第37讲 数列的求和(解析版)
- 格式:docx
- 大小:196.28 KB
- 文档页数:12
高中数学数列的求和公式及相关题目解析在高中数学中,数列是一个非常重要的概念,它是数学中的一种序列,由一系列按照一定规律排列的数所组成。
数列的求和是数学中常见的问题之一,本文将介绍数列的求和公式及相关题目解析,帮助高中学生和他们的父母更好地理解和掌握这一知识点。
一、等差数列的求和公式及相关题目解析1. 等差数列的求和公式等差数列是指数列中相邻两项之差都相等的数列。
对于等差数列,我们可以使用求和公式来快速计算其前n项的和。
设等差数列的首项为a1,公差为d,前n项和为Sn,则等差数列的求和公式为:Sn = (n/2)[2a1 + (n-1)d]其中,n为项数,a1为首项,d为公差。
2. 题目解析例题1:已知等差数列的首项为3,公差为4,求前10项的和。
解析:根据等差数列的求和公式,代入a1=3,d=4,n=10,可以得到:S10 = (10/2)[2*3 + (10-1)*4] = 5[6 + 9*4] = 5[6 + 36] = 5*42 = 210因此,前10项的和为210。
例题2:已知等差数列的首项为-2,公差为5,前n项和为100,求n的值。
解析:根据等差数列的求和公式,代入a1=-2,d=5,Sn=100,可以得到:100 = (n/2)[2*(-2) + (n-1)*5] = (n/2)[-4 + 5n - 5] = (n/2)(5n - 9)化简得到5n^2 - 9n - 200 = 0,解这个二次方程可以得到n≈13.2或n≈-3.8。
由于n必须是正整数,所以n≈13.2不符合题意。
因此,n≈-3.8也不符合题意。
综上所述,n的值为13。
二、等比数列的求和公式及相关题目解析1. 等比数列的求和公式等比数列是指数列中相邻两项之比都相等的数列。
对于等比数列,我们可以使用求和公式来快速计算其前n项的和。
设等比数列的首项为a1,公比为r,前n项和为Sn,则等比数列的求和公式为:Sn = a1(1 - r^n)/(1 - r)其中,n为项数,a1为首项,r为公比。
数列求和一、公式法(1)等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d .(2)等比数列的前n 项和公式①当q =1时,S n =na 1;②当q ≠1时,S n =a 1(1-q n )1-q =5a 1-a n q1-q .还要记住一些正整数的幂和公式22233332222)1(41]2)1([321)12)(1(61321+=+=++++++=++++n n n n n n n n n 例1 已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,. (1)求{}n a 的通项公式; (2)求{}n b 的前n 项和. 解 (1)在11n n n n a b b nb +++=中选1n =,得1221a b b b +=,即11111,233a a +==. 又因为{}n a 是公差为3的等差数列,所以23(1)31n a n n =+-=-. (2)由(1)得()1131n n n n b b nb ++-+=,即113n n b b +=,得{}n b 是以1为首项,13为公比的等比数列,得113n n b -⎛⎫= ⎪⎝⎭.所以{}n b 的前n 项和111313122313n n n S --==-⋅-. 练习1 (1) 等差数列{a n }中,a 6 + a 35 = 10,则S 40 =_________. 200 (2) 等比数列{a n }中,a 1 = 2 , a 2a 6 = 256,则S 5 =_________. 62或22 二、倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. 例2 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值 答案:289 练习2(选做) 求正整数m 与()n m n <之间的分母为3的所有既约分数的和S .解 显然,这些既约分数为31,32,34,,34,32,31---+++n n n m m m有 )31()32()34()34()32()31(-+-+-++++++=n n n m m m S也有 )31()32()34()34()32()31(++++++-+-+-=m m m n n n S所以 2222),(2)(2)(2m n S m n m n n m S -=-=-⋅+= 三、分组求和法把一个数列分成几个可以直接求和的数列.一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.例3 (1) 求和:112+2122+3123+…+⎝⎛⎭⎫n +12n . (2) 求和:S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2(x ≠0). 解析: (1) 求和:112+2122+3123+…+⎝⎛⎭⎫n +12n . 答案 112+2122+3123+…+⎝⎛⎭⎫n +12n =(1+2+3+…+n )+⎝⎛⎭⎫12+122+123+…+12n =n (n +1)2+12⎝⎛⎭⎫1-12n 1-12=n (n +1)2+1-12n . 