发电厂锅炉过热蒸汽温度控制系统
- 格式:pdf
- 大小:1.27 MB
- 文档页数:28
660MW超超临界直流锅炉汽温调整控制策略摘要:针对660MW超超临界直流锅炉汽温调整控制,分析影响锅炉蒸汽温度的主要因素,采取过热汽温和再热汽温调整控制的策略,为机组安全稳定运行提供技术支持。
关键词:660MW;超超临界直流锅炉;汽温控制;策略;宁德发电公司1、2号机组为660 MW超超临界发电机组,配置DG2060/26.15-II1型超超临界直流锅炉,蒸汽参数为26.03 MPa,605/603℃。
过热汽温的调整主要由水煤比控制中间点温度,并设置两级喷水减温器调节各段及出口蒸汽温度,再热蒸汽温度主要由尾部烟气挡板调节,在高再入口管道装设有事故喷水减温器。
1 660MW超超临界直流锅炉超超临界机组是在常规超临界机组的基础上发展起来的新一代高参数、大容量发电机组,与常规超临界机组相比,超超临界机组的热效率比超临界机组的高4% 左右。
但由于超超临界机组运行参数高,锅炉为直流炉,需适应大范围深度调峰的要求,因此,这给超超临界机组汽温控制提出更高要求。
2汽温调节的重要性维持锅炉蒸汽温度稳定对机组安全稳定运行至关重要,汽温过高或过低,都将严重影响机组安全稳定运行。
蒸汽温度过高,将使锅炉受热面及蒸汽管道金属材料的蠕变速度加快,影响使用寿命,严重超温将会导致金属管道过热爆管。
当蒸汽温度过高超过允许值时,使汽轮机的部件的机械强度降低,导致设备损坏或使用寿命缩短。
蒸汽温度过低,将会降低机组热效率。
汽温过低,使汽轮机末级叶片湿度增加。
蒸汽温度大幅度快速下降会造成汽轮机金属部件过大的热应力、热变形,甚至会发生动静部件摩擦,严重时会发生水冲击,威胁汽轮机安全稳定运行。
因此,机组在运行中,在各种内、外扰动因素影响下,如何通过运行分析进行调整,用最合理的控制措施保持汽温稳定,是汽温调节的首要任务。
3锅炉蒸汽温度的影响因素3.1水煤比的影响:超超临界锅炉中给水变成过热蒸汽是一次完成的,锅炉的蒸发量不仅决定于燃料量,同时也决定于给水流量。
1 自动化水平automatic level是指对一个电厂生产过程实现自动控制所达到的程度。
其中包括参数检测、数据处理、自动控制、顺序控制、报警和联锁保护及其系统设计的完善程度,最终体现在值班员的数量和所能完成的功能上。
火力发电厂的自动化水平是主辅机创造质量及可控性;仪表及控制设备质量;自动化系统设计的完善程度;施工安装质量;电厂运行维护水平及人员素质的综合体现。
2 热工自动化设计design ofthermal power plant automation根据所设计对象的条件和要求,配置一套具有对参数检测(monitor)、报警(alarm)、控制(control) (摹拟量控制、顺序控制或者开一关控制)和联锁保护(protection)功能在内的自动化系统。
即对锅炉、汽轮发机电组及其热力系统、燃烧及煤粉制备系统,除灰、除渣、脱硫、供水、补给水处理、燃油供油系统和环境保护所需的仪表和控制设备作统一的系统设计和安装布置设计。
2 .1 控制方式control mode指值班员监视和控制机组或者其他热力设备的运行所采取的形式,主要内容是决定控制盘(台) 的位置和所能完成的监控任务。
普通分为就地控制和集中控制两类。
2 .2 就地控制local control控制盘(台)布置在主辅设备(如锅炉、汽轮机)或者辅助系统(如除氧给水系统、热力网系统)附近,或者置于辅助车间(如补给水处理车间、供油泵房)内,值班员通过控制盘上设备,分别对被控对象的运行进行就地监视和控制。
2 .3 集中控制centralized control将在生产上有密切联系的设备和相关系统的控制盘(台)集中布置在控制室内,值班员对配套运行的机组进行整体的监视和控制。
2 .4 机炉集中控制boiler—turbine centralized control将锅炉、汽轮机的控制盘(台)集中布置在控制室内。
主要合用于主蒸汽系统为母管制的机组。
2 .5 单元集中控制unit centralized control将单元机组(锅炉、汽轮机及发机电)的控制盘(台)(BTG 盘)集中布置在控制室内,值班员把单元机组作为一个整体进行监视和控制。
660MW超临界机组过热蒸汽温度的控制系统及运行调整摘要:大型火电站当中,一项较重要的运行调整就是过热蒸汽温度控制和调整。
过热蒸汽温度控制系统,对于火电机组热效率的提升具有重要意义,能够保障机组发电过程中所产生的热量得到应有的利用,使发电效率大大提升。
因此在本文当中就将对某火力发电企业机组过热蒸汽温度控制系统设计工作进行分析,将设计工作当中对过热蒸汽温度控制系统大延迟、大惯性以及时变性和非线性内在机理问题,进行攻克的过程进行研究,同时对过热蒸汽温度的运行调整提出相关建议。
