信息安全数学基础环和域基础知识
- 格式:ppt
- 大小:423.00 KB
- 文档页数:47
《信息安全数学基础》课中的思政建设发布时间:2022-08-15T07:04:28.157Z 来源:《时代教育》2022年7期作者:张玉丽蔡庆军柯丽珊[导读] 信息安全专业在高校中是一个较新的专业,距今成立仅仅二十余年。
张玉丽蔡庆军柯丽珊广州大学数学与信息科学学院,广东广州,510006摘要:信息安全专业在高校中是一个较新的专业,距今成立仅仅二十余年。
专业课程的设置在不断调整,随着网络技术和信息技术的发展,越来越多的新课程不断加入,同时也适当地删减了一些课程。
但该专业的数学基础类课程-《信息安全数学基础》课却一直不能缺省,而且在思政方面还需要融入更多的教学内容与思想。
本文在广州大学信息安全专业开设的《信息安全数学基础课》的教学、体会基础上,讨论了该课程的思政建设,得到了一些体会。
关键词: 《信息安全数学基础》;思政建设;网络安全0引言自2000年左右我国开设信息安全本科专业至今,已有20余年。
起初开设该专业的高校仅有几家,但随着网络技术、信息技术的快速发展,以及网络安全从业人员的需求量越来越大,越来越多的高校纷纷开设了信息安全专业。
各高校一般将信息安全专业放在师资实力较强的学院,例如有的放在数学学院(广州大学就是这样设置的),有的放在计算机学院,有的放在通信学院,甚至有些高校还放在电子商务学院。
主要是根据信息安全方向硕士、博士的培养课程来进行设置相应的本科课程。
虽然各高校开设的专业课也不完全相同,但都非常注重数学理论课程的学习,不约而同开设了几乎相同的数学内容,包括初等数论、群、环、域、概率论等。
由于信息安全专业毕业后的许多毕业生去向是政府部门中的要害部门、企业中的信息管理职位,故该专业的思想政治教育尤为重要。
十八大以来,习近平总书记多次强调高校要重视课程的思政建设。
最近几年,有关信息安全专业的思政建设方面的研究论文比较多,但主要是集中在该专业总体方面的思政建设[1-4],几乎没有讨论《信息安全数学基础》这门课地思政建设。
第一章(1)5,4,1,5.(2)100=22*52, 3288=23*3*137.(4)a,b可以表示成多个素因子的乘积a=p1p2––p r, b=q1q2––q s,又因为(a, b)=1,表明a, b 没有公共(相同)素因子. 同样可以将a n, b n表示为多个素因子相乘a n=(p1p2––p r)n, b n=(q1q2––q s)n明显a n, b n也没有公共(相同)素因子.(5)同样将a, b可以表示成多个素因子的乘积a=p1p2––p r, b=q1q2––q s, a n=(p1p2––p r)n, b n=(q1q2––q s)n,因为a n| b n所以对任意的i有, p i的n次方| b n, 所以b n中必然含有a的所有素因子, 所以b中必然含有a的所有素因子, 所以a|b.(6)因为非零a, b, c互素,所以(a, b)=(a, c)=1,又因为a=p1p2––p r, b=q1q2––q s, ab=p1p2––p r q1q2––q s, 又因为a, b, c互素, 所以a, b, c中没有公共(相同)素因子, 明显ab和c 也没有公共(相同)素因子.所以(ab, c)= (a, b)(a, c).(7)2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107, 109, 113, 127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199.(11)对两式进行变形有21=0(mod m), 1001=0(mod m),可以看出要求满足的m即使求21和1001的公约数, 为7和1.(12)(70!)/(61!)= 62*63*––*70=(-9)*(-8)*––*(-1)=-9!=-362880=1(mod 71). 明显61!与71互素, 所以两边同乘以61!, 所以70!=61!(mod 71).(13)当n为奇数时2n=(-1)n=-1=2(mod 3), 两边同时加上1有2n+1=0(mod 3), 所以结论成立.当n为偶数时2n=(-1)n=1(mod 3), 两边同时加上1有2n+1=2(mod 3), 所以结论成立. (14)第一个问:因为(c,m)=d, m/d为整数.