初中数学_猜想证明与拓展教学设计学情分析教材分析课后反思
- 格式:doc
- 大小:32.67 KB
- 文档页数:5
探索三角形相似的条件第1课时三角形相似的判定定理(1)教学目标知识与技能1.经历三角形相似的判定定理1 的探索及证明过程.2.能应用定理1判定两个三角形相似,解决相关问题.过程与方法让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题、解决问题的能力.情感态度与价值观通过学生积极参与,激发学生学习数学的兴趣,体验数学的探索与创造快乐.教学重点三角形相似的判定定理1及应用.教学难点三角形相似的判定定理1的证明.教学过程一、回顾与思考根据相似多边形定义,说一说什么是相似三角形?表示为什么?读作什么?应注意什么?根据定义我们可以判定两个三角形相似所需条件是什么?猜一猜:判断三角形相似至少需要几个条件?二、探索新知(一)只有一个角相等的两个三角形相似吗?通过活动,你发现了什么结论?(二)动手实验:画△ABC和△ A'B'C' ,使得∠A=A'=40º,∠B=B'=60°,你所画的两个三角形相似吗?如果相似,你能用所学知识验证吗?学生经过画一画、剪一剪、量一量、算一算、拼一拼,在小组合作基础上,讨论交流,可能得出下面结论:①这样的两个三角形不一定全等.②两个三角形三个角都对应相等.③通过度量后计算,得到三边对应成比例.④通过拼置的方法发现这两个三角形可能相似.此时,教师鼓励学生大胆猜想,得出命题:猜想:两角对应相等,两三角形相似.进而让学生画出图形,用数学语言表示此定理:已知:如图△A′B′C′和△ABC中,∠A′=∠A,∠B′=∠B.在△A′B′C′和△ABC中,∵∠A′=∠A,∠B′=∠B.∴△ABC∽△A′B′C′(两角对应相等,两三角形相似)三、随堂练习,巩固知识(一)下面两组图形中的两个三角形是否相似?为什么?(二)判断题:(1)有一个锐角对应相等的两个直角三角形相似.()(3)有一个角相等的两个等腰三角形相似.()四、例题分析如图:D、E分别是△ABC的边AB、AC上的点,DE//BC,AB=7,AD=5,DE=10,(1)图中有哪些相等的角?(2)找出图中相似三角形,并说明理由;CBDE(3)写出三组成比例的线段.(4)若AB=7,AD=5,DE=10,求BC 的长变式练习如图,在四边形 ABCD 中,AB // CD ,对角线 AC 与 BD 相交于点 O ,若AB=10,DC=4,OD=2,求OB 的长.五、当堂小测 1. 如图,请你添加一个条件___________,使得△ABC ∽△ADE.2. 如图,AB ∥CD ,AD 与BC 相交于点O ,那么在下列比例式中,正确的是( )3. A.AD OA CD AB = B.BC OB OD OA = C.OC OB CD AB = D.ODOB AD BC = 4. 判断题:(1)有一个锐角相等的两个直角三角形相似. ( )(2)有一个角为110º的两个等腰三角形相似.( )(3)有一个角为35º的两个等腰三角形相似.( ) 课堂小结提问:“通过这节课的学习你有什么收获?”A让学生相互畅谈自己的学习感受和体会,并请个别学生发言.课后作业1、布置作业:课本90页第3和4题,91页第5题2、完成创优作业中本课时“课时作业”部分.教学反思通过这节课的教学,绝大多数学生能运用本节课所学的知识进行相关的计算和证明;少数学生在探究两个三角形相似的定理时,还不太熟练,教师需加强针对训练.学情分析初中阶段的学生逻辑思维较差,观察能力、记忆能力和想象能力是初步的发展。
《三角形的中位线》教学设计一、教材分析《三角形的中位线》是义务教育教科书五四制鲁教版八年级上册第五章《平行四边形》的第三节。
三角形的中位线是“空间与图形”领域研究的主要对象之一。
三角形中位线定理是三角形的一个重要性质定理,它不仅指出了三角形的中位线与第三边的位置关系和数量关系,而且为证明线段之间的位置关系和数量关系(倍分关系)提供了新的思路,堪称数形结合的典范。
在三角形中位线定理的证明及应用中,处处渗透了转化的思想,它是一种重要的思想方法,无论在今后的学习还是在科学研究中都有着重要的作用,它对拓展学生的思维有着积极的意义。
三角形的中位线在整个知识体系中占有相当重要的作用。
二、教学目标知识与技能:理解三角形中位线的概念,掌握三角形中位线定理,会运用定理进行推理证明和计算,解决有关问题。
