音调电路
- 格式:pdf
- 大小:111.90 KB
- 文档页数:3
音调电路原理
音调电路是一种电子电路,用于控制音频信号的频率,从而改变声音的音调。
它在许多电子设备中都有应用,比如音乐播放器、电子乐器、通信设备等。
音调电路的原理是基于信号处理和频率调制的技术,通过改变电路中的元件参数来实现对音频信号频率的调节。
音调电路的基本原理是利用电容和电感的特性来改变信号的频率。
在一个简单的RC电路中,当电容或电感的数值改变时,电路的共振频率也会发生变化,从而影响输入信号的频率。
通过调节电容或电感的数值,可以实现对音频信号频率的调节,从而改变声音的音调。
另一种常见的音调电路是使用可变电阻来调节频率。
可变电阻可以通过旋钮或滑动变阻器来改变电路中的电阻数值,从而影响信号的频率。
这种电路常见于音乐播放器和音响设备中,用户可以通过旋钮来调节声音的音调,实现音乐的高低音调节。
除了基本的RC电路和可变电阻电路,还有许多其他类型的音调电路,比如振荡器、滤波器等。
这些电路通过不同的方式来实现对
音频信号频率的调节,从而达到改变声音音调的效果。
在电子音乐乐器中,这些音调电路常常被用于创造各种不同的音色和音效。
在实际应用中,音调电路通常会与放大器、滤波器等其他电路组合在一起,以实现更丰富的声音效果。
通过合理设计和调节这些电路的参数,可以实现各种不同的音色和音效,满足不同音乐风格和个人喜好的需求。
总的来说,音调电路是一种通过改变电路参数来调节音频信号频率的电子电路,它在许多电子设备中都有重要应用。
通过合理设计和调节,可以实现各种不同的音色和音效,为人们的生活和娱乐带来更丰富的体验。
希望本文对音调电路的原理有所帮助,谢谢阅读!。
几种高品质音调电路功放系统中无论是低档还是高档机,除了音量控制外都有音调控制电路,在一些低档机厂家为节省成本,其音调部分仅采用阻容式,当音调调节时往往使得高低音相互干扰,而且缺乏力度和清晰感,听起来非常浑浊杂乱,听久了令人烦燥不安,这些机子弃之又觉浪费,但用之又不满意,如果有动手能力的话,很有必要花几十元对其动动手术(摩机)–––––制作一款高品质的音调板来替换原机音调部分。
下面就向广大发烧友介绍几款品质极佳的音调电路供爱好者选择。
其中以 LM4610N、LM1036N最佳,LM4610N是在LM1036N的基础上增加了3D音场效果处理功能的新一代发烧精品,笔者建议首选LM4610N。
图1是由2块NE5532N组成的高中低音音调及音量控制电路(图中仅画一声道,另一声道完全一样),原理为:信号经IC1(作缓冲放大及隔离作用,避免负载与信号源之间的影响)进入由电阻电容组成的三个频率均衡网络,即高音、中音、低音的频率,当调节RP1–––RP3相应的低中高频就会相应地进入由IC2及其反馈电路组成的反相放大器电路,调节RP1–––RP3就是提升或衰减了高中低音,从而实现了音频调节作用。
需要说明一点是所采用的NE5532N必须是正宗品,如美国大S的、飞利浦的,这样才使行本电路的信噪比、动态范围、瞬态响应和控制效果均达到相当高水准。
(欲获更高的水准NE5532N 可换为NE5535N、OP275、AD827JN等精品运放,当然价格就高一点了)。
图2是采用二阶RC有源二分频电路,该电路由2块NE5532N构成(图中仅画一声道,另一声道相同),图中IC1A与IC1B分别组成低通与高通滤波器,完成音频信号的分割,再分别送到高低音音量控制电位器再分别进入高低音功放电路去推动高音喇叭和低音喇叭。
利用该电路的缺点是要多增加一对功板电路及增多一组接线柱。
相对来说需要多花点钱,但采用前级分频的优点却是非常明显的:①改善了低音音质;②兼顾了高低音扬声器的发声效率;③解决了以住电路中高低音扬声器联接时存在的阻抗不匹配问题;④音调调节的动态范围明显变大。
音调控制电路引言音调控制电路是一种将输入音频信号的频率进行调节的电路。
它常用于音乐设备、广播设备以及消费电子产品中,可以调节音频信号的音调以满足用户的需求。
本文将介绍音调控制电路的基本原理、常见的电路设计以及应用案例。
基本原理音调控制电路的基本原理是通过改变音频信号的频率来实现对音调的调节。