关键词:660MW;超临界机组;过热蒸汽温度;控制:调整1.前言浙能乐清一期2*660MW超临界机组,锅炉为超临界参数变压运行螺旋管圈直流炉,单炉膛、一次中间再热、采用四角切圆燃烧方式、平衡通风、固态排渣、全钢悬吊Π型结构、露天布置燃煤锅炉。
DCS系统用的是北京ABB贝利控制系统有限公司的Industrial IT Symphony 系统。
在本文当中,将主要对机组当中的过热蒸汽温度控制系统进行研究,过热蒸汽温度控制系统主要存在大延迟,大惯性以及时变性和非线性内在机理问题,并提出相应的运行调整分析。
2.过热蒸汽温度控制系统解析2.1工艺流程分析过热器喷水减温系统工艺流程:炉膛上部布置有前屏过热器和后屏过热器,水平烟道依次布置高温再热器和高温过热器,共有二级喷水减温器,将每一级减温器都进行左右两侧均匀布置。
在第一级减温器当中,主要是将减温器布置在后屏过热器的入口处,该级减温器的喷口量达到了总设计喷水量的2/3,对第一级减温器进行控制的是两个喷嘴和调节阀门。
在第二级减温器当中,主要是将其设置在末级过热器的入口处,该级减热器喷水量达到了总设计排水量的1/3。
图一过热减温水DCS画面2.2过热汽温控制系统2.2.1减温控制系统在第一级减温控制系统(以此为例)当中,进行温度调节时的被调量是前屏过热器出口处的气温,同时该控制系统还能够保护屏式过热器的管壁不会出现温度过高的现象,并与末级过热汽温控制系统进行配合协同工作,保证整体控制系统温度得以调节。
锅炉燃烧系统的控制系统设计摘要:锅炉是热电厂重要且基本的设备,其最主要的输出变量之一就是主蒸汽压力。
主蒸汽压力的自动调节的任务是维持过热器出口气温在允许范围内,以确保机组运行的安全性和气温在允许范围内,以确保机组运行的安全性和[1]经济性。
锅炉所产生的高压蒸汽既可作为驱动透平的动力源,又可以作为精馏、干燥、反可以作为精馏、干燥、反应、加热等过程的热源。
随着工业生产的规模不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。
在控制算法上、综合运用了单回路控制、串级控制、比值控制等控制方法实现了燃料量控制调节蒸汽压力、送风量控制调节烟气含氧量、引风量控制炉膛负压,并有效克服了彼此的扰动,使整个系统稳定运行。
运行。
关键词:锅炉;蒸汽压力;单回路控制;关键词:锅炉;蒸汽压力;单回路控制;ControlsystemdesignoftheboilercombustionsystemAbstract:Theboilerisimportantandbasicequipmentofthethermalpowerplan t,oneofthemainoutputvariableisthemainsteampressure.Thetaskoftheauto maticadjustmentofthemainsteampressureistomaintainthesuperheateroutle ttemperaturewithintheallowablerange,toensurethesafetyandeconomyofth eunitoperation.Theboilersproducehighpressuresteamcanbeusedasasource ofpower-driventurbine,butalsoasadistillation,drying,reaction,heatingandprocesshe atsource.Withindustrialproductionexpanding,asafilterforpowerandheat,b utalsotowardthehigh-capacity,high-parameter,high-efficiencydirection.Inthecontrolalgorithm,theintegrateduseofsingle-loopcontrol,cascadecontrol,ratiocontrol,thecontrolmethodoffuelcontroltoadjustthevaporpressure,airvolumecontroltoadjustthefluegasoxygenconten t,thewindcontrolthefurnacenegativepressure,andeffectivelyovercomeeac hotherdisturbancessothatthewholestabilityofthesystem.Keywords:Boiler;Vaporpressure;Single-loopcontrol引言引言随着城市的快速发展,我们对用电的需求也越来越大,如何利用好有限的能源来保证供电是一个重要的话题,在能源的利用过程中如何更加提高能源的利用率是一个可研究性的话题,本文基于上述话题对电厂的燃烧锅炉控制进行了研究。