过程与方法:经历观察、猜想和归纳,探索三角形中位线的概念和性质,体验解决实际问题方法的多样性,培养大胆猜想、合理论证的科学精神。
情感态度价值观:提高用数学语言表达问题的能力,体会与他人合作解决问题的重要性和转化的数学思想方法。
三、教学重点、难点教学重点:三角形中位线的性质和应用教学难点:三角形中位线定理的推理证明四、教学方法●学情分析认知分析:学生已掌握了如何构造中心对称图形以及中心对称的性质,这将成为本课学生研究和探索三角形中位线性质的基础知识。
能力分析:在前面已经学习了全等三角形、平行四边形等相关内容,具备一定的操作、归纳、推理和论证能力,但在数学意识与应用能力方面尚需要进一步培养。
情感分析:八年级的学生,参与意识强,思维活跃,对于真实问题情境及现实生活中的数学问题具有一定的兴趣,能够积极参与动手操作与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生主动性不够强,尚需通过营造一定学习氛围,来加以带动。
●教法分析依据本节教学内容及学生知识建构的特点,尚需依赖于直观形象的学习方法,选用了合作探究式教学法,通过设计问题序列,引导学生动脑、动手、动口、主动探究,参与整个教学过程,体现学生的自主性和合作精神主动愉快地进行创造性学习。
教学设计本节课设计了六个教学环节:第一环节:课前准备——自我总结;第二环节:合作交流;第三环节:练习提高;第四环节:课堂小结;第五环节:评测练习;第六环节:作业第一环节课前准备活动内容:提前一天布置,让学生选择自己喜欢的方式梳理本章的知识,其中建议学生留出一个环节写出自己对本章的知识还有什么疑惑,或者可以写出在本章中留下印象最深刻的习题与大家分享和交流。
活动目的:由学生自己梳理本章的知识既可以锻炼学生自主学习的能力又可以调动学生学习的热情和兴趣,还可以加强学生在小组内活动交流的意识。
第二环节:合作交流活动内容:开课时由学生在小组内交流各自的知识总结,互相查缺补漏,先组内解决疑惑问题,小组长充分发挥组织能力,调动全组每一名学生参与。
然后选出一份全组最满意的一份总结做好全班交流展示的准备。
其它小组要主动与展示小组交流:可以纠正错误,补充不足,提出问题,表扬鼓励等。
活动目的:这个环节可以调动每个学生参与到课堂中来,真正做到让每个学生都成为课堂的主人。
第三环节:练习提高例1.如图,在△ABC中∠B=30°,∠ACB=110°,AD是BC边上高线,AE平分∠BAC,则∠DAE=例2.三角形两边为3cm,7cm,且第三边为奇数,则三角形的最大周长是例3.如图,在△ABC中,点D、E、F分别为BC、AD、CE的中点.若S△BFC=1,则S△ABC= .例4.实验探究:(1)动手操作:①如图1,将一块直角三角板DEF放置在直角三角板ABC上,使三角板DEF的两条直角边DE、DF分别经过点B、C,且BC∥EF,已知∠A=30°,则∠ABD+∠ACD= ;②如图2,若直角三角板ABC不动,改变等腰直角三角板DEF的位置,使三角板DEF的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD= ;(2)猜想证明:如图3,∠BDC与∠A、∠B、∠C之间存在着什么关系,并说明理由;(3)灵活应用:请你直接利用以上结论,解决以下列问题:①如图4,BE平分∠ABD,CE平分∠ACB,若∠BAC=40°,∠BDC=120°,求∠BEC的度数;②如图5,∠ABD,∠ACD的10等分线相交于点F1、F2、…、F9,若∠BDC=120°,∠BF3C=64°,则∠A的度数为活动内容:结合典型习题回顾重要知识点。
教案6、袋子里有8个红球,m个白球,3个黑球,每个球除颜色外都相同,从中任意摸出一个球,若摸到红球的可能性最大,则m的值不可能是()A.1 B.3 C. 5 D.10活动目的:拓宽学生的思路,对本节知识进行查缺补漏,并进一步的巩固加深,鼓励学生大胆猜测,培养学生勤于动脑、勇于探究的精神。
注意事项:对于第4题与第5题可适当的说出事件发生的可能性的大小,即概率的大小,为今后学习概率做铺垫;对于第6题可根据回答情况讲解。
第五环节:课堂小结,布置作业活动内容1:师生共同回顾新知探究的整个过程,互相交流总结本节的知识点:⑴理解确定事件与不确定事件;⑵知道不确定事件发生的可能性有大有小;⑶合理运用所学知识分析解决相关问题。