音频信号通常是由不同频率的正弦波组成,不同频率的正弦波对应着不同的音调。
音调控制电路可以通过增加或减小不同频率的正弦波的幅值来实现音调的调节。
电路设计1. 可变频率RC网络可变频率RC网络是一种简单且常见的音调控制电路设计。
它由一个可变电阻和一个电容组成,电阻和电容的值可以通过调节来改变频率。
通过改变电阻和电容的值,我们可以改变RC网络的截止频率,从而改变输入音频信号的频率,实现音调的调节。
2. Baxandall音调控制电路Baxandall音调控制电路是一种经典的音调控制电路设计。
它由两个放大器和多个RC网络组成,通过调节不同的RC网络的截止频率,可以实现对低频和高频的增强或衰减。
Baxandall音调控制电路通常应用于音响设备中,可以通过调节低频和高频的增益来实现音乐的音调调节。
3. 数字音调控制电路数字音调控制电路是一种利用数字信号处理技术实现音调调节的电路。
它通过采样输入音频信号,并对音频信号进行数字化处理,包括调整频率、增加或减小音量等。
数字音调控制电路可以实现更精确的音调调节,且可以通过软件控制来实现多种音效效果。
应用案例1. 音乐设备音调控制电路广泛应用于音乐设备中,如音响、吉他效果器等。
用户可以通过调节音调控制电路来调节音乐的音调,以满足不同的音乐风格和个人喜好。
2. 广播设备广播设备中的音调控制电路常用于广播节目的处理,包括调节主持人的声音、添加特效音等。
LM1036N音调控制电路
LM1036N音调控制电路
这是一个应用在立体声音响设备的音调控制电路,使用一个LM1 036N集成电路,具有低音控制、音量控制、响度补偿、平衡控制、高音控制功能。
低音、高音、音量、平衡四个控制端采用直流电平控制,这适合通过远程控制或者数字电路控制。
功能特色
宽电源电压范围,9V至16V
大音量控制范围,75分贝典型
音调控制,15分贝典型
信道分离,75分贝典型
低失真,0.06%典型的在0.3 Vrms的输入电平
高的信噪比,80分贝典型的在0.3 Vrms输入电平
很少的外部元件
注:电源电压VCC 9V至16V,输出电容器10uF/25V的电解电容。
三段音调电路的分频点1.引言1.1 概述概述部分的内容:音调电路是一种常见的电子设备,广泛应用于音乐器材、配音设备和音频处理等领域。
在音乐制作和音频处理过程中,分频点是一个重要的参数,它决定了音频信号在频域上的划分和处理方式。
三段音调电路是一种常见的分频电路,它能够将输入的音频信号按照频率划分成三个不同的频段,并对每个频段进行独立的调节。
本文将在引言部分对三段音调电路的概念和作用进行介绍。
随后的正文部分将详细阐述三段音调电路的原理和分频点的定义与作用。
最后的结论部分将对三段音调电路的特点进行总结,并探讨不同分频点对音调产生的影响。
通过本文的阅读,读者将能够深入了解三段音调电路的工作原理和分频点的重要性。
同时,读者还将了解到不同分频点对音调的影响,并能够根据实际需求进行合理的选择和调节。
希望本文能够为读者提供有关三段音调电路的全面理解和应用指导。
1.2 文章结构文章结构指的是文章的组织框架和内容安排,它对于读者理解文章的逻辑结构和脉络十分重要。
本文的结构分为三个主要部分:引言、正文和结论。
在引言部分,首先对三段音调电路的概述进行了介绍,说明了该电路的主要特点和应用背景。
接着,明确了本文的结构和内容安排,即引言、正文和结论。
最后,阐明了本文的目的,即探讨分频点对三段音调电路的影响。
在正文部分,首先对三段音调电路的原理进行了阐述,介绍了音调电路的工作原理和基本组成部分。
其次,详细说明了分频点的定义和作用,解释了分频点在音调电路中的重要性和作用。
在结论部分,对三段音调电路的特点进行了总结,简要概括了该电路的特点和优势。
同时,探讨了不同分频点对音调产生的影响,说明了分频点选择对音调效果的重要性。
通过以上的文章结构,读者能够清晰地了解到本文的思路和组织,有助于更好地理解和把握文章的内容和要点。
1.3 目的本文旨在探讨三段音调电路的分频点对音调产生的影响,并分析不同分频点选取的理由。
通过对三段音调电路原理和分频点的定义与作用的介绍,我们可以更深入地理解和认识这一电路设计中的关键要素。
