微程序控制器实验
- 格式:pdf
- 大小:273.29 KB
- 文档页数:4
计算机组成原理实验之微程序控制器实验一、实验目的1.掌握时序发生器的组成原理。
2.掌握微程序控制器的组成原理。
二、实验内容1.实验电路(1)时序发生器电路本实验所用的时序电路见图4.1。
电路由一个500KHz晶振、2片GAL22V10、一片74LS390组成,可产生两级等间隔时序信号T1-T4、W1-W3,其中一个W由一轮T1-T4组成,相当于一个微指令周期或硬连线控制器的一拍,而一轮W1-W3可以执行硬连线控制器的一条机器指令。
另外,供数字逻辑实验使用的时钟由MF经一片74LS390分频后产生。
图4.1 时序信号发生器(2)微程序控制器电路图4.2微程序控制器电路微地址转移逻辑表达式:A5=D5=μA5;A4=D4=C•P2+μA4;A3=D3=IR7•P1+μA3;A2=D2=IR6•P1+SWC•P0+μA2;A1=D1=IR5•P1+SWB•P0+μA1;A0=D0=IR4•P1+SWA•P0+μA0。
2.一些关键技术(1)微指令格式图4.3微指令格式(3)上述8条指令的微程序流程图如图4.4所示图4.4微程序流程图(4)微程序代码表表4-2微程序代码表微指令KT RRF WRF RRM WRM PR当前微地址00 0C 1E 06 07 0B 1D 0D 0E 0A 02 03 09 04 05 08 0F 下一微地址08 1E 06 07 1E 1D 0D 0E 1D 02 03 02 04 05 04 0F 10P0 1 . . . . . . . . . . . . . . . .P1 . . . . . . . . . . . . . . . . 1P2 . . . . . . . . . . . . . . . . .备用. . . . . . . . . . . . . . . . .TJ . 1 . . 1 1 . 1 1 . 1 . 1 . 1 . .LDIR . . . 1 . . . 1 . . . . . . . . 1PC+1 . . . . . . . . . . . . . . . . .LDPC# . 1 . . . 1 . . . . . . . . . 1AR+1 . . . . . . . . . . . 1 . . 1 . .LDAR# . 1 . . . 1 . . . 1 . . 1 . . . . LDDR1 . . . . . . . . . . . . . . . . . LDDR2 . . . . . . . . . . . . . . . . . LDRi . . . . . . . . 1 . . . . . . . .SW_BUS# . 1 1 . . 1 1 . 1 1 . . 1 1 . 1 . RS_BUS# . . . . 1 . . . . . . . . . . . . ALU_BUS# . . . . . . . . . . . . . . . . . RAM_BUS# . . . . . . . . . . 1 . . . . . . CER# . . . 1 . . . 1 . . . . . . . . 1 CEL# . . 1 . . . 1 . . . 1 . . 1 . . . LR/W# . . 0 . . . 0 . . . 1 . . 0 . . . Cn# . . . . . . . . . . . . . . . . .M . . . . . . . . . . . . . . . . .S0 . . . . . . . . . . . . . . . . .S1 . . . . . . . . . . . . . . . . .S2 . . . . . . . . . . . . . . . . .S3 . . . . . . . . . . . . . . . . .表4-2微程序代码表(续)微指令ADD SUB AND STA LDA JC STP OUT当前微地址10 18 11 19 12 1A 13 1B 14 1C 15 1F 16 17 下一微地址18 0F 19 0F 1A 0F 1B 0F 1C 0F 0F 0F 0F 0FP0 . . . . . . . . . . . . . .P1 . . . . . . . . . . . . . .P2 . . . . . . . . . . 1 . . .备用. . . . . . . . . . . . . .TJ . . . . . . . . . . . . 1 1LDIR . . . . . . . . . . . . . .PC+1 . 