梳理 分组分解求和的基本思路:通过分解每一项重新组合,化归为等差数列和等比数列求和. (2) 求和:S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2(x ≠0). 解 当x ≠±1时,S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2 =⎝⎛⎭⎫x 2+2+1x 2+⎝⎛⎭⎫x 4+2+1x 4+…+⎝⎛⎭⎫x 2n +2+1x 2n =(x 2+x 4+…+x 2n )+2n +⎝⎛⎭⎫1x 2+1x 4+…+1x 2n =x 2(x 2n -1)x 2-1+x -2(1-x -2n )1-x -2+2n =(x 2n -1)(x 2n +2+1)x 2n (x 2-1)+2n ;当x =±1时,S n =4n . 综上知,S n =⎩⎪⎨⎪⎧4n ,x =±1,(x 2n -1)(x 2n +2+1)x 2n (x 2-1)+2n ,x ≠±1且x ≠0.反思与感悟 某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列的求和公式分别求和,从而得出原数列的和. 练习3 (1) 求数列{1+2n -1}的前n 项和 . 解析 ∵a n =1+2n -1,∴S n =n +1-2n 1-2=n +2n -1.(2) 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项和S n .解 由数列的前几项可归纳出a n =3n +2n -1,∴S n =(3+2-1)+(6+22-1)+(9+23-1)+...+(3n +2n -1) =(3+6+9+...+3n)+(2+22+...+2n )-(1+1+ (1)=n (3+3n )2+2(2n -1)2-1-n =3n 2+n 2+2n +1-2.(3) 已知{a n }是各项均为正数的等比数列,且a 1+a 2=2⎝⎛⎭⎫1a 1+1a 2,a 3+a 4+a 5=64⎝⎛⎭⎫1a 3+1a 4+1a 5①求{a n }的通项公式;①设b n =⎝⎛⎭⎫a n +1a n 2,求数列{b n }的前n 项和T n . [思路探索] (1)设出公比q ,根据条件列出关于a 1与q 的方程(组),求得a 1与q ,可求得数列的通项公式.(2)由(1)中求得的数列通项公式,可求出{b n }的通项公式,由其通项公式可知其和可分成两个等比数列与一常数列分别求和.解 ①设公比为q ,则a n =a 1q n -1.由已知得⎩⎨⎧a 1+a 1q =2⎝⎛⎭⎫1a 1+1a 1q ,a 1q 2+a 1q 3+a 1q 4=64⎝⎛⎭⎫1a 1q 2+1a 1q 3+1a 1q 4.化简得⎩⎪⎨⎪⎧a 21q =2,a 21q 6=64.又a 1>0,故q =2,a 1=1,所以a n =2n -1.②由①知,b n =⎝⎛⎭⎫a n +1a n 2=a 2n +1a 2n +2=4n -1+14n -1+2, 所以数列{b n }的前n 项和T n =(1+4+ (4)-1)+⎝⎛⎭⎫1+14+…+14n -1+2n =4n -14-1+1-14n 1-14+2n =13(4n -41-n )+2n +1.(3) 求数列{n(n+1)(2n+1)}的前n 项和.答案:n n n a n ++=23322)2()1()321()321(3)321(2222223333++=++++++++++++++=n n n n n n S(4)数列{a n }中,a 1 = 1 , a 2 = 2 , a n+2 – a n = 1 + (–1)n ,则S 100 =__________。
第37讲:数列通项的求法(归纳法、定义法、公式法、累加法、累乘法)【考纲要求】 1、 了解数列的概念和几种简单的表示方法(列表、图象、通项公式)。
2、掌握等差数列、等比数列的通项公式。
【基础知识】2、定义法:若在已知数列中存在:)0(,)(11≠==-++q q a a d a a nn n n 或常数的关系,可采用求等差数列、等比数列的通项公式的求法,确定数列的通项。
3、公式法:若在已知数列中存在:)()(n f S a f S n n n ==或的关系,可以利用11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩,求数列的通项。
【方法讲评】方法一 归纳法使用情景 已知数列的首项和递推公式 解题步骤观察、归纳、猜想、证明。
例1 已知数列{}n a 满足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式。
由此可猜测22(21)1(21)n n a n +-=+,往下用数学归纳法证明这个结论。
(1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立。
(2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时,由此可知,当1n k =+时等式也成立。
根据(1),(2)可知,等式对任何*n N ∈都成立。