音调电路原理和应用的关系1. 引言音调电路是指用于调整声音的高低(音调)的电路,常见于音频设备中,如音响、电子琴等。
音调的高低调节对于音乐乐器演奏、录音等领域非常重要,因此深入了解音调电路的原理和应用对于这些领域的从业人员具有重大意义。
2. 音调电路的基本原理音调电路原理与信号的频率调节密切相关。
高音调与高频率信号对应,低音调与低频率信号对应。
音调电路基本原理如下:•振荡器:音调电路中常常使用振荡器来产生不同频率的信号。
振荡器的工作原理是通过反馈回路将一部分输出信号再输入到输入信号中,从而实现信号的周期性震荡。
•滤波器:音调电路中的滤波器用于选择特定频率范围内的信号。
滤波器的种类包括低通滤波器、高通滤波器和带通滤波器等。
通过调节滤波器的截止频率可以实现不同音调的调节。
•音量控制器:音调电路中的音量控制器用于调节信号的幅度大小,从而实现音频的音量调节。
音量控制器可以通过调节电阻或放大器的放大倍数来实现。
3. 音调电路的应用音调电路可广泛应用于各种音频设备和音乐仪器,它们可以起到以下作用:3.1 调节音调音调电路的主要应用是调节音调的高低。
通过调节振荡器的频率或滤波器的截止频率,可以改变声音的音调,从而产生不同的音乐效果。
3.2 控制音量音调电路中的音量控制器可以用于调节音频信号的幅度大小,从而控制声音的大小。
这在音响设备中非常常见,用户可以根据需要控制音量大小,使得声音适应不同的场景需求。
3.3 生成音效音调电路可以用于生成各种音效,如回声、合唱、混响等。
通过将不同频率、幅度和相位的信号进行合理组合,可以得到丰富多样的音效效果。
3.4 实现音乐合成音调电路在音乐合成中也扮演着重要的角色。
通过控制不同音调的频率和音量,音乐合成器可以产生各种乐器音色,如钢琴、吉他、小提琴等。
3.5 音乐教学和研究音调电路的应用也延伸到音乐教育和研究领域。
通过了解音调电路的原理和应用,可以更好地理解音乐领域的相关知识,提升音乐教学和研究的效果。
音调电路原理音调电路是一种常见的电子电路,用于改变音频信号的音调高低。
它可以应用在各种音频设备中,例如音响系统、电子乐器、语音变调器等。
音调电路的原理是通过改变音频信号的频率来实现音调的调节,下面我们将详细介绍音调电路的原理和工作方式。
首先,我们需要了解音频信号的基本特性。
音频信号是一种交流信号,它的频率决定了声音的音调高低。
在音调电路中,我们通常使用电容和电感来改变音频信号的频率。
电容和电感是两种基本的电子元件,它们可以分别改变电路的频率响应。
通过在电路中串联或并联电容和电感,可以实现对音频信号频率的调节。
其次,音调电路通常采用滤波器来实现对音频信号频率的调节。
滤波器是一种能够选择性地通过或者抑制特定频率的电路。
在音调电路中,我们可以使用低通滤波器和高通滤波器来调节音频信号的低频和高频部分。
通过调节滤波器的参数,可以实现对音频信号音调的调节。
另外,音调电路还可以采用频率倍频器和分频器来实现音频信号频率的调节。
频率倍频器可以将输入信号的频率倍增,从而实现音调的提高;而分频器则可以将输入信号的频率分频,实现音调的降低。
这些电子元件和电路可以灵活地实现对音频信号频率的调节,从而实现音调电路的功能。
总的来说,音调电路的原理是通过改变音频信号的频率来实现音调的调节。
它可以采用电容、电感、滤波器、倍频器和分频器等电子元件和电路来实现对音频信号频率的调节。
通过合理地设计和调节这些元件和电路,可以实现对音频信号音调的精确调节,从而满足不同应用场景的需求。
在实际应用中,音调电路可以应用在各种音频设备中,例如音响系统中的均衡器、电子乐器中的音调控制器、语音变调器中的频率调节电路等。
它为用户提供了调节音频信号音调的功能,可以满足不同人群对音乐和声音的个性化需求。
综上所述,音调电路是一种通过改变音频信号频率来实现音调调节的电子电路。
它采用电容、电感、滤波器、倍频器和分频器等电子元件和电路来实现对音频信号频率的调节,从而实现音调的调节功能。
详解音量控制器和音调控制器电路音量控制器1.典型双声道音量控制器电路图4-41所示是双声道音量控制器。
RP1-1和RP1-2是双联同轴电位器,用虚线表示这是一个同轴电位器,其中RP1-1是左声道音量电位器,RP1-2是右声道音量电位器。