锅炉蒸汽温度自动控制系统摘要:电厂实现热力过程自动化,能使机组安全、可靠、经济地运行。
锅炉是火力发电厂最重要的生产设备,过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度控制是锅炉控制系统中的重要环节。
在实现过程控制中,由于电站锅炉系统的被控对象具有大延迟,大滞后、非线性、时变、多变量耦合的复杂特性,无法建立准确的数学模型,对这类系统采用常规PID控制难以获得令人满意的控制效果。
在这种情况下,先进的现代控制理论和控制方法已经越来越多地应用在锅炉汽温控制系统。
本文以电厂锅炉汽温系统为研究对象,对其进行了计算机控制系统的改造。
考虑到锅炉汽温系统的被控对象特点,本文分别采用了常规PID控制器和模糊-PID控制器,对两种控制系统对比研究,同时进一步分析了一般模糊-PID控制器的控制特点,在此基础之上给出了一种改进算法,通过在线调整参数,实现模糊-自调整比例常数PID控制。
在此算法中,比例常数随着偏差大小而变化,有效地解决了在小偏差范围内,一般的模糊-PID控制器无法实现的静态无偏差的问题,提高了蒸汽温度控制系统的控制精度。
关键词:锅炉蒸汽温度模糊控制随着我国经济的高速发展,对重要能源“电”的要求快速增长,大容量发电机组的投入运行以及超高压远距离和赢流输电的混和电网的建设,以三峡电网为中心的全国性电力系统的形成,电力系统的不断扩大,对其自动控制技术水平的要求也越来越高。
同时,地方性的自备热电厂亦有长足发展,随着新建及改造工程的进行,其生产过程自动控制与时俱进,小容量机组“麻雀虽小,五脏俱全”,自备热电厂其自身特点:自供电、与主电网的关系疏及相互影响小,供热及采暖季节性等,可以提供更多的应用、尝试新技术、新产品的机会和可能性。
这样做的重要目标是提高和保证电力,热力及牛产过程的安全可靠、经济高效。
为了适应发展并实现上述目标,必须采取最新的技术和控制手段对电力系统的各种运铲状态和设备进行有效的自动控制。
火力发电厂在我国电力工业中占有主要地位,是我国重点能源工业之一。
锅炉控制系统⼯业锅炉⾃动化控制系统⼀、系统概述我国是以煤作为主要能源的国家,锅炉是耗能的主要设备,约占全国总能耗量的⼆分之⼀左右,按照国际先进⽔平衡量我国能源的利⽤率很低。
因此,节能的潜⼒很⼤。
⼀般来说⽣产过程中的节能有三⼤途径:(1)改造设备节能;(2)改进⼯艺节能;(3)提⾼应⽤管理和⾃控技术节能。
为了使锅炉⼯作稳定、安全、经济,需要提⾼对锅炉的监控品质,提⾼平均热效率,节省能源和减少污染,减轻操作⼈员的⼯作负担,提⾼锅炉的科学管理⽔平。
可以获得可观的经济效益。
应⽤管理和⾃控技术节能可做到少投⼊多产出,见效快,效果好。
⼀般采⽤⾃动化技术后,可以提⾼锅炉热效率3-5%,节煤5-8%,⾃动化技术的投资在2年左右时间既可收回。
⽤户既可以收到节约能源节省资⾦的效果,由于减少了⼤量原煤的燃烧,还净化了空⽓,美化了环境,节省了资源,在贯彻可持续发展战略的今天,具有特殊的意义,因此⽽产⽣的社会效益,将是⼗分重⼤⽽深远的。
锅炉控制通常是采⽤⼈⼯结合常规仪表监控,⼀般较难达到满意的结果,原因是锅炉的燃烧系统是⼀个多变量输⼊的复杂系统,影响燃烧的因素⼗分复杂,较正确的数学模型不易建⽴,以经典的PID为基础的常规仪表控制已很难达到最佳状态,如果靠⼈⼯⼿烧则要受⼈为因素(经验、责任⼼、⽩夜班)的影响,⽽计算机提供了诸如数字滤波,积分分离PID,选择性PID,参数⾃整定等各种充分发挥计算机这⼀智能化、多功能的优势,是常规仪表和⼈⼒难以实现或⽆法实现的,是提⾼⼯业锅炉⾃控⽔平和节能的重要措施。
本系统是针对链排式燃煤锅炉⽽设计开发,可以实现对⼀到五台锅炉及总供热系统进⾏⾃动控制和⾃动检测,能够实现锅炉系统的安全和经济运⾏,完成各项管理功能和报警保护功能,达到节约能源、减少环境污染、降低劳动强度的⽬的。
锅炉吨位可从4-150T/h。
整套系统设计合理,设备选型先进,控制功能完善,通⽤性强,具有⼿动/⾃动⽆扰切换功能。
控制设备可靠性⾼,拆装简便,维护⽅便,抗⼲扰能⼒强。