(1) 求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测||n a ,||n b 的通项公式,并证明你的结论。
方法二 公式法使用情景 已知数列是等差数列或等比数列解题步骤先求出等差(比)数列的基本量1,()a d q ,再代入等差(比)数列的通项公式。
例2等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =。
求数列{}n a 的通项公式。
【点评】:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。
第37讲:数列的求和一、课程标准1.熟练掌握等差、等比数列的前n 项和公式及倒序相加求和、错位相减求和法.2.掌握非等差、等比数列求和的几种常见方法.3.能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决与前n 项和相关的问题.二、基础知识回顾1.公式法(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2. 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和:①1+2+3+…+n =n (n +1)2;②2+4+6+…+2n =n (n +1);③1+3+5+…+(2n -1)=n 2.2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.3、常见的裂项技巧①1n (n +1)=1n -1n +1. ②1n (n +2)=12⎝⎛⎭⎫1n -1n +2. ③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. ④1n +n +1=n +1-n . ⑤1n (n +1)(n +2)=12⎝⎛⎭⎫1n (n +1)-1(n +1)(n +2). 三、自主热身、归纳总结1、数列112,314,518,7116,…的前n 项和为(C )A . 2n -1+12nB . n 2+1-12nC . n 2+1-12nD . n 2+1-12n -12、数列{a n }的通项公式为a n =1n +n -1,若该数列的前k 项之和等于9,则k =( )A .80B .81C .79D .823、若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( )A .15 B.12 C .-12 D .-15 4、数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2 020=________.5、(一题两空)(2020·安徽太和模拟)设S n 是数列{a n }的前n 项和,且a 1=1,a n +1+S n S n +1=0,则S n =________,数列{}S n S n +1的前n 项和为________.6、(2020·郑州模拟)数列{a n }满足:a 1=1,且对任意的m ,n ∈N *,都有a m +n =a m +a n +mn ,则1a 1+1a 2+1a 3+…+1a 2 018=( )A.2 0172 018B.2 0182 019C.4 0342 018D.4 0362 019 四、例题选讲题型一 公式法例1、(2019通州、海门、启东期末)设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4,则它的前5项和S 5=________.变式1、(2019镇江期末) 设S n 是等比数列{a n }的前n 项的和,若a 6a 3=-12,则S 6S 3=________.变式2、(2019苏锡常镇调研)已知等比数列{}n a 的前n 项和为n S ,若622a a =,则128S S = .方法总结:若一个数列为等差数列或者等比数列则运用求和公式:①等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式(Ⅰ)当q =1时,S n =na 1;(Ⅰ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q .考点二 利用“分组求和法”求和例2、求和S n =1+⎣⎡⎦⎤1+12+⎣⎡⎦⎤1+12+14+…+⎣⎡⎦⎤1+12+14+…+12n -1.变式1、数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于________.变式2、已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.变式3、设数列{a n }的前n 项和为S n ,对任意n ∈N *满足2S n =a n (a n +1),且a n ≠0.(1)求数列{a n }的通项公式;(2)设c n =⎩⎪⎨⎪⎧a n +1,n 为奇数,3×2a n -1+1,n 为偶数,求数列{c n }的前2n 项和T 2n .方法总结:数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求前n 项和的数列求和.