图4-41 双声道音量控制器当音量调节中转动音量旋钮时,RP1-1和RP1-2的动片同步动作,动片向上滑动时动片输出信号增大,送到后面功率放大电路中的信号增大,音量增大,反之则减小。
重要提示音量控制器中采用Z(指数)型电位器,均匀转动音量电位器转柄时,动片与地端之间的阻值一开始上升较缓慢,后来阻值增大较快。
这样,较小音量时,馈入扬声器的电功率增大量变化较小,音量较大时馈入扬声器的电功率增大量上升很快,这与人耳的对数听觉特性恰好相反,这样在均匀转动音量电位器转柄时,人耳感觉到的音量是均匀上升的,如图4-42所示。
图4-42 曲线示意图2.电子音量控制器电路重要提示普通音量控制器电路结构简单,但存在一个明显的缺点,就是当机器使用时间较长以后,由于音量电位器的转动噪声会引起在调节音量时扬声器中出现“咔啦、咔啦”的噪声。
这是因为音量电位器本身直接参与了信号的传输,当动片与碳膜之间由于灰尘、碳膜磨损存在接触不良时,导致信号传输有中断,引起噪声。
采用电子音量控制器后,由于音频信号本身不通过音量电位器,而且可以采用相应的消除噪声措施,这样即使电位器动片接触不好时也不会引起明显的噪声。
另外,双声道电子音量控制器电路中可以用一只单联电位器同时控制左、右声道的音量。
图4-43所示是电子音量控制器电路。
VT1、VT2构成差分放大器,VT3构成VT1和VT2发射极回路恒流管,RP1是音量电位器。
图4-43 电子音量控制器电路音频信号传输线路是:音频信号Ui经C1耦合,加到VT1基极,经放大和控制后从其集电极输出。
图4-44所示是信号传输过程示意图。
电路工作原理是:VT1和VT2发射极电流之和等于VT3的集电极电流,而VT3集电极电流受RP1动片控制。
音调控制电路什么是音调控制所谓音调控制就是人为地改变信号里高、低频成分的比重,以满足听者的爱好、渲染某种气氛、达到某种效果、或补偿扬声器系统及放音场所的音响不足。
这个控制过程其实并没有改变节目里各种声音的音调(频率),所谓"音调控制"只是个习惯叫法,实际上是"高、低音控制"或"音色调节"。
高保真扩音机大都装有音调控制器。
然而,从保证信号传送质量来考虑,音调控制倒不是必须的。
一个良好的音调控制电路,要有足够的高、低音调节范围,但又同时要求高、低音从最强到最弱的整个调节过程里,中音信号(通常指1000赫)不发生明显的幅度变化,以保证音量大致不变。
所谓提升或衰减高、低音,都是相对于中音而言的。
先把中音作一个固定衰减(或加深负反馈)然后让高音或低音衰减小一些(或负反馈轻一些),就算是得到提升。
因此,为了弥补音调控制电路的增益损失,常需增加一到两级放大电路。
音调控制电路的分类音调控制电路大致可分为两大类:衰减式和负反馈式。
衰减式音调控制电路的调节范围可以做得较宽,但因中音电平要作很大衷减,并且在调节过程中整个电路的阻抗也在变。
所以噪声和失真大一些。
负反馈式音调控制电路的噪声和失真较小,但调节范围受最大负反馈量的限制,所以实际的电路常和输入衷减联合使用,成为衰减负反馈混合式。
1.衰减式音调控制电路典型电路如图所示。
C1、C2、W1构成高音调节器,R1、R2、C3、C4、W2构成低音调节器。
W1旋到A点时高音提升,旋到B点时高音衰减。
W2旋到C点时低音提升,旋到D点时低音衰减。
组成音调电路的元件值必须满足下列关系:(1)R1≥R2;(2)W1和W2的阻值远大于R1、R2;(3)与有关电阻相比,C1、C2的容抗在高频时足够小,在中、低频时足够大;而C3、C4的容抗则在高、中频时足够小,在低频时足够大。
C1、C2能让高频信号通过,但不让中、低频信号通过;而C3、C4则让高、中频信号都通过,但不让低频信号通过。
音调电路原理
音调电路是一种常见的电子电路,它可以改变电子设备产生的
声音的音调高低。
音调电路的原理是基于频率调制和频率解调的原理,通过改变电路中的电容或电感数值来实现音调的调节。
在本文中,我们将详细介绍音调电路的原理及其工作方式。
首先,让我们来了解一下频率调制和频率解调的基本原理。
频
率调制是指改变载波信号的频率以传输信息的过程,而频率解调则
是将调制后的信号还原为原始信号的过程。