活动目的:锻炼学生的口头表达能力,体会学习的成果,感受成功的喜悦,增强学好数学的信心。
(学生畅所欲言,教师给予鼓励)活动内容2:课后作业⑴教材P142问题解决“谁转出的四位数大”(小组探究交流)⑵自己收集生活中的随机事件,并了解其发生的可能性有多大注意事项:根据学生实际灵活选择作业内容。
活动目的:课下收集,是课堂的延伸,而适量的作业也是对本节知识的进一步巩固与拓展,也进一步加深了新知在学生头脑中的印迹,为更好的学习下节课的知识打下良好的基础。
学情研究初中一年级学生已具备了一定的学习能力,能对生活中的常见现象发生的可能性进行一定的分析和判断,但缺乏系统知识来规范。
初中一年级学生性格开朗活泼,对新鲜事物特别敏感,且较易接受,因此,教学过程中创设的问题情境应生动活泼、直观形象,且贴近生活。
由于学生概括能力较弱,推理能力还有待不断发展,所以在教学时,可让学生分组合作与交流,帮助他们通过直观形象地感知来理解抽象逻辑关系,是完成本节内容的关键,因此要注意调动和保护学生的积极性。
1、指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)两直线平行,内错角相等;(2)将油滴入水中,油会浮在水面上;(3)任意买一张电影票,座位号是2的倍数比座位号是5的倍数可能性大;(4)任意投掷一枚均匀的骰子,掷出的点数是奇数;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球(8)抛出的篮球会下落。
八年级数学上册第六章数据的分析《回顾与思考》教学设计一、学生情况分析学生的知识技能基础:经过本章的学习,学生了解了基本的统计知识,会求一组数据的平均数、中位数和众数,也掌握了一定的数据处理的方法,能利用它们解决一些实际问题,并能初步选择恰当的数据代表对数据作出分析。
学生活动经验基础:学生在本章的学习活动中,利用基本统计知识解决了一些相关的实际问题,获得了从事统计活动所必须的数学方法,形成了动手实践、自主探索、合作交流的学习方式,积累了一些数学探究活动的经验。
二、教学任务分析本节课的教学任务是:整理归纳本章所学的知识,形成知识网络结构;会用求出一组数据的平均数、中位数和众数,能选择恰当的数据代表对数据作出评判;培养综合运用统计知识解决实际问题的能力,达成有关的情感态度目标。
为此,本节课的教学目标是:1. 知识与技能:会求出一组数据的平均数、中位数和众数,了解平均数、中位数和众数的差别,能选择恰当的数据代表对数据作出评判,并解决实际问题。
2. 过程与方法:初步经历调查、统计、分析、研讨等活动过程,在活动发展学生综合运用统计知识解决实际问题的能力。
3. 情感与态度:通过本章内容的回顾与思考,培养学生整理归纳知识的方法,逐步养成勤于思考、善于总结的好习惯。
三、教学重难点教学重点:平均数、中位数、众数、方差和标准差的相关计算.教学难点:利用统计的基本知识分析问题.三、教学过程设计本节课采用了“基于小组合作和分层教学的三段五步n 环课堂内外兼修教学法”, 共设计了五个教学环节:第一步:情境导入;第二步:合作探究;第三步:巩固运用;第四步:收获感悟;第五步:拓展提升。
其中在第二步合作探究部分中又根据实际需要设计了5个小的环节,即知识框架、例题展示、小组讨论、小组展示、跟踪训练。
【教学过程】 第一步:情境导入白明泽、杨航两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环 中位数/环众数/环 方差 甲 a 7 7 1.2 乙7b8c若选派其中一名参赛,你认为应选哪名队员?要分析这两名队员的射击训练成绩,需要运用哪些统计量?内容:我们班的白明泽、杨航同学为大家精心准备了一个话剧,我们一起来欣赏吧?播放微视频——最佳射击队员之争目的:利用情境激发学生学习兴趣,提取微视频中的用到的统计知识,为后面的讲解做好铺垫。
11.4《解一元一次不等式》教学设计一、教学目标:知识与技能:1、了解一元一次不等式的概念2、掌握一元一次不等式的解法,并能在数轴上表示解集过程与方法:通过联系一元一次方程的解法,自主探究解一元一次不等式的一般步骤。