ICS 27.100P61 备案号;J224-2019中华人民共和国电力行业标准DL/T5175 -2019火力发电厂热工控制系统设计技术规定Technical rule for designing thermodynamic controlsystem of fossil fuel power plant 2019-01-09 发布2019-06-01 实施中华人民共和国国家经济贸易委员会发布目次、八―丄前言 --------------------------------------------------------- 11 范围 -------------------------------------------------------------- 22 规范性引用文件 -------------------------------------------------- 33 总则; ----------------------------------------------------------- 44 一般规定--------------------------------------------------------- 55 模拟量控制------------------------------------------------------- 85.1 模拟量控制功能 (8)5.2模拟量控制项目 (10)6 开关量控制------------------------------------------------------- 146.2 顺序控制 (14)6.3 连锁 (15)6.4 远方控制 (17)7 设备选择 ----------------------------------------------------------- 197.1 一般规定 (19)7.2 常规设备选择 (19)附录A ---------------------------------------------------------------- 21 (规范性附录) (21)本标准用词说明 (21)1 范围 -------------------------------------------------------------- 243 总则- ---------------------------------------------------------------- 25 4.一般规定--------------------------------------------------------- 265 模拟量控制------------------------------------------------------- 285.1 模拟量控制功能 (28)5.2 模拟量控制项目 (30)5.3 模拟量远方操作 (31)6 开关量控制------------------------------------------------------- 326.1 开关量控制功能 (32)6.2 顺序控制 (32)6.3 连锁 (33)6.4 远方控制 (33)7 设备选择 ---------------------------------------------------------- 357.1 一般规定 (35)7.2 常规设备选择 (35)本规定是DL 5000-2000 《火力发电厂设计技术规程》热工自动化部分的补充和具体化,在热工控制系统设计时应执行《火力发电厂设计技术规程》以及现行的有关国家标准和行业标准,并满足本规定的要求。
一、选择题1.热工仪表大体上分现场仪表和室内仪表两大类,现场仪表不包括。
A.变送器;B.热电偶;C.伺服放大器。
答:C。
2.精密压力表的准确度等级应不低于。
A.0.4级;B.0.25级;C.0.1级。
答:A。
3. 根据微小误差准则,测量数据通常按被测量允许误差的倍进行化整。
A.0.05;B.0.1;C.0.5。
答:B。
4. 标准铂电阻温度计的检定周期。
A.一年;B.二年;C三年。
答:B5.使用铁一康铜热电偶测温时,错用了铂铑10-铂热电偶的补偿导线,将使其指示表。
A.指示偏低;B.指示偏高;C.指示正常。
答:A。
6.一弹簧管式一般压力表出现了线性误差,应。
A.调整拉杆的活动螺丝;B.改变扇形齿轮与拉杆夹角;C.换游丝。
答:A。
7.检定一块准确度等级为1.5级,测量上限为6.0兆帕的压力表,选用的精密压力表的准确度等级和量程为。
A.0.4级,16兆帕;B.0.6级,10兆帕;C.0.25级,10兆帕。
答:C。
8.有一准确度等级为0.5,分度号为K,测量范围为0~1000℃的电子电位差计,其允许基本误差是。
[已知E(1000)=41.269毫伏)。
A.±5℃;B.±0.5%;C.±0.206毫伏。
答:A9.压力表的回程误差不应超过最大允许基本误差的。
A.1/3;B.平均值;C.绝对值。
答:C。
10.测量工作电压为220伏的电气设备的绝缘电阻时,应选用A.500伏兆欧表;B.1000伏兆欧表;C 250伏兆欧表。
