号失败的原因。
上述正反两个实例,可以说明自然界中生态具有相对稳定性,稳定的生态系统对于生物生存至关重要。
那么,什么是生态系统的稳定性呢?学生阅读教材P109相关内容。
教师指出:只有生态系统发展到一定阶段,它的生产者、消费者和分解者三大功能类群齐全,能量的输入保持稳定,物质的输入和输出相对平衡时才表现出来。
稳定性表现在结构相对稳定和功能相对稳定上。
例如,原始森林生态系统是经过千百年来形成的,尽管其中的生物生生死死,迁入迁出,无机环境也不断变化,但从某一阶段来看,该系统内各种生物的种类和数量总是大体相同的。
生态系统的稳定性指的是生态系统的一种能力或特性,而不是一种状态。
它包括抵抗力稳定性和恢复力稳定性两个方面。
设问:为什么生态系统具有稳定性?学生阅读教材P109——110相关内容,动画模拟演示兔种群与植物种群之间的负反馈示意图。
设置下列问题:1、草原中生活着野兔和狼,由于狼的捕食,野兔数量减少,分析草、野兔、狼的种群数量是如何逐步达到稳定的?2、为什么森林中害虫数量不会持续大幅度增长?3、适度捕捞后,池塘中鱼的种群数量为什么不会减少?4、森林局部大火过后,为什么植株能较快生长?5、生态系统的自我调节能力是无限的吗?教师总结归纳。
5.5生态系统的稳定性第5节生态系统的稳定性一、知识结构抵抗力稳定性恢复力稳定性二、教学目标1、阐明生态系统的自我调节能力。
2、举例说明抵抗力稳定性和恢复力稳定性。
3、简述提高生态系统稳定性的措施。
4、设计并制作生态缸,观察其稳定性。
5、认同生态系统稳定性的重要性,关注人类活动对生态系统稳定性的影响。
三、教学重点、难点及解决方法1、教学重点及解决方法[教学重点]阐明生态系统的自我调节能力。
[解决方法]以具体的实例来说明生物群落内部负反馈调节的存在,进而阐明生态系统的自我调节能力。
2、教学难点及解决方法[教学难点]抵抗力稳定性和恢复力稳定性的概念。
[解决方法]通过生态系统的自我调节能力的教学,已为学生理解抵抗力稳定性和恢复力稳定性的概念打下了伏笔,再借实例说明之。
四、课时安排2课时。
五、教学方法讲解法。
六、教具准备图片、动画。
七、学生活动1、问题探讨、思考与讨论。
2、设计并制作生态缸。
八、教学程序(一)明确目标(二)重点、难点的学习与目标完成过程第1课时导入:[问题探讨]教材p109,引导学生从群落的种间关系,生态系统的结构与功能讨论生态系统具有稳定性;再设问:"人类能否在生物圈之外建造一个适于人类长期生活的生态系统呢?"引出"生物圈2号"实验,引导学生思考生物圈2号失败的原因。
上述正反两个实例,可以说明自然界中生态具有相对稳定性,稳定的生态系统对于生物生存至关重要。
那么,什么是生态系统的稳定性呢?学生阅读教材p109相关内容。
教师指出:只有生态系统发展到一定阶段,它的生产者、消费者和分解者三大功能类群齐全,能量的输入保持稳定,物质的输入和输出相对平衡时才表现出来。
稳定性表现在结构相对稳定和功能相对稳定上。
例如,原始森林生态系统是经过千百年来形成的,尽管其中的生物生生死死,迁入迁出,无机环境也不断变化,但从某一阶段来看,该系统内各种生物的种类和数量总是大体相同的。
生态系统的稳定性指的是生态系统的一种能力或特性,而不是一种状态。
它包括抵抗力稳定性和恢复力稳定性两个方面。
34第5节生态系统的稳定性一、知识结构抵抗力稳定性恢复力稳定性二、教学目标1、阐明生态系统的自我调节能力。
2、举例说明抵抗力稳定性和恢复力稳定性。
3、简述提高生态系统稳定性的措施。
4、设计并制作生态缸,观察其稳定性。
5、认同生态系统稳定性的重要性,关注人类活动对生态系统稳定性的影响。
三、教学重点、难点及解决方法1、教学重点及解决方法[教学重点]阐明生态系统的自我调节能力。
[解决方法]以具体的实例来说明生物群落内部负反馈调节的存在,进而阐明生态系统的自我调节能力。
2、教学难点及解决方法[教学难点]抵抗力稳定性和恢复力稳定性的概念。