假设ac=k1m+r, bc=k2m+r,有ac=k1d(m/d)+r, bc=k2d(m/d)+r所以ac=bc(mod m/d),因为(c,m/d)=1,所以两边可以同除以一个c, 所以结论成立.第二个问题:因为a=b(mod m), 所以a-b=k i*m i,a-b是任意m i的倍数,所以a-b是m i公倍数,所以[m i]|a-b.(利用式子:最小公倍数=每个数的乘积/最大公约数, 是错误的, 该式子在两个数时才成立)(15)将整数每位数的值相加, 和能被3整除则整数能被3整除, 和能被9整除则整数能被9整除, (1)能被3整除, 不能被9整除,(2)都不能,(3)都不能,(4)都不能第二章(5)证明:显然在群中单位元e满足方程x2=x, 假设存在一个元素a满足方程x2=x, 则有a2=a, 两边同乘以a-1有a=e. 所以在群中只有单位元满足方程x2=x.(6)证明:因为群G中每个元素都满足方程x2=e, 所以对群中任意元素a,b有aa=e, bb=e, (ab)2=abab=e. 对abab=e, 方程两边左乘以a, 右乘以b有aababb=(aa)ba(bb)=ba=aeb=ab, 有ab=ba, 所以G是交换群.(7)证明:充分性:因为在群中对任意元素a,b有(ab)2=a2b2即abab=aabb, 方程两边左乘以a的逆元右乘以b的逆元, 有a-1ababb-1= a-1aabbb-1, 有ab=ba, 所以G是交换群.必要性:因为群G是交换群, 所以对任意元素a,b有ab=ba, 方程两边左乘以a右乘以b有abab=aabb, 有(ab)2=a2b2.(8)证明:因为xaaba=xbc,所以x-1xaxbaa-1b-1=x-1xbca-1b-1,所以存在唯一解x=a-1bca-1b-1使得方程成立。
《信息安全数学基础》课后作业及答案第1章课后作业答案 (2)第2章课后作业答案 (6)第3章课后作业答案 (13)第4章课后作业答案 (21)第5章课后作业答案 (24)第6章课后作业答案 (27)第7章课后作业答案 (33)第8章课后作业答案 (36)第9章课后作业答案 (40)第10章课后作业答案 (44)第11章课后作业答案 (46)第12章课后作业答案 (49)第13章课后作业答案 (52)第1章课后作业答案习题1:2, 3, 8(1), 11, 17, 21, 24, 25, 312. 证明:存在整数k,使得5 | 2k + 1,并尝试给出整数k的一般形式。
证明k = 2时,满足5 | 2k + 1。
5 | 2k + 1,当且仅当存2k + 1 = 5q。
k, q为整数。
即k = (5q– 1)/2。
只要q为奇数上式即成立,即q = 2t + 1,t为整数即,k = 5t + 2,t为整数。
3. 证明:3 3k + 2,其中k为整数。
证明因为3 | 3k,如果3 | 3k + 2,则得到3 | 2,矛盾。
所以,3 3k + 2。
8. 使用辗转相除法计算整数x, y,使得xa + yb = (a, b):(1) (489, 357)。
解489 = 357×1 + 132,357 =132 × 2 + 93,132 = 93 × 1 + 39,93 = 39 × 2 + 15,39 = 15 × 2 + 9,15 = 9 × 1 + 6,9 = 6 × 1 + 3,6 = 3 × 2 + 0,所以,(489, 357) = 3。
132 = 489 – 357×1,93 = 357 – 132 × 2 = 357 – (489 – 357×1) × 2 = 3 × 357 – 2 ×489,39 = 132 – 93 × 1 = (489 – 357×1) – (3 × 357 – 2 ×489) × 1 = 3 ×489 – 4× 357,15 = 93 – 39 × 2 = (3 × 357 – 2 × 489) – (3 ×489 – 4× 357) × 2 = 11× 357 – 8 × 489,9 = 39 – 15 × 2 = (3 ×489 – 4× 357) – (11× 357 – 8 × 489) × 2 = 19 × 489 – 26× 357,6 = 15 – 9 × 1 = (11× 357 –8 × 489) – (19 × 489 – 26× 357) = 37 ×357 – 27 × 489,3 = 9 – 6 × 1 = (19 × 489 – 26× 357) – (37 × 357 – 27 × 489) = 46 ×489 – 63 × 357。