1 . 1 . 1 . 1 . 1 1 . 1 1LDPC# . . . . . . . . . . . 1 . .AR+1 . . . . . . . . . . . . . .LDAR# . . . . . 1 . 1 . . . . .LDDR1 1 . 1 . 1 . 1 . . . . . . .LDDR2 1 . 1 . 1 . . . . . . . . .LDRi . 1 . 1 . 1 . . . 1 . . . .SW_BUS# . . . . . . . . . . . . . .RS_BUS# . . . . . . 1 . 1 . . 1 . 1ALU_BUS# . 1 . 1 . 1 . 1 . . . . . .RAM_BUS# . . . . . . . . . 1 . . . .CER# . . . . . . . . . . . . . .CEL# . . . . . . . 1 . 1 . . . .LR/W# . . . . . . 0 . 1 . . . .Cn# . . . 1 . . . . . . . . . .M . 0 . 0 . 1 . 0 . . . . . .S0 . 1 . 0 . 1 . 0 . . . . . .S1 . 0 . 1 . 1 . 0 . . . . . .S2 . 0 . 1 . 0 . 0 . . . . . .S3 . 1 . 0 . 1 . 0 . . . . . .注:后缀为#的信号都是低电平有效信号,为了在控存ROM中用“1”表示有效,这些信号在控制器中经过反相后送往数据通路。
__计算机__学院___ _专业___ __班__学号_ _____ 姓名______协作者___________ 教师评定_____________ 实验题目_微程序控制器实验_______________________1.实验目的与要求:1.理解时序产生器的原理,了解时钟和时序信号的波形2.掌握微程序控制器的功能.组成知识.3.掌握微指令格式和各字段功能.4.掌握微程序的编制,写入,观察微程序的运行,学习基本指令的执行流程2.实验方案:1.按照各组的要求将二进制代码表的代码输入2.根据微程序流程图将程序通过机器指令执行3.通过手动操作将程序执行完毕3.实验结果分析:通过二进制代码表将微指令输入到RAM当中,并通过机器指令将这些微程序根据流程执行完,以达到执行程序的目的.4.写出你掌握了的控制信号的作用存数(STA)是将数据向RAM里面装入OUT(输出)是将RAM里面的数据取出,通过LED灯的形式显示出来5.结论微指令就是把同时发出的控制信号的有关信息汇集起来形成的。
将一条指令分成若干条微指令,按次序执行就可以实现指令的功能。
一条机器指令的功能是若干条微指令组成的序列来实现的。
6.问题与讨论及实验总结在微指令操作时需要将八进制的微地址转化成二进制,而且将它们输入到机器里面,在输入过程令我有时会混淆了一些二进制代码,从而操作出错,不过找到规律后就可以准确无误了.在执行程序时,要注意清零,不然会出错.7.思考选择题:(单选题)1、( A )2、( B)3、( B )4、( A )5、( B ) 6 、( C ) 7、( B ) 8、( A )9、( A ) 10、( B ) 11、( D )。
微程序控制器原理实验报告一、引言微程序控制器作为计算机系统的重要组成部分,扮演着指挥和控制计算机操作的关键角色。
本实验报告将对微程序控制器的原理进行探讨,并描述相关实验的设计、步骤、结果和分析。
二、微程序控制器的原理2.1 微程序控制器的概念微程序控制器是一种控制计算机操作的技术,通过将指令集中的每个指令分解为一系列微操作,并以微指令的形式存储在控制存储器中,从而实现指令的执行控制。
2.2 微指令的组成和格式微指令由多个字段组成,每个字段代表一个微操作控制信号。
常见的微指令格式包括微地址字段、条件码字段、操作码字段等。
2.3 微指令的执行过程微指令的执行过程包括指令的取指、译码、执行和写回等阶段。
每个阶段对应微指令的不同部分,通过控制信号的转换和传递,完成相应的操作。
三、微程序控制器的设计与实验3.1 设计思路在进行微程序控制器实验前,需要明确实验的目标和设计思路。
实验通常包括以下几个步骤:确定指令集、确定微指令格式、设计控制存储器、设计控制逻辑电路等。
3.2 实验步骤1.确定指令集:根据实验需求,确定需要支持的指令集。
2.确定微指令格式:根据指令集的要求,设计适合的微指令格式。
3.设计控制存储器:根据微指令格式,设计控制存储器的结构和内容。
4.设计控制逻辑电路:根据微指令的执行过程,设计控制逻辑电路,实现指令的控制和转换。