[解决方法]通过生态系统的自我调节能力的教学,已为学生理解抵抗力稳定性和恢复力稳定性的概念打下了伏笔,再借实例说明之。
四、课时安排2课时。
五、教学方法讲解法。
六、教具准备图片、动画。
七、学生活动1、问题探讨、思考与讨论。
2、设计并制作生态缸。
八、教学程序(一)明确目标(二)重点、难点的学习与目标完成过程第1课时导入:[问题探讨]教材p109,引导学生从群落的种间关系,生态系统的结构与功能讨论生态系统具有稳定性;再设问:"人类能否在生物圈之外建造一个适于人类长期生活的生态系统呢?"引出"生物圈2号"实验,引导学生思考生物圈2号失败的原因。
上述正反两个实例,可以说明自然界中生态具有相对稳定性,稳定的生态系统对于生物生存至关重要。
那么,什么是生态系统的稳定性呢?学生阅读教材p109相关内容。
教师指出:只有生态系统发展到一定阶段,它的生产者、消费者和分解者三大功能类群齐全,能量的输入保持稳定,物质的输入和输出相对平衡时才表现出来。
稳定性表现在结构相对稳定和功能相对稳定上。
例如,原始森林生态系统是经过千百年来形成的,尽管其中的生物生生死死,迁入迁出,无机环境也不断变化,但从某一阶段来看,该系统内各种生物的种类和数量总是大体相同的。
生态系统的稳定性指的是生态系统的一种能力或特性,而不是一种状态。
它包括抵抗力稳定性和恢复力稳定性两个方面。
34第5节生态系统的稳定性一、知识结构抵抗力稳定性恢复力稳定性1、阐明生态系统的自我调节能力。
2、举例说明抵抗力稳定性和恢复力稳定性。
3、简述提高生态系统稳定性的措施。
4、设计并制作生态缸,观察其稳定性。
5、认同生态系统稳定性的重要性,关注人类活动对生态系统稳定性的影响。
三、教学重点、难点及解决方法1、教学重点及解决方法[教学重点]阐明生态系统的自我调节能力。
[解决方法]以具体的实例来说明生物群落内部负反馈调节的存在,进而阐明生态系统的自我调节能力。
2、教学难点及解决方法[教学难点]抵抗力稳定性和恢复力稳定性的概念。
[解决方法]通过生态系统的自我调节能力的教学,已为学生理解抵抗力稳定性和恢复力稳定性的概念打下了伏笔,再借实例说明之。
四、课时安排2课时。
讲解法。
六、教具准备图片、动画。
七、学生活动1、问题探讨、思考与讨论。
2、设计并制作生态缸。
八、教学程序(一)明确目标(二)重点、难点的学习与目标完成过程第1课时导入:[问题探讨]教材p109,引导学生从群落的种间关系,生态系统的结构与功能讨论生态系统具有稳定性;再设问:"人类能否在生物圈之外建造一个适于人类长期生活的生态系统呢?"引出"生物圈2号"实验,引导学生思考生物圈2号失败的原因。
上述正反两个实例,可以说明自然界中生态具有相对稳定性,稳定的生态系统对于生物生存至关重要。
那么,什么是生态系统的稳定性呢?学生阅读教材p109相关内容。
教师指出:只有生态系统发展到一定阶段,它的生产者、消费者和分解者三大功能类群齐全,能量的输入保持稳定,物质的输入和输出相对平衡时才表现出来。
稳定性表现在结构相对稳定和功能相对稳定上。
例如,原始森林生态系统是经过千百年来形成的,尽管其中的生物生生死死,迁入迁出,无机环境也不断变化,但从某一阶段来看,该系统内各种生物的种类和数量总是大体相同的。
生态系统的稳定性指的是生态系统的一种能力或特性,而不是一种状态。
它包括抵抗力稳定性和恢复力稳定性两个方面。
34第5节生态系统的稳定性一、知识结构抵抗力稳定性恢复力稳定性二、教学目标1、阐明生态系统的自我调节能力。
2、举例说明抵抗力稳定性和恢复力稳定性。
3、简述提高生态系统稳定性的措施。
4、设计并制作生态缸,观察其稳定性。
5、认同生态系统稳定性的重要性,关注人类活动对生态系统稳定性的影响。
三、教学重点、难点及解决方法1、教学重点及解决方法[教学重点]阐明生态系统的自我调节能力。