考点三 裂项相消法求和例3、(2018南通、扬州、泰州、淮安三调) 设数列{}a n 满足a 1=1,(1-a n +1)(1+a n )=1(n ∈N *),则(a k a k+1)的值为________.变式1、(2019·湖南省湘东六校联考)已知数列{a n }的前n 项和S n 满足S n =S n -1+1(n ≥2,n ∈N ),且a 1=1.(1)求数列{a n}的通项公式a n;(2)记b n=1a n·a n+1,求数列{b n}的前n项和T n.变式2、已知数列{a n}各项均为正数,其前n项和为S n,且满足4S n=(a n+1)2.(1)求{a n}的通项公式;(2)设b n=1a n.a n+1,求数列{b n}的前n项和T n及T n的最小值.变式3、已知函数f(x)=xα的图象过点(4,2),令a n=1f(n+1)+f(n),n∈N*.记数列{a n}的前n项和为S n,则S2 020=()A. 2 019-1B. 2 020-1C. 2 021-1D. 2 021+1方法总结:常见题型有(1)数列的通项公式形如a n=1n n+k时,可转化为a n=1k⎝⎛⎭⎫1n-1n+k,此类数列适合使用裂项相消法求和.(2)数列的通项公式形如a n=1n+k+n时,可转化为a n=1k(n+k-n),此类数列适合使用裂项相消法求和.考点四错位相减法求和例4、(2019南京调研)已知{a n}是等差数列,其前n项和为S n,{b n}是等比数列,且a1=b1=2,a4+b4=21,S4+b4=30.(1) 求数列{a n}和{b n}的通项公式;(2) 记c n=a n b n,n∈N*,求数列{c n}的前n项和.变式1、(2019·郑州市第二次质量检测)已知数列{a n }中,a 1=1,a n >0,前n 项和为S n ,若a n =S n +S n -1(n ∈N *,且n ≥2).(1)求数列{a n }的通项公式;(2)记c n =a n ·2a n ,求数列{c n }的前n 项和T n .变式2、设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a n b n ,求数列{c n }的前n 项和T n .方法总结:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.。
第37讲:数列的求和一、课程标准1.熟练掌握等差、等比数列的前n 项和公式及倒序相加求和、错位相减求和法.2.掌握非等差、等比数列求和的几种常见方法.3.能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决与前n 项和相关的问题.二、基础知识回顾 1.公式法(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2. 推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n)1-q ,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n (n +1)2; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+(2n -1)=n 2. 2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 3、常见的裂项技巧①1n (n +1)=1n -1n +1. ②1n (n +2)=12⎝⎛⎭⎫1n -1n +2.③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. ④1n +n +1=n +1-n .⑤1n (n +1)(n +2)=12⎝⎛⎭⎫1n (n +1)-1(n +1)(n +2).三、自主热身、归纳总结1、数列112,314,518,7116,…的前n 项和为(C )A . 2n -1+12nB . n 2+1-12n C . n 2+1-12n D . n 2+1-12n -1【答案】C【解析】 S n =(1+3+5+…+2n -1)+12+14+18+…+12n =n 2+1-12n .故选C .2、数列{a n }的通项公式为a n =1n +n -1,若该数列的前k 项之和等于9,则k =( )A .80B .81C .79D .82【答案】B【解析】 a n =1n +n -1=n -n -1, 故S n =n ,令S k =k =9,解得k =81,故选B.3、若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( )A .15 B.12 C .-12 D .-15【答案】A【解析】a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9+a 10=-1+4-7+10-13+16-19+22-25+28 =5×3=15,故选A.4、数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2 020=________. 【答案】1 010【解析】因为数列a n =n cos n π2呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4.