5.构建实验平台:将设计的控制存储器和控制逻辑电路构建成实验平台,并与计算机系统相连。
6.进行实验:在实验平台上执行指令,观察和记录实验结果。
3.3 实验结果与分析根据实验步骤中的设计和操作,得到了相应的实验结果。
通过比对实验结果和预期效果,可以对微程序控制器的设计和实验进行分析和评估。
四、总结与展望微程序控制器作为计算机系统的关键组成部分,通过微操作的方式实现指令的执行控制。
本实验报告对微程序控制器的原理进行了探讨,并描述了相关实验的设计、步骤、结果和分析。
通过实验,我们深入理解了微程序控制器的工作原理和设计方法。
微程序控制器实验报告微程序控制器实验报告引言微程序控制器是一种常见的计算机控制器,它采用微程序的方式来实现指令的执行。
在本次实验中,我们将学习和探索微程序控制器的工作原理,并通过实验验证其功能和性能。
实验目的本次实验的主要目的是通过设计和实现一个简单的微程序控制器,来深入理解微程序控制器的工作原理和原理图设计。
实验过程1. 设计微指令集在设计微程序控制器之前,首先需要确定微指令集。
微指令集是由一系列微指令组成的,每个微指令对应一个控制信号,用于控制计算机的各个组件的操作。
在本次实验中,我们选择了常见的微指令集,包括存储器读写、算术逻辑运算、数据传输等指令。
2. 设计微指令控制存储器微指令控制存储器是微程序控制器的核心组件,用于存储微指令集。
在本次实验中,我们使用了静态随机存储器(SRAM)来实现微指令控制存储器。
通过将微指令集编码为二进制数,并将其存储在SRAM中的不同地址位置,实现对微指令的存储和读取。
3. 设计微指令解码器微指令解码器用于解析微指令,并产生相应的控制信号。
在本次实验中,我们使用了组合逻辑电路来实现微指令解码器。
通过将微指令的不同位与控制信号相连,实现对微指令的解码和控制信号的生成。
4. 设计微程序计数器微程序计数器用于控制微程序的执行顺序。
在本次实验中,我们使用了计数器和触发器来实现微程序计数器。
通过将微程序计数器的输出与微指令控制存储器的地址输入相连,实现对微指令的顺序读取。
实验结果通过实验,我们成功设计并实现了一个简单的微程序控制器。
在实验中,我们编写了微指令集,并将其存储在微指令控制存储器中。
通过微指令解码器和微程序计数器的协作,我们成功实现了对微指令的解码和执行。
实验结果表明,微程序控制器能够准确地控制计算机的各个组件的操作,并实现指令的执行。
实验总结通过本次实验,我们深入了解了微程序控制器的工作原理和原理图设计。
微程序控制器作为一种常见的计算机控制器,具有灵活性和可扩展性。
微程序控制实验报告(共10篇)微程序控制器实验报告计算机组成原理实验报告一、实验目的:(1)掌握微程序控制器的组成原理。
(2)掌握微程序的编制、写入,观察微程序的运行过程。
二、实验设备:PC 机一台,TD-CMA 实验系统一套。
三、实验原理:微程序控制器的基本任务是完成当前指令的翻译和执行,即将当前指令的功能转换成可以控制的硬件逻辑部件工作的微命令序列,完成数据传送和各种处理操作。
它的执行方法就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示称为微指令。
这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序。
微程序存储在一种专用的存储器中,称为控制存储器,微程序控制器原理框图如图所示:微程序控制器组成原理框图在实验平台中设有一组编程控制开关KK3、KK4、KK5(位于时序与操作台单元),可实现对存储器(包括存储器和控制存储器)的三种操作:编程、校验、运行。
考虑到对于存储器(包括存储器和控制存储器)的操作大多集中在一个地址连续的存储空间中,实验平台提供了便利的手动操作方式。
以向00H 单元中写入332211 为例,对于控制存储器进行编辑的具体操作步骤如下:首先将KK1 拨至‘停止’档、KK3 拨至‘编程’档、KK4 拨至‘控存’档、KK5 拨至‘置数’档,由CON 单元的SD05——SD00 开关给出需要编辑的控存单元首地址(000000),IN 单元开关给出该控存单元数据的低8 位(00010001),连续两次按动时序与操作台单元的开关ST(第一次按动后MC 单元低8 位显示该单元以前存储的数据,第二次按动后显示当前改动的数据),此时MC 单元的指示灯MA5——MA0 显示当前地址(000000),M7——M0 显示当前数据(00010001)。