体会数学学习中类比和化归的思想,在数轴上正确表示不等式的解集,加深对数形结合思想方法的理解情感态度与价值观:通过小组之间的竞争,培养集体意识,通过讨论发言,培养合作交流、团体协作精神二、教学重难点重点:正确求一元一下次不等式的解集难点:不等号方向改变问题三、教学过程1、开门见山,给出目标同学们,今天我们学习解一元一次不等式,通过本节课的学习需要达到以下两个目标:①理解一元一次不等式的概念②掌握一元一次不等式的解法,并能在数轴上表示其解集【设计意图:给出明确目标,使学生做到有的放矢,从而提高学习效率。
】2、问题导入,回顾旧知问题:不等式有哪些基本性质?不等式的性质:性质1:如果a>b,那么a+c>b+c,a-c>b-c。
性质2:如果a>b,且c>0,那么,a bac bc>>c c性质3:如果a>b ,且c<0,那么 解不等式的最终目的:将不等式变成 x>a 或x<a 形式【设计意图:不等式的基本性质是解一元一次不等式的重要依据,复习旧知是为了探索新知做准备】3、自主思考,探索新知问题:什么叫做一元一次不等式? 观察下列不等式,有什么共同特点? 2x+1>3 2-x<1 2x-1<4x+13 2(5x+3)≤x-3(1-2x)归纳:只含有一个未知数,含有未知数的式子都是整式,未知数的次数是1。
像这样的不等式叫做一元一次不等式。
【设计意图:引导学生通过观察、归纳总结共同特点,得到一元一次不等式的概念,培养学生观察、归纳以及语言表达能力。
】 判断下列不等式是否为一元一次不等式【设计意图:及时反馈,检查学生是否掌握一元一次不等式的概念】 4、类比迁移,合作探究 问题:你能否解出这个方程2x -1=4x +13 解: 移项,得: 2x -4x=13+1 合并同类项,得: -2x=14 系数化为1,得:x=-7,a b ac bc c c<<()10x y +>()124x x+<()()3213x x+<()431432x x +->问题:当方程变成不等式,又该如何去解呢?并将解集再数轴上表示出来。
教学设计3.6 探索与表达规律一、教学目标:1、经历探索数量关系、运用符号表示规律、通过运算验证规律的过程。
拥有一定的问题解决、课题研究、社会调查的经验。
2、会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律。
3、培养学生面对挑战勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情。
教学重点:能探索发现数学规律.教学难点:学会探索发现数学规律.二、教学法:教法:本节的教学结合具体的教学内容采用“问题情景——建立模型——解释应用和拓展”的模式展开。
以问题引导思维,内容的呈现突出以下几个特点:1、把知识的学习置于具体情景之中,通过丰富的例子使学生经历从自然语言到符号语言和图表语言的双向交流过程。
关注学生能否用不同的语言(自然语言、符号语言、图表语言)表达,交流自己的想法。
2、通过丰富而有吸引力的探索活动和现实生活中的问题,使学生初步体会数学建模的思想。
激发好奇心和主动学习的欲望。
3、根据“回想——联想——猜想”的思维过程,对难点进行层层铺垫,使学生亲自经历探索过程与思维升华的过程,感受自我奋斗后成功的喜悦。
学法:1、鼓励学生自主探索和合作交流。
引导学生自主地从事观察、实验、猜测、验证、推理与交流等数学活动,使学生形成对数学知识的理解和有效的学习策略。
2、鼓励与提倡解决问题策略的多样性,引导学生在与他人交流中,去选择合适的策略,丰富自己的思维方式,获得成功的体验和不同的发展。
3、引导学生体会数学知识之间的联系,感受数学的整体性。
不断积累解决问题的策略,提高解决问题的能力。
三、设计理念:1.学习内容是现实的、有意义的,不是以前人们认为枯燥无味、深不可测的数学,是学生感到十分有趣、感到可接受的“身边的数学”。
2.学习方式也与传统方式截然不同。
日历中的每一条数学规律,不是靠教师讲解、学生模仿记忆,而是靠学生动手实践,通过教师引导,给学生留出较多的时间和空间,由学生自己观察、分析、猜想、判断、验证后归纳出来的。
教学设计课前播放音乐图片,缓解紧张气氛,从每张图片中能够抽象出等腰三角形,为本节课的学习埋下伏笔。
一、问题导入出示问题:某次地震后,一位同学用下面的方法检测教室的房梁是否水平:在等腰直角三角尺斜边中点栓一条绳子,在绳子的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,同学们由此确信房梁是水平的,他们的判断对吗?为什么?学生只是猜测应该是对的但是不知道怎样说明理由,教师顺势导入新课,从本节课的等腰三角形中去寻找答案。