故S 4=a 1+a 2+a 3+a 4=2. a 5=0,a 6=-6,a 7=0,a 8=8, 故a 5+a 6+a 7+a 8=2,∴周期T =4. ∴S 2 020=2 0204×2=1 010.5、(一题两空)(2020·安徽太和模拟)设S n 是数列{a n }的前n 项和,且a 1=1,a n +1+S n S n +1=0,则S n =________,数列{}S n S n +1的前n 项和为________. 【答案】1n n n +1【解析】∵a n +1=S n +1-S n ,a n +1+S n S n +1=0,∴S n +1-S n +S n S n +1=0,∴1S n +1-1S n =1.又∵1S 1=1a 1=1,∴⎩⎨⎧⎭⎬⎫1S n 是以1为首项,1为公差的等差数列, ∴1S n =n ,∴S n =1n .∴S n S n +1=1n (n +1)=1n -1n +1, ∴T n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=1-1n +1=n n +1.6、(2020·郑州模拟)数列{a n }满足:a 1=1,且对任意的m ,n ∈N *,都有a m +n =a m +a n +mn ,则1a 1+1a 2+1a 3+…+1a 2 018=( )A.2 0172 018 B.2 0182 019 C.4 0342 018 D.4 0362 019【答案】D【解析】因为a 1=1,且对任意的m ,n ∈N *都有a m +n =a m +a n +mn ,所以a n +1=a n +n +1,即a n +1-a n =n +1, 用累加法可得a n =a 1+(n -1)(n +2)2=n (n +1)2, 所以1a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, 所以1a 1+1a 2+1a 3+…+1a 2 018=2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12 018-12 019=4 0362 019. 四、例题选讲 题型一 公式法例1、(2019通州、海门、启东期末)设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4,则它的前5项和S 5=________. 【答案】62【解析】设公比为q ,因为a 1=2,a 3=a 2+4,所以2q 2=2q +4,解得q =2或q =-1,因为{a n }为正项数列,所以q =2,所以S 5=2(1-25)1-2=62.变式1、(2019镇江期末) 设S n 是等比数列{a n }的前n 项的和,若a 6a 3=-12,则S 6S 3=________. 【答案】 12【解析】设等比数列{a n }的公比为q ,则q 3=a 6a 3=-12.易得S 6=S 3(1+q 3),所以S 6S 3=1+q 3=1-12=12.变式2、(2019苏锡常镇调研)已知等比数列{}n a 的前n 项和为n S ,若622a a =,则128S S = . 【答案】.37【解析】设等比数列{}n a 的公比为q ,因为622a a =,所以2422a q a =,故24=q .由于1≠q ,故.372121)(1)(1111)1(1)1(23243481281121812=--=--=--=----=q q q q qq a q q a S S 方法总结:若一个数列为等差数列或者等比数列则运用求和公式:①等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式(Ⅰ)当q =1时,S n =na 1;(Ⅰ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q . 考点二 利用“分组求和法”求和例2、求和S n =1+⎣⎡⎦⎤1+12+⎣⎡⎦⎤1+12+14+…+⎣⎡⎦⎤1+12+14+…+12n -1.【解析】 原式中通项为a n =⎣⎡⎦⎤1+12+14+…+12n -1=1-⎝⎛⎭⎫12n1-12=2⎝⎛⎭⎫1-12n∴S n=2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…⎝⎛⎭⎫1-12n=2⎣⎢⎡⎦⎥⎤n -12⎝⎛⎭⎫1-12n1-12=12n -1+2n -2.变式1、数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于________. 【答案】n 2+1-12n .【解析】:S n =[1+3+5+…+(2n -1)]+⎝⎛⎭⎫12+14+18+…+12n =n 2+12⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫12n1-12=n 2+1-12n .变式2、已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 【解析】 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n . a 1=1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.