然后将KK5 拨至‘加1’档,IN 单元开关给出该控存单元数据的中8 位(00100010),连续两次按动开关ST,完成对该控存单元中8 位数据的修改,此时MC 单元的指示灯MA5——MA0 显示当前地址(000000),M15——M8 显示当前数据(00100010);再由IN 单元开关给出该控存单元数据的高8 位(00110011),连续两次按动开关ST,完成对该控存单元高8 位数据的修改此时MC 单元的指示灯MA5——MA0 显示当前地址(000000),M23——M16 显示当前数据(00110011)。
微程序控制器实验一、实验目的和要求(必填)通过看懂教学计算机中已经设计好并正常运行的数条基本指令(例如,ADD、MVRR、OUT、MVRD、JR、RET 等指令)的功能、格式和执行流程,然后自己设计几条指令的功能、格式和执行流程,并在教学计算机上实现、调试正确。
其最终要达到的目的是:1.深入理解计算机微程序控制器的功能、组成知识;2.深入地学习计算机各类典型指令的执行流程;3.对指令格式、寻址方式、指令系统、指令分类等建立具体的总体概念;4.学习微程序控制器的设计过程和相关技术。
控制器设计是学习计算机总体组成和设计的最重要的部分。
要在T EC-XP+教学计算机完成这项实验,必须比较清楚地懂得:1.T EC-XP+教学机的微程序控制器主要由微程序定序器A M2910、产生当前微地址和下地址的微控存和M ACH 器件组成;2.T EC-XP+教学机上已实现的全部基本指令和留给用户实现的19 条扩展指令的控制信号都是由微控存和M ACH 给出的。
3.应了解监控程序的A命令只支持基本指令,扩展指令应用E命令将指令代码写入到相应的存储单元中;不能用T、P 命令单步调试扩展指令,只能用G命令执行扩展指令。
4.要明白T EC-XP+教学机支持的指令格式及指令执行流程分组情况;理解T EC-XP +教学机中已经设计好并正常运行的各类指令的功能、格式和执行流程,也包括控制器设计与实现中的具体线路和控制信号的组成。
5.要明确自己要实现的指令格式、功能、执行流程设计中必须遵从的约束条件。
二、实验内容和原理(必填)1.完成控制器部件的教学实验,主要内容是由学生自己设计几条指令的的功能、格式和执行流程,并在教学计算机上实现、调试正确。
2.首先是看懂T EC-XP+教学计算机的功能部件组成和线路逻辑关系,然后分析教学计算机中已经设计好并正常运行的几条典型指令(例如,ADD、MVRR、OUT、MVRD、JRC、CALA、RET 等指令)的功能、格式和执行流程,注意各操作功能所对应的控制信号的作用。
4.6 微程序控制器实验预习翻阅计算机组成与体系结构等书籍,复习微代码等知识。
波形仿真(以LDA指令为例)参数设置:End time : 5.0us Grad size: 100.00ns信号设置:clk :时钟脉冲输入信号;qd :启动时序电路的输入信号,低电平有效tj :实现停机的输入信号,高电平有效dp :实现单拍执行的输入信号,高电平有效。
KWE|RD :强读强写输入信号,均为低电平有效。
CLR : 清零输入信号,低电平有效。
IR7~5 :即IR7 ,IR6 ,IR5 ,指令地址输入信号。
pc_sel: 包含:pc_clr (PC清零信号,低电平有效) pc_load , pc_en ;bus_sel:总线输出信号。
分别为:sw_bus , r4_bus ,r5_bus ,alu_bus ,pc_bus;ld_reg :显示寄存器装载的输出信号。
分别为:ldr5 ,ldr4 ,ldr2 ,ldr1 ,ldar ,lddirM , CN ,s4~1 : 共同为显示运算选择的输出信号。
we|rd :存储器的写信号和读信号。
P1 : 判别信号。
a 4~1 : 下址输出信号。
t 4~1:即t4, t3, t2, t1:节拍脉冲输出信号波形分析:仿真结论:波形仿真符合预期结果。
运用模拟器运行LDA装载指令说明:图中:OP 为操作码,对应IR;M_ADDR 为当前地址,M_NXT_ADDR 为下一地址;其他的显示寄存器数据。
如图中编号及箭头所示:1、初始状态。
所有数据都为02、执行当前地址M_ADDR=01H下的指令:PC->AR,PC+1;生成下一地址:M_NXT_ADDR=02H,此时PC=01H3、执行当前地址M_ADDR=02H下的微指令:RAM->IR;此时OP=20H,则在绝对跳转时会选择LDA,相对地产生的下一个地址为M_NXT_ADDR=09H。
4、执行当前地址M_ADDR=09H的微指令:PC->AR,PC+1,AR=01H,产生下一个微地址M_NXT_ADDR=15H;5、执行当前地址M_ADDR=15H的微指令:RAM->AR,此时01H地址中的值为0DH,故AR=0DH,产生下一个微地址为M_NXT_ADDR=16H;6、执行当前地址M_ADDR=16H的微指令:RAM->R5,此时0DH地址中存放的值为55H,故R5=55H,产生下一个微地址为M_NXT_ADDR=01H。