答:C。
11.热工仪表安装时,在考虑相邻设备的间距时,要注意留有足够的敷设间距,一般间距不小于。
A.20毫米;B.10毫米;C.40毫米;D.50毫米。
答:D。
12.进行接线时,每一个端子上最多只允许接入。
A.一根导线;B.二根导线;C.三根导线。
答:B。
12.用相同分度号的热偶丝代替补偿线时,热偶丝与补偿线的连接可以。
A.绞接;B.螺丝压接;C.焊接。
答:C。
13.差压式流量测量系统由_ __三部分组成.A.节流装置、连接管路、测量仪表;B.孔板、阀门、流量计;C.喷嘴、连接电缆、流量答:A14.在流量测量中,孔板测量和喷嘴测量造成的能量损失相比,喷嘴______孔板。
本科毕业设计论文题目电厂锅炉蒸汽温度串级控制系统设计专业名称学生姓名指导教师毕业时间毕业设计任务书一、题目电厂锅炉蒸汽温度串级控制系统设计二、指导思想和目的要求通过毕业设计使学生对所学自动化基本知识和专业理论加深理解,掌握工业生产过程控制系统设计和仿真的基本方法,培养独立开展设计工作的能力。
要求在毕业设计中:1.分析研究火力发电厂锅炉蒸汽温度控制要求,特点及控制系统设计方法,设计电厂锅炉蒸汽温度串级控制系统,达到要求的主要技术指标;2.开展控制系统方案论证,建立系统数学模型,进行温度控制系统分析;3.设计串级控制系统控制规律,进行参数整定;4.进行数学仿真,验证设计;5.撰写毕业设计论文。
三、主要技术指标1.350MW机组锅炉过热蒸汽温度保持在00C±;5505在减温水流量变化时,锅炉过热蒸汽温度控制系统能稳定运行,衰减系数9.0ϕ;=75~.02.过程动态性能指标为:1)温度波动最大偏差不超过04C;2)过渡过程时间不大于min2;3. 锅炉稳定运行时,过热蒸汽温度应在给定值的02C范围内四、进度和要求1.1-3周:收集查阅资料;2.4-6周:完成总体方案设计和建模;3.7-8周:完成系统分析和控制规律设计;4.9-11周:完成仿真验证及修改;5.12-13周:完成毕业设计论文.五、主要参考书及参考资料⑴金以慧等,《过程控制》,清华大学出版社,2000年;⑵张栾英,孙万云,《火电厂过程控制》,中国电力出版社,2004年;⑶于希宁,刘红军,《火电场自动控制理论》,中国电力出版社,2004年.学生指导教师系主任电厂锅炉温度串级控制系统设计摘要本文是针对锅炉蒸汽温度控制系统进行的分析和设计,而对锅炉蒸汽的良好控制是保证系统输出蒸汽温度稳定的前提,所以本系统采用串级控制系统,这样可以极大的消除控制系统工作中的各种干扰因素,是系统能在一个较为良好的状态下工作,同时锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器管壁温度不超过允许的工作温度。
火力发电厂自动化常用术语英语缩写及解释1 自动化水平AUTOMATIC LEVEL (5)2 热工自动化设计DESIGN OFTHERMAL POWER PLANT AUTOMATION (5)2.1控制方式CONTROL MODE (5)2.2就地控制LOCAL CONTROL (5)2.3集中控制CENTRALIZED CONTROL (5)2.4机炉集中控制BOILER—TURBINE CENTRALIZED CONTROL (5)2.5单元集中控制UNIT CENTRALIZED CONTROL (5)2.6车间无人值班控制NO—OPERATER CONTROL FOR DEPARTMENT (5)3 模拟量控制系统MODULATING CONTROL SYSTEM(MCS) (5)3.1机组协调控制UNIT COORDINATED CONTROL(UCC) (5)3.1.1 锅炉跟踪方式boiler follow mode(turbinebase)(BF) (5)3.1.2 汽轮机跟踪方式turbine follow mode(boilerbase)(TF) (6)3.1.3 协调方式coordinated mode (6)3.2锅炉控制系统BOILER CONTROL SYSTEM (6)3.2.1 给水控制feed—water control (6)3.2.2 燃烧控制combustion control (6)3.2.3 炉膛压力控制furnace pressure control (6)3.2.4 送风控制air flow control (6)3.2.5 燃料控制fuel control (6)3.2.6 过热汽温控制superheat steam temperature control (6)3.2.7 再热汽温控制reheat steam temperature control (6)3.3磨煤机控制系统PULVERIZER CONTROL