变式3、设数列{a n }的前n 项和为S n ,对任意n ∈N *满足2S n =a n (a n +1),且a n ≠0. (1)求数列{a n }的通项公式;(2)设c n =⎩⎪⎨⎪⎧a n +1,n 为奇数,3×2a n -1+1,n 为偶数,求数列{c n }的前2n 项和T 2n . 【解析】 (1)∵2S n =a n ()a n +1,当n ≥2时,2S n -1=a n -1(a n -1+1),以上两式相减得2a n =a 2n -a 2n -1+a n -a n -1,即a n +a n -1=()a n +a n -1()a n -a n -1,又当n =1时,由2S 1=a 1()a 1+1及a 1≠0得a 1=1, ∵a n ≠0,∴当n ≥2时,有a n -a n -1=1或a n +a n -1=0.①当a n -a n -1=1时,数列{a n }是等差数列,其通项公式为a n =n (n ∈N *); ②当a n +a n -1=0时,a n =(-1)n -1.(n ∈N *).(2)①当a n =n ,得c n =⎩⎪⎨⎪⎧n +1,n 为奇数,3×2n -1+1,n 为偶数, ∴T 2n =(2+4+…+2n )+()21+23+…+22n -1+n =n (n +1)+3×2(22n -1)4-1+n =n 2+2n -2+22n +1; ②当a n =(-1)n -1时,得到c n =⎩⎪⎨⎪⎧-1,n 为奇数,7,n 为偶数,∴T 2n =n (-1+7)=6n .方法总结:数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求前n 项和的数列求和. 考点三 裂项相消法求和例3、(2018南通、扬州、泰州、淮安三调) 设数列{}a n 满足a 1=1,(1-a n +1)(1+a n )=1(n ∈N *),则(a k a k +1)的值为________. 【答案】. 100101【解析】因为(1-a n +1)(1+a n )=1,所以a n -a n +1-a n a n +1=0,从而1a n +1-1a n =1,即数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,1为公差的等差数列,所以1a n =1+n -1=n ,所以a n =1n ,故a n +1a n =1(n +1)n =1n -1n +1,因此 (a k a k +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1100-1101=1-1101=100101.变式1、(2019·湖南省湘东六校联考)已知数列{a n }的前n 项和S n 满足S n =S n -1+1(n ≥2,n ∈N ),且a 1=1.(1)求数列{a n }的通项公式a n ;(2)记b n =1a n ·a n +1,求数列{b n }的前n 项和T n .【解析】 (1)由已知有S n -S n -1=1(n ≥2,n ∈N ),∴数列{S n }为等差数列,又S 1=a 1=1,∴S n =n ,即S n =n 2.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 又a 1=1也满足上式,∴a n =2n -1. (2)由(1)知,b n =1(2n -1)(2n +1) =12⎝⎛⎭⎫12n -1-12n +1,∴T n =12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n 2n +1. 变式2、已知数列{a n }各项均为正数,其前n 项和为S n ,且满足4S n =(a n +1)2.(1)求{a n }的通项公式;(2)设b n =1a n .a n +1,求数列{b n }的前n 项和T n 及T n 的最小值.【解析】 (1)∵(a n +1)2=4S n ,∴S n =(a n +1)24,S n +1=(a n +1+1)24, ∴S n +1-S n =a n +1=(a n +1+1)2-(a n +1)24, 即4a n +1=a 2n +1-a 2n +2a n +1-2a n ,∴2(a n +1+a n )=(a n +1+a n )·(a n +1-a n ).∵a n +1+a n ≠0,∴a n +1-a n =2,即{a n }是公差为2的等差数列,由(a 1+1)2=4a 1,解得a 1=1,∴a n =2n -1.(2)由(1)知b n =1(2n -1)(2n +1)= 12⎝⎛⎭⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n = 12⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1= 12⎝⎛⎭⎫1-12n +1=12-12(2n +1)=n 2n +1.∵T n +1-T n =12-12(2n +3)-⎣⎡⎦⎤12-12(2n +1)= 12(2n +1)-12(2n +3)=1(2n +1)(2n +3)>0, ∴T n +1>T n ,∴数列{}T n 为递增数列, ∴T n 的最小值为T 1=13.