二、探索新知剪一剪:教师引导学生将课前准备的长方形纸片按教材要求对折后剪下,再把它展开,看得到了一个什么图形?(通过让学生动手剪纸,获得图形的直观感受,并为下面的折纸操作做好铺垫,为学生提供参与数学活动的时间和空间,调动学生的主观能动性,激发其好奇心和求知欲。
)(根据实际情况可以提前剪好)折一折:让学生三角形纸片沿折痕对折,你能发现等腰三角形具有哪些特征?(播放课件折一折)提问:1、刚才剪出的等腰三角形ABC是轴对称图形吗?它的对称轴是什么?学生思考、回顾剪纸过程,动手把等腰三角形ABC沿折痕对折,容易回答出⊿ABC是轴对称图形,折痕AD所在的直线是它的对称轴。
(让学生认识到动手操作也是一种验证方式。
)2、把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角,能猜一猜等腰三角形ABC有哪些性质吗?(让学生拿着自己的三角形纸片解释说明)①∠B=∠C →两个底角相等②BD=CD →AD为底边BC上的中线③∠BAD=∠CAD →AD为顶角∠BAC的平分线④∠ADB=∠ADC=90°→AD为底边BC上的高教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2:性质1 等腰三角形的两个底角相等(简写成“等边对等角”);性质2 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简写成“三线合一”)(通过教师的引导,学生利用等腰三角形的对称性,讨论、归纳出等腰三角形的两条性质,在这个过程中训练学生文字语言与符号语言的互换,培养学生自主探究的学习品质和观察分析、归纳概括的能力,发展形象思维。
教学设计一、教学目标知识技能:1、理解切线长的定义。
2、探索并证明切线长定理。
3、会运用切线长定理解决问题。
数学思考:1、经历探索切线长定理的过程;2、体会应用切线长定理解决问题,从而渗透转化思想和方程思想。
3、通过对图形的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想。
解决问题:通过经历探索切线长定理的过程,发展探究意识和体会并实践“实验几何--论证几何”的探究方法。
情感态度:通过情境设置引发学生求知欲。
通过应用切线长定理等相关知识解题体会把复杂问题转化为简单问题后易于解决,从而树立解决问题的信心。
二、教学重点:掌握切线长定理三、教学难点:切线长定理的灵活运用四、评价方式:1、通过活动一、二、三、四、五完成对知识技能目标和数学思考目标三的评价。
2、通过活动二完成对数学思考目标1、2和解决问题目标的评价。
3、通过活动一、三、四、六完成对情感态度目标的评价。
4、通过口答和测试的形式完成对学生学习情况的评价。
五、教学过程:【活动一】创设情境,复习引入展示图片,引出阿基米德的名言。
提出问题:1、杠杆与地球的平面图形-圆的位置关系。
2、切线的性质。
3、过平面内一点可以做圆的几条切线。
设计意图:由学生熟悉的物理中杠杆原理和浮力原理的提出者阿基米德的名言出发,展示情境,感受切线的处处存在。
通过对切线性质和判定的复习,巩固旧知。
通过对过平面内一点做圆的切线的条数的思考,引出新课。
【活动二】探索新知,挖掘内涵第一部分:1、提出切线长的概念。
并通过图形说明。
2、提出问题:切线与切线长的区别。
设计意图:通过类比和数形结合的方式,加深学生对切线长定义的记忆和理解。
第二部分:想一想:我们能得到哪些结论?设计意图:通过猜想-验证的方式用几何证明和折叠的方式证明定理,并体会轴对称性,直观感受切线长定理,体会实验几何和论证几何的探究方法。
第三部分:师生学习切线长定理,感受其符号语言。
设计意图:给出时间让学生消化这个定理,并学会它的几何写法,便于用到之后的运用中。
综合与实践
猜想、证明与拓广(两课时)
设计了五个教学环节:第一环节:提出问题,猜想探究;第二环节:思维拓广,证明猜想;第三环节:问题拓广,自主探究;第四环节:总结反思,方法提炼;第五环节:布置作业,巩固所学。
第一环节:提出问题,猜想探究;
问题(1)任意给定一个正方形,是否存在另一个正方形,它的周长和面积分别是已知正方形周长和面积的2倍?