SYSTEM,MILL CONTROL SYSTEM (6)3.3.1 煤粉温度控制pulverizer temperature control (6)3.3.2 磨煤机人口负压(压力)控制mill inlet pressure control (6)3.3.3 钢球磨煤机负荷控制load control of ball mill (6)3.4汽轮机控制系统TURBINE CONTROL SYSTEM (6)3.4.1 机械液压式控制系统mechanical hydraulic control(MHC) (6)3.4.2 电气液压式控制系统electro—hydraulic control(EHC) (6)3.4.3 数字式电液控制系统digital electro—hydraulic control(DEH) (7)3.4.4 模拟式电液控制系统analog electro—hydraulic control(AEH) (7)3.4.5 给水泵汽轮机电液控制系统micro—electro—hydraulic control system(MEH) (7)3.4.6 汽轮机自启停系统automatic turbine startup or shutdown control system(ATC)7 3.4.7 汽轮机热应力监控系统turbine stress supervisory system (7)3.4.8 汽轮机紧急跳闸系统emergency trip system (ETS) (7)3.4.9 转速控制speed control (7)3.4.10 负荷控制/负荷调节load governing (7)3.4.11 负荷限制load limit (7)3.4.12 超速保护控制over—speed protection control(OPC) (7)3.4.13 超速跳闸保护over—speed protection trip(OPT) (7)3.4.14 阀位控制valve—position control (7)3.4.16 “节流调节throttle governing (7)3.4.17 甩负荷rejection of load (7)3.4.18 (调节汽门)快控fast valving (8)3.4.19 电液转换器electro—hydraulic converter (8)3.4.20 错油门(滑阀) pilot tvalve (8)3.4.21 油动机servomotor (8)3.4.22 阀门管理valve management (8)3.4.23 转速不等率(速度变动率) droop(permanent speed variation) (8)3.4.24 迟缓率(死区) dead band (8)3.5其他 (8)3.5.1 旁路控制系统bypass control system(BPC) (8)3.5.2 自动发电控制automatic generation control(AGC) (8)3.5.3 自动调度系统automatic dispatch system(ADS) (8)3.5.4 自动同期系统automatic synchronized system(ASS) (8)4 开关量控制系统ON—OFFCONTROL SYSTEM(OCS) (8)4.1顺序控制系统SEQUENCE CONTROL SYSTEM(SCS) (8)4.1.1 功能组级控制function group control (8)4.1.2 子功能组级控制subgroup functin control (8)4.1.3 备用设备自动控制automatic stand—by control (8)4.1.4 燃烧器控制系统burner control system(BCS) (8)4.2单个操作ONE—TO—ONE CONTROL (9)4.3选线操作SELECTIVE CONTROL (9)4.4开关量操作器O N—OFF STATION (9)5.