实验七微程序控制器的实现实验一、实验目的和要求1、掌握时序信号发生电路组成原理。
2、掌握微程序控制器的设计思想和组成原理。
3、掌握微程序的编制、写入,观察微程序的运行。
二、实验内容1、实验原理实验所用的时序电路原理如图7-1所示,可产生4个等间隔的时序信号TS1~TS4,其中SP为时钟信号,由实验机上时钟源提供,可产生频率及脉宽可调的方波信号。
学生可根据实验要求自行选择方波信号的频率及脉宽。
为了便于控制程序的运行,时序电路发生器设计了一个启停控制触发器UN1B,使TS1~TS4信号输出可控。
图中“运行方式”、“运行控制”、“启动运行”三个信号分别是来自实验机上三个开关。
当“运行控制”开关置为“运行”,“运行方式”开关置为“连续”时,一旦按下“启动运行”开关,运行触发器UN1B的输出QT一直处于“1”状态,因此时序信号TS1~TS4将周而复始地发送出去;当“运行控制”开关置为“运行”,“运行方式”开关置为“单步”时,一旦按下“启动运行”开关,机器便处于单步运行状态,即此时只发送一个CPU周期的时序信号就停机。
利用单步方式,每次只运行一条微指令,停机后可以观察微指令的代码和当前微指令的执行结果。
另外,当实验机连续运行时,如果“运行方式”开关置“单步”位置,也会使实验机停机。
2、微程序控制电路与微指令格式①微程序控制电路微程序控制器的组成见图7-2,其中控制存储器采用3片E2PROM 2816芯片,具有掉电保护功能,微命令寄存器18位,用两片8D触发器74LS273(U23、U24)和一片4D触发器74LS175(U27)组成。
微地址寄存器6位,用三片正沿触发的双D触发器74LS74(U14~U16)组成,它们带有清“0”端和预置端。
在不进行判别测试的情况下,T2时刻打入微地址寄存器的内容即为下一条微指令地址。
当T4时刻进行测试判别时,转移逻辑满足条件后输出的负脉冲通过强置端将某一触发器置为“1”状态,完成地址修改。
微程序控制器实验一、实验目的1、掌握微程序控制器的原理2、掌握TEC-8模型计算机中微程序控制器的实现方法,微地址转移逻辑的实现方法。
3、理解条件转移对计算机的重要性。
二、实验仪器或设备1、TEC-8计算机硬件综合实验系统2、直流万用表3、逻辑测试笔三、总体设计(设计原理、设计方案及流程等)微程序控制器与硬连线控制器相比,由于其规整性、易于设计以及需要的时序发生器相对简单,在上世纪七、八十年代得到广泛应用。
本实验通过一个具体微程序控制器的实现使学生从实践上掌握微程序控制器的一般实现方法,理解控制器在计算机中的作用。
1、微指令格式根据机器指令功能、格式和数据通路所需的控制信号,TEC-8采用如图4.1所示的微指令格式。
微指令字长40位,顺序字段11位(判别字段P4~P0,后继微地址NµA5~NµA0),控制字段29位,微命令直接控制。
图4.1 微指令格式NµA5~NµA0 下址,在微指令顺序执行的情况下,它是下一条微指令的地址P0=1时,根据后继微地址NµA5~NµA0和模式开关SWC、SWB、SWA确定下一条微指令的地址。
见图4.2微程序流程图P1 =1 时,根据后继微地址NµA5~NµA0 和指令操作码 IR7~IR4 确定下一条微指令的地址。
见图4.2微程序流程图P2 =1 时,根据后继微地址NµA5~NµA0 和进位 C 确定下一条微指令的地址。
见图4.2微程序流程图P3 =1 时,根据后继微地址NµA5~NµA0和结果为0标志Z确定下一条微指令的地址。
见图4.2微程序流程图P4=1 时,根据后继微地址NµA5~NµA0 和中断信号 INT 确定下一条微指令的地址。
模型计算机中,中断信号INT由时序发生器在接到中断请求信号后产生STOP=1时,在T3结束后时序发生器停止输出节拍脉冲T1、T2、T3LIAR=1时,在T3的上升沿,将PC7~PC0写入中断地址寄存器IARINTDI=1时,置允许中断标志(在时序发生器中)为0,禁止TEC-8模型计算机响应中断请求INTEN=1时,置允许中断标志(在时序发生器中)为1,允许TEC-8模型计算机响应中断请求IABUS=1时,将中断地址寄存器中的地址送数据总线DBUSPCADD=1时,将当前的PC值加上相对转移量,生成新的PC由于TEC-8 模型计算机有微程序控制器和硬连线控制器2个控制器,因此微程序控制器产生的控制信号以前缀“A-”标示,以便和硬连线控制器产生的控制信号区分。