变式3、已知函数f (x )=x α的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2020=()A. 2 019-1B. 2 020-1C. 2 021-1D. 2 021+1【答案】 C【解析】 由f (4)=2,可得4α=2,解得α=12,则f (x )=x .所以a n =1f (n +1)+f (n )=1n +1+n =n +1-n ,所以S 2 020=a 1+a 2+a 3+…+a 2 020=(2-1)+(3-2)+(4-3)+…+( 2 021- 2 020)=2 021-1.方法总结:常见题型有(1)数列的通项公式形如a n =1n n +k 时,可转化为a n =1k ⎝⎛⎭⎫1n -1n +k ,此类数列适合使用裂项相消法求和.(2)数列的通项公式形如a n =1n +k +n 时,可转化为a n =1k (n +k -n ),此类数列适合使用裂项相消法求和.考点四 错位相减法求和例4、(2019南京调研)已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=21,S 4+b 4=30.(1) 求数列{a n }和{b n }的通项公式;(2) 记c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.【解析】(1) 设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由a 1=b 1=2,得a 4=2+3d ,b 4=2q 3,S 4=8+6d .(3分)由条件a 4+b 4=21,S 4+b 4=30,得方程组⎩⎪⎨⎪⎧ 2+3d +2q 3=21,8+6d +2q 3=30,解得⎩⎪⎨⎪⎧d =1,q =2.所以a n =n +1,b n =2n ,n ∈N *.(7分) (2) 由题意知c n =(n +1)×2n . 记T n =c 1+c 2+c 3+…+c n .则T n =2×2+3×22+4×23+…+n ×2n -1+ (n +1)×2n ,2T n =2×22+3×23+…+(n -1)×2n -1+n ×2n +(n +1)2n +1,所以-T n =2×2+(22+23+…+2n )-(n +1)×2n +1,(11分) 即T n =n ·2n +1,n ∈N *.(14分)变式1、(2019·郑州市第二次质量检测)已知数列{a n }中,a 1=1,a n >0,前n 项和为S n ,若a n =S n +S n -1(n ∈N *,且n ≥2).(1)求数列{a n }的通项公式;(2)记c n =a n ·2a n ,求数列{c n }的前n 项和T n . 【解析】(1)在数列{a n }中,a n =S n -S n -1(n ≥2),①∵a n =S n +S n -1 ②,且a n >0, ∴①÷②得S n -S n -1=1(n ≥2),∴数列{}S n 是以S 1=a 1=1为首项,公差为1的等差数列, ∴S n =1+(n -1)×1=n ,∴S n =n 2.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1, 当n =1时,a 1=1,也满足上式, ∴数列{a n }的通项公式为a n =2n -1.(2)由(1)知,a n =2n -1,∴c n =(2n -1)×22n -1, 则T n =1×2+3×23+5×25+…+(2n -1)×22n -1,4T n =1×23+3×25+5×27+…+(2n -3)×22n -1+(2n -1)×22n +1,两式相减得,-3T n =2+2(23+25+…+22n -1)-(2n -1)×22n +1=2+2×8(1-22n -2)1-4-(2n -1)22n +1 =-103+⎝⎛⎭⎫53-2n 22n +1,∴T n =(6n -5)22n +1+109. 变式2、设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a nb n ,求数列{c n }的前n 项和T n .解析:(1)由题意得⎩⎪⎨⎪⎧ 10a 1+45d =100,a 1d =2,即⎩⎪⎨⎪⎧ 2a 1+9d =20,a 1d =2,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29.故⎩⎪⎨⎪⎧a n =2n -1,b n =2n -1或⎩⎪⎨⎪⎧a n=19(2n +79),b n=9·⎝⎛⎭⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1, ① 12T n =12+322+523+724+925+…+2n -12n . ②①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n ,故T n =6-2n +32n -1.方法总结:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.。