报警系统ALARM SYSTEM (9)5.1限值报警LIMIT ALARM (9)5.2偏差报警DEVIATION ALARM (9)5.3信号器ANNUNCIATOR (9)5.4首出原因FIRST OUT (9)5.5报警抑制ALARM CUT OUT (9)6 保护与联锁PROTECTION & INTERLOCK (9)6.1炉膛安全监控系统FURNACE SAFETYGUARD SUPERVISORY SYSTEM(FSSS) (9)6.1.1 总燃料跳闸master fuel trip(MFT) (9)6.1.2 燃料切断fuel trip (9)6.1.3火焰flame (9)6.1.4 火焰包络flame envelope (9)6.1.5 稳定火焰stable flame (9)6.1.6 火焰检测器flame detector (9)6.1.7 全炉膛火焰丧失loss of all flame (9)6.1.8 单燃烧器火焰检测individual burner flame detection (10)6.1.9 层火焰检测elevation flame detection (10)6.1.10全炉膛火焰检测full furnace flame detection (10)6.1.12 角火焰消失loss off lame to a corner (10)6.1.13 部分火焰消失partial loss of flame (10)6.1.14 炉膛吹扫furnac epurge (10)6.1.15 “吹扫风量purge rate (10)6.1.16 吹洗scavenging (10)6.1.17 燃油快速关断阀safety shut off valve,safety trip valve (10)6.2汽轮机监视仪表TURBINE SUPERVISORY INSTRUMENTS(TS L) (10)6.2.1 轴向位移监视器axial movement,thrust positon monitor (10)6.2.2 汽轮机转速监视器turbine speed monitor (10)6.2.3 相对膨胀监视器differential expansion monitor (11)6.2.4 汽轮机绝对膨胀监视器absolute expansion monitor of turbine (11)6.2.5 轴挠度(轴偏心) rotor eccentricity monitor (11)6.2.6 轴(轴承)振动监视器shaft/bearing vibration monitor (11)6.2.7 零转速zoro speed (11)6.2.8 键相传感器keyphasor transducer (11)6.2.9 电涡流传感器eddy current probe (11)6.2.10 转速表tachometer (11)6.2.11 汽轮机(旋转机械)故障诊断系统automated diagnostics for steam turbine(rotating equip— ment)(ADRE) (11)6.3联锁INTERLOCK (11)6.4机组快速甩负荷FAST CUT BACK(FCB) (11)6.5辅机故障减负荷RUN BACK(RB) (11)6.6联锁控制INTERLOCK CONTROL (11)7 控制室、控制楼CONTROL ROOM,CONTROL BUILDING (11)7.1单元控制室UNIT CONTROL ROOM (11)7.2控制室CONTROL ROOM (12)7.3主控制楼ELECTRIC CONTROL BUILDING (12)7.4电缆层或电缆夹层CABLE ROOM (12)7.5就地控制室LOCAL CONTROL ROOM (12)7.6机炉控制室BOILER—TURBINE CONTROL ROOM (12)7.7网络控制室ELECTRIC—NET CONTROL ROOM (12)7.8电子设备室ELECTRONICS ROOM (12)7.9值长室SHIFT ENGINEER ROOM (12)8 控制盘(台、柜) (12)8.1盘、屏PANEL (12)8.2柜CABINET,箱BOX (12)8.3控制盘CONTROL BOARD (12)8.4控制台CONSOLE (12)8.5机组控制盘(BTG盘) BOILER TURBINE GENERATOR PANEL (12)8.6辅助控制盘AUXILIARY PANEL (12)8.7模拟盘(屏) MIMIC PANEL (12)8.8半模拟盘(屏) SEMI—MIMIC PANEL (12)8.9保温箱(柜) WARM—BOX(CABINET) (12)8.10热工配电柜(箱) POWER SUPPLY CABINET FOR ELECTRIC—DRIVE VALVE (12)8.11端子箱(柜、架) TERMINAL BOX(CABINET,RACK) (13)8.12继电器柜RELAY CABINET (13)8.13防护等级DEGREE OF PROTECTION (13)9 仿真机SIMULATOR (13)9.1火电厂仿真机FOSSIL FIRED POWER PLANT SIMULATOR (13)9.2全范围、高逼真度电厂仿真机FULL SCOPE HIGH REALI