(教学策略:提出问题后引导学生思考,学生会出现的三种解决问题的思路:1、先有具体情况入手研究,得到一个猜想,然后再拓展到一般情况进行证明。
2、因为问题比较简单,有学生可能直接进行一般情况的证明。
3、由于任意两个正方形都是相似的,周长比等于相似比,面积比等于相似比的平方. 所以周长比和面积比不可能同时为2. 因此这样的正方形不存在. 这三种解决问题的方法都应该给与肯定和表扬。
)
证明方法为:解:设给定的正方形的边长为a,则其周长为4a,面积为a2,周长扩大两倍后为8a,则其边长应为 2a,此时面积应为 4a2,它不是已知给定的正方形的面积的2倍.所以不存在这样的正方形。
或是先考虑面积扩大为原来的两倍为2a2,则边长应为a2,此时周长应为4a2,不是4a的两倍,无论从哪个角度考虑,都不存在这样的正方形。
问题(2)任意给定一个矩形,是否存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍?
(教学策略:由问题一的研究学生能够顺理成章的从两个角度来进行思考,一个是从特殊到一般的思想,一个是直接对一般情况进行证明的思想,但是较问题(1)直接证明难度较大,所以引导学生先从特殊情况入手,得到一个猜想后,再进行一般情况的证明会更好一些。
这样在具体问题的解决过程中,会给学生一些启示,有助于学生一般情况下的证明思路的形成。
)
如果已知矩形的长和宽分别为2和1,结论会怎样呢?你是怎么做的?和同伴交流.
总结如下:有三种思路可以选择:
①先固定所求矩形的周长, 设另一个矩形的长为x,将问题化为方程x(6-x)=4是否有解的问题.
②先固定所求矩形的面积, 设另一个矩形的长为x,将问题转化为方程x+4/x=6是否
有解的问题.
③也可以根据已知矩形的长和宽分别为2和1,那么其周长和面积分别为6和2,所求矩形的周长和面积同时扩大2倍后应分别为12和4,设其长和宽分别为x 和y,则得方程组x+y=6 ,xy=4然后讨论它的解是否符合题意.
然后引导学生再通过几组特例的研究,结果都发现存在这样的矩形,于是得到一个猜想。
从而将探究活动推向第二环节拓展思维,证明猜想。
将学生的思维逐渐推向高潮。
第二环节:拓展思维,证明猜想;
当已知矩形的长和宽分别为n 和m 时,是否仍然有相同的结论?
解:当已知矩形的长和宽分别为n 和m 时,那么其周长和面积分别为2(m+n),和mn,所求的矩形周长和面积为4(m+n)和2mn.设所求矩形的长为x,那么宽为 2(m+n)-x,根据题意,得x [2(m+n)-x]=2mn.整理得2
x -2(m+n)x+2mn=0解得 经检验1x ,2x 符合题意,所以存在这样一个矩
形。
于是得到结论:任意给定一个矩形,一定存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍。
引导学生继续将问题向纵深拓展:既然存在倍增关系的矩形,那么是否存在减半的矩形呢?
第三环节:问题拓广,自主探究;
由学生提出问题(3),任意给定一个矩形,是否一定存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半?
(教学策略:此问题提出后,学生也会有两种解决问题的思想,一种就是顺承上面问题的解决思路完成此题的探究过程,另一种也可能会有小明一样的想法。
若是学生中未出现小明的思路,则让学生阅读课本,然后判断小明的想法是否正确.此问题要求学生在自主探究的基础上,小组合作细化完成解答过程。
)
学生通过如上问的探究:发现当已知矩形的长和宽为2和1,3和1,4和1,5和1时,都不存在这样的矩形,它的周长和面积分别是已知矩形的周长和面积的一半.
