微电子学概论第二章半导体物理与半导体器件原理与物理基础
- 格式:ppt
- 大小:2.46 MB
- 文档页数:83
半导体物理与器件(尼曼第四版)答案第一章:半导体材料与晶体1.1 半导体材料的基本特性半导体材料是一种介于导体和绝缘体之间的材料。
它的基本特性包括:1.带隙:半导体材料的价带与导带之间存在一个禁带或带隙,是电子在能量上所能占据的禁止区域。
2.拉伸系统:半导体材料的结构是由原子或分子构成的晶格结构,其中的原子或分子以确定的方式排列。
3.载流子:在半导体中,存在两种载流子,即自由电子和空穴。
自由电子是在导带上的,在外加电场存在的情况下能够自由移动的电子。
空穴是在价带上的,当一个价带上的电子从该位置离开时,会留下一个类似电子的空位,空穴可以看作电子离开后的痕迹。
4.掺杂:为了改变半导体材料的导电性能,通常会对其进行掺杂。
掺杂是将少量元素添加到半导体材料中,以改变载流子浓度和导电性质。
1.2 半导体材料的结构与晶体缺陷半导体材料的结构包括晶体结构和非晶态结构。
晶体结构是指材料具有有序的周期性排列的结构,而非晶态结构是指无序排列的结构。
晶体结构的特点包括:1.晶体结构的基本单位是晶胞,晶胞在三维空间中重复排列。
2.晶格常数是晶胞边长的倍数,用于描述晶格的大小。
3.晶体结构可分为离子晶体、共价晶体和金属晶体等不同类型。
晶体结构中可能存在各种晶体缺陷,包括:1.点缺陷:晶体中原子位置的缺陷,主要包括实际缺陷和自间隙缺陷两种类型。
2.线缺陷:晶体中存在的晶面上或晶内的线状缺陷,主要包括位错和脆性断裂两种类型。
3.面缺陷:晶体中存在的晶面上的缺陷,主要包括晶面位错和穿孔两种类型。
1.3 半导体制备与加工半导体制备与加工是指将半导体材料制备成具有特定电性能的器件的过程。
它包括晶体生长、掺杂、薄膜制备和微电子加工等步骤。
晶体生长是将半导体材料从溶液或气相中生长出来的过程。
常用的晶体生长方法包括液相外延法、分子束外延法和气相外延法等。
掺杂是为了改变半导体材料的导电性能,通常会对其进行掺杂。
常用的掺杂方法包括扩散法、离子注入和分子束外延法等。
第一章 绪论1.画出集成电路设计与制造的主要流程框架。
2.集成电路分类情况如何?答:3.微电子学的特点是什么?答:微电子学:电子学的一门分支学科微电子学以实现电路和系统的集成为目的,故实用性极强。
微电子学中的空间尺度通常是以微米(μm, 1μm =10-6m)和纳米(nm, 1nm = 10-9m)为单位的。
微电子学是信息领域的重要基础学科微电子学是一门综合性很强的边缘学科涉及了固体物理学、量子力学、热力学与统计物理学、材料科学、电子线路、信号处理、计算⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧按应用领域分类数字模拟混合电路非线性电路线性电路模拟电路时序逻辑电路组合逻辑电路数字电路按功能分类GSI ULSI VLSI LSI MSI SSI 按规模分类薄膜混合集成电路厚膜混合集成电路混合集成电路BiCMOS BiMOS 型BiMOS CMOS NMOS PMOS 型MOS 双极型单片集成电路按结构分类集成电路机辅助设计、测试与加工、图论、化学等多个学科微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向微电子学的渗透性极强,它可以是与其他学科结合而诞生出一系列新的交叉学科,例如微机电系统(MEMS)、生物芯片等第二章半导体物理和器件物理基础1.什么是半导体?特点、常用半导体材料答:什么是半导体?金属:电导率106~104(W∙cm-1),不含禁带;半导体:电导率104~10-10(W∙cm-1),含禁带;绝缘体:电导率<10-10(W∙cm-1),禁带较宽;半导体的特点:(1)电导率随温度上升而指数上升;(2)杂质的种类和数量决定其电导率;(3)可以实现非均匀掺杂;(4)光辐照、高能电子注入、电场和磁场等影响其电导率;半导体有元素半导体,如:Si、Ge(锗)化合物半导体,如:GaAs(砷化镓)、InP (磷化铟)硅:地球上含量最丰富的元素之一,微电子产业用量最大、也是最重要的半导体材料。
湖北省考研微电子科学与工程复习资料半导体器件原理概述湖北省考研微电子科学与工程复习资料——半导体器件原理概述作为现代半导体电子技术的重要基础,半导体器件在微电子科学与工程领域中扮演着至关重要的角色。
本文将对半导体器件的原理进行概述,帮助考生更好地理解和应对湖北省考研微电子科学与工程的学习及复习。
一、半导体物理基础半导体物理基础是理解半导体器件原理的关键。
在半导体中,原子的价电子与价带之间的能隙是半导体材料具有导电特性的重要基础。
通过掺杂技术,可以改变半导体材料的导电性质,并使其在制作半导体器件时具有良好的性能。
二、PN结和二极管PN结是半导体器件的基础,由P型半导体和N型半导体组成。
PN 结上的电荷分布使得PN结具有整流特性,使其成为典型的二极管。
二极管是最简单的半导体器件之一,具有正向导通和反向截止的特性,被广泛应用于各种电子电路中。
三、场效应晶体管场效应晶体管(MOSFET)是一种控制电流的三极制动器,其原理基于半导体中的场效应。
MOSFET具有高输入电阻和低输出电阻的优点,可用于放大电路和开关电路。
根据不同的工作方式,MOSFET可以分为增强型和耗尽型两种类型。
四、双极型晶体管双极型晶体管(BJT)是另一种常用的半导体器件,由NPN或PNP型三层结构组成。
BJT具有两个PN结,分为基极、发射极和集电极。
通过控制基极电流可以达到对输出电流的放大或控制。
BJT常用于放大电路、开关电路和振荡电路等。
五、集成电路集成电路(IC)是半导体器件的重要应用形式。
它将多个电子元件集成在一个芯片上,可以实现复杂的功能。
集成电路根据集成度的不同,可分为小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)和超大规模集成电路(VLSI)等。
六、光电子器件光电子器件是半导体器件在光电转换中的应用。
其中,光电二极管(PD)可将光信号转换为电信号,而光电发光二极管(LED)和激光二极管(LD)则可将电信号转换为光信号。