SMSIMULATOR (13)9.3缩小范围、高逼真度电厂仿真机REDUCED SCOPE HIGH REALI SMSIMULATOR (13)9.4通用型仿真机GENERIC SIMULATOR (13)9.5功能逼真度FUCTIONAL FIDELITY (13)9.6物理逼真度PHYSICAL FIDELITY (13)9.7被仿真电厂REFERENCE PLANT (13)9.8教练员台(指导员台) INSTRUCTOR STATION (13)9.9仿真机软件SIMULATOR SOFTWARE (13)9.10仿真机功能(仿真机控制性能) SIMULATOR CONTROL FEATURES (13)9.11就地操作站LOCAL OPERATING STATION (14)9.12I/O接口装置I/O INTERFACE EGUIPMENT (14)9.13电厂模型软件PLANT MODELS SOFTWARE (14)9.14教练员站软件INSTRUCTOR STATION SOFTWARE (14)9.15诊断和测试软件DIAGNOSTIC AND TEST SOFTWARE (14)火力发电厂自动化常用术语1 自动化水平automatic level是指对一个电厂生产过程实现自动控制所达到的程度。
过热汽温控制系统的无扰切换控制与组态设计余雷;费树岷;张茂青【摘要】针对某火电厂#2炉600MW机组的过热汽温控制系统的大时滞、大惯性、大超调问题,该文提出了一种基于单神经元自适应比例求和微分( PSD)的切换控制策略,内环(副环)采用常规比例积分微分(PID)控制器,外环(主环)采用单神经元PSD控制与PID控制进行合理切换,同时在Foxboro公司I/A系列的分散控制系统平台上进行了无扰切换控制策略的组态设计.采用实验室开发的先进控制平台软件进行模拟仿真,结果表明该控制策略具有超调量小(低于2%)、调节速度快、鲁棒性强等特点,实际现场应用显示出了良好的动态调节品质与控制效果.%For the presence of large delay,large inertia and large overshoot phenomenon of the No. 2 steam temperature of 600 MW boiler of an electric power limited liability company, a single-neuron self-adaptive proportional sum differential ( PSD) switching control scheme is proposed here. A common PID controller is applied to inner loop. Outer loops use appropriate switching between single-neuron self-adaptive PSD control and PID control. Configuration of the undisturbed switching control scheme is designed based on the distributed control system platform of Foxboro I/A series. The simulation results from the software of advanced process platform designed in the lab illustrate that the proposed control scheme has the high performance of small overshoot (less than 2% ) , short tuning time and strong robustness. Practical application shows that the method has good dynamic quality adjustment and control effectiveness.【期刊名称】《南京理工大学学报(自然科学版)》【年(卷),期】2012(036)001【总页数】6页(P25-30)【关键词】过热汽温;无扰切换;组态设计【作者】余雷;费树岷;张茂青【作者单位】苏州大学机电工程学院,江苏苏州215021;东南大学自动化学院,江苏南京210096;苏州大学机电工程学院,江苏苏州215021【正文语种】中文【中图分类】TP273过热汽温温度是火电厂机组运行过程中需要监视、控制的重要参数之一,它直接关系着机组能否安全稳定地运行。