于是就可能会得到一个猜想,一定不存在这样减半的矩形。
222m n m n x +-+=2
21m n m n x +++=
于是进行一般情况下的对猜想的证明。
设已知矩形的长和宽分别为n,m,所求矩形的长
为x ,那么有x 〔21(n+m )-x 〕=21
mn.得到一元二次方程的根的判别式)6(4
1234141422222mn m n mn m n ac b -+=-+=-.而此时mn m n 622-+不总是大于0的,也不总是小于0的,于是此题的结论不是一定不存在,而是有选择性的存在,当mn m n 622-+≥0,这样的矩形存在,而当mn m n 622-+≤0时这样的矩形不存在。
并请几个学生举几个存在的特例,让学生更直观的感受一下这个结论。
第四环节:总结反思,方法提炼;
(1)本节课的问题解决综合运用了所学知识,体会知识之间的内在联系.
(2)本节课学习的数学方法:猜想、证明、拓广、感受由特殊到一般,数形结合的思想方法,体会证明的必要性.
(3)一个几何存在性问题,可以转化为方程是否有解的问题,两种列方程的思路源于优先“固定”所求矩形的周长或优先“固定”所求矩形的面积,同时也让学生感受到对同一个问题存在不同的解决方法,有助于开阔学生的视野.
第五环节:布置作业,巩固所学;
学生知识状况分析
学生的知识技能基础:学生在经历了证明一证明二以及特殊的四边形的学习后,积累了一定的证明的经验思想和方法,具备了几何证明及探究的能力,在九上的第二章学习了一元二次方程后,会利用根的判别式判断根的情况,并且积累了列一元二次方程解决几何问题的实际经验。
课堂效果分析
课堂教学效果是教师进行课堂教学的落脚点,一切教学手段的运用和教学方法的选择最终的目的是课堂教学效果的最大化要紧紧围绕有效和高效这一核心要求来组织和开展教学活动。
当然这里所说的效果是一个综合性的教学效果,内容即包括基础知识的掌握情况,又包括基本技能的训练效果,同时也包括学生学习能力的培养和道德情感的教育等。
学生是课堂的主体,通过学生表情的变化、思维的速度,回答问题、练习、测试、动
手操作的准确性等信息反馈,可获知教学信息的传输是否畅通,亦可看出新知识新技能的
掌握情况。
教学任务是否完成不能只看少数尖子学生,大多数中下学生同样也是知识的接
受体,从他们身上更能体现教学任务是否完成,以及教师的教学水平、教学质量的高低。
总之,本节课在教师的引导帮助下,全体学生的潜力得到很大限度的挖掘,智力好的学
生吃得饱,中等水平的学生吸收得好,差的学生消化得了,学生人人学有所得。
课堂教学中充分体现师生平等、教学民主的思想,师生信息交流畅通,情感交流融洽,
合作和谐,配合默契,教与学的气氛达到最优化,课堂教学效果达到最大化。
教师教得轻松,学生学得愉快
教材分析
北师大版九年级数学上册的“课题学习”——猜想、证明与拓广,是围绕中心课题通过一系列具体的问题逐渐展开,引导学生分类研究,由特殊到一般,启发学生发现更具有一般性的结论,寻求一般性的解决方法.培养学生直观“判断”和正确“猜测”,并配合一定的形式说理,在交流个人想法中拓展思维。
猜测要“检验是否存在”,再由“特殊到一般”给出一般性的证明.由“倍增”再到“减半”的“拓广”,总结获得的数学知识和策略性的经验,在此体会证明的必要性和发展学生的推理能力.教学突出学生自主探索,合作交流,能自行找到解决问题的方法更好.
测评练习
已知矩形的长和宽为2和1,是否存在另一矩形,它的周长和面积分别是已知矩形的周
长和面积的三分之一.
总结反思,方法提炼;
(1)本节课的问题解决综合运用了所学知识,体会知识之间的内在联系.
(2)本节课学习的数学方法:猜想、证明、拓广、感受由特殊到一般,数形结合的思想方法,体会证明的必要性.
(3)一个几何存在性问题,可以转化为方程是否有解的问题,两种列方程的思路源于优先“固定”所求矩形的周长或优先“固定”所求矩形的面积,同时也让学生感受到对同一个问题存在不同的解决方法,有助于开阔学生的视野.。