[解决方法]以具体的实例来说明生物群落内部负反馈调节的存在,进而阐明生态系统的自我调节能力。
2、教学难点及解决方法[教学难点]抵抗力稳定性和恢复力稳定性的概念。
[解决方法]通过生态系统的自我调节能力的教学,已为学生理解抵抗力稳定性和恢复力稳定性的概念打下了伏笔,再借实例说明之。
四、课时安排2课时。
五、教学方法讲解法。
六、教具准备图片、动画。
七、学生活动1、问题探讨、思考与讨论。
2、设计并制作生态缸。
八、教学程序(一)明确目标(二)重点、难点的学习与目标完成过程第1课时导入:[问题探讨]教材p109,引导学生从群落的种间关系,生态系统的结构与功能讨论生态系统具有稳定性;再设问:"人类能否在生物圈之外建造一个适于人类长期生活的生态系统呢?"引出"生物圈2号"实验,引导学生思考生物圈2号失败的原因。
上述正反两个实例,可以说明自然界中生态具有相对稳定性,稳定的生态系统对于生物生存至关重要。
那么,什么是生态系统的稳定性呢?学生阅读教材p109相关内容。
教师指出:只有生态系统发展到一定阶段,它的生产者、消费者和分解者三大功能类群齐全,能量的输入保持稳定,物质的输入和输出相对平衡时才表现出来。
稳定性表现在结构相对稳定和功能相对稳定上。
例如,原始森林生态系统是经过千百年来形成的,尽管其中的生物生生死死,迁入迁出,无机环境也不断变化,但从某一阶段来看,该系统内各种生物的种类和数量总是大体相同的。
生态系统的稳定性指的是生态系统的一种能力或特性,而不是一种状态。
它包括抵抗力稳定性和恢复力稳定性两个方面。
34第5节生态系统的稳定性一、知识结构抵抗力稳定性恢复力稳定性二、教学目标1、阐明生态系统的自我调节能力。
2、举例说明抵抗力稳定性和恢复力稳定性。
3、简述提高生态系统稳定性的措施。
4、设计并制作生态缸,观察其稳定性。
5、认同生态系统稳定性的重要性,关注人类活动对生态系统稳定性的影响。
三、教学重点、难点及解决方法1、教学重点及解决方法[教学重点]阐明生态系统的自我调节能力。
[解决方法]以具体的实例来说明生物群落内部负反馈调节的存在,进而阐明生态系统的自我调节能力。
2、教学难点及解决方法[教学难点]抵抗力稳定性和恢复力稳定性的概念。
[解决方法]通过生态系统的自我调节能力的教学,已为学生理解抵抗力稳定性和恢复力稳定性的概念打下了伏笔,再借实例说明之。
四、课时安排2课时。
五、教学方法讲解法。
六、教具准备图片、动画。
七、学生活动1、问题探讨、思考与讨论。
2、设计并制作生态缸。
八、教学程序(一)明确目标(二)重点、难点的学习与目标完成过程第1课时导入:[问题探讨]教材p109,引导学生从群落的种间关系,生态系统的结构与功能讨论生态系统具有稳定性;再设问:"人类能否在生物圈之外建造一个适于人类长期生活的生态系统呢?"引出"生物圈2号"实验,引导学生思考生物圈2号失败的原因。
上述正反两个实例,可以说明自然界中生态具有相对稳定性,稳定的生态系统对于生物生存至关重要。
那么,什么是生态系统的稳定性呢?学生阅读教材p109相关内容。
教师指出:只有生态系统发展到一定阶段,它的生产者、消费者和分解者三大功能类群齐全,能量的输入保持稳定,物质的输入和输出相对平衡时才表现出来。
稳定性表现在结构相对稳定和功能相对稳定上。
例如,原始森林生态系统是经过千百年来形成的,尽管其中的生物生生死死,迁入迁出,无机环境也不断变化,但从某一阶段来看,该系统内各种生物的种类和数量总是大体相同的。
生态系统的稳定性指的是生态系统的一种能力或特性,而不是一种状态。
它包括抵抗力稳定性和恢复力稳定性两个方面。
34第5节生态系统的稳定性一、知识结构抵抗力稳定性恢复力稳定性二、教学目标1、阐明生态系统的自我调节能力。
2、举例说明抵抗力稳定性和恢复力稳定性。
3、简述提高生态系统稳定性的措施。
4、设计并制作生态缸,观察其稳定性。
5、认同生态系统稳定性的重要性,关注人类活动对生态系统稳定性的影响。