音调电路利用这一原理
来改变声音的音调高低,从而实现音调的调节。
音调电路通常由振荡器、频率调制电路和频率解调电路组成。
振荡器产生一个基本频率的信号,频率调制电路根据输入的控制信
号改变振荡器的频率,从而改变输出信号的频率。
频率解调电路则
将调制后的信号还原为原始信号,经过放大和滤波后输出到扬声器。
在音调电路中,电容和电感是起到关键作用的元件。
改变电容
或电感的数值可以改变振荡器的频率,从而实现音调的调节。
此外,音调电路还可以通过改变电阻数值来调节音量大小,从而实现音调
和音量的调节。
除了基本的电路原理外,音调电路还可以应用在各种电子设备中,如音响、电子琴、手机等。
通过调节音调电路中的参数,可以实现不同音调的音乐效果,满足不同用户的需求。
总的来说,音调电路是一种基于频率调制和频率解调原理的电子电路,通过改变电容、电感和电阻的数值来实现音调和音量的调节。
它在各种电子设备中都有广泛的应用,为用户带来不同的音乐体验。
希望本文能够帮助读者更好地了解音调电路的原理及其工作方式。
电子管音调电路图大全(六款电子管音调电路原理图详解)电子管音调电路图(一)有源中段音调控制电路电子管音调电路图(二)电子管双声道前级放大器电路原理图从所周知电子管前级放大器能对数码音源起到润色作用,它和晶体管功率放大器相搭配时,能改善数码音源带来的生硬感,使声音润化,并使音乐中的细节更加丰富,层次更加鲜明,音乐感、临场感加浓,达到完美而传神的境界。
电子管前级放大器的电路很多,每款电路都具有不同的特性。
本文介绍的双声道电子管前级放大器,是采用目前广为流行的二级SRPP 电路,该电路性能优越,保真度高,很适合现代各种数码音源的放音系统。
SRPP电路的全称为SeriesRegulatedPushPull,即串联式调整推挽电路。
该电路具有共阴极放大与阴极跟随器的双重优点,输入阻抗高,输出阻抗低,频率响应好,且频率越高,失真越小,高频放大线性极佳,这是其它电路难以达到的。
下图是电子管双声道前级放大器的电路图。
1.输入电压放大级本输入电压放大级由SRPP电路组成,采用高放大系数双三极电子管12AX7担任。
该管放大系数为100,电流为1.5mA。
用该管别成的前级电压放大器,其增益可达26dB。
本前级放大器的上边管屏极电压取320V,其中点电压应为电源电压的一半,即160V左右。
阴极电位较高。
双三极电子管12AX7与12AU7的阴极与灯丝间的耐压Efk为180V,故完全可以胜任。
如采用其它双三极电子管代用时,必须选用Efk>160V的才行,否则容易造成电子管阴极与灯丝间被击穿。
经放大后的音频信号,由12AX7双三极电子管的上边管阴极输出,输出阻抗仅为数百欧。
经放大后的信号经电容耦合后,输送到下一级。
并在前级电压放大级与输出级之间加入了频率均衡网络。
2,频率均衡网络下图是本机的频率均衡电路。
为了提高前级放大器的性能,故在输入电压放大级与输出级之间加入了由RC组成的频率均衡网络。
由于音频信号在传输网络中,存在着频率的衰减特性,使得传输信号随着频率的增加而衰减增大,产生了幅度畸度。
【收藏】几种简单的音调电路图分享音调电路图(一)本次的音调控制电路,其中Ai为缓冲放大级,用以降低前级输出的负担。
该电路的低频转折频率为30Hz,高频转折频率为1kHz,控制范围为±20dB.使用运算放大器不仅能设计出具有高低音控制功能的音调电路,而且也能设计出具有高中低音控制功能的音调控制电路,实际电路如下图所示。
音调电路图(二)这里有一个电路设计,一个有吸引力的简单的音调控制电路。
这个电路是被动式的,它不需要电源,对音频电平没有放大作用,并且有一定的削弱。
可以看出,该电路被构造成两个T形过滤器,以同样的方式作为灵活的低音和高音音调控制。
两个T型过滤器左臂连接到音频输入端,右臂连接到地,中心点连接输出端。
P1和P2控制低音高音。
想听到更多的低音,你应该把P1向R1的方向移动。
而相比之下,更多的高音,你应该在向C3的方向移动P2。
当然,这并不是一个高质量的音调控制电路,但它最适合用于小型放大器,如250毫瓦的放大器。
需要注意的是电路工作在线路电平,他们必须进入最后放大阶段再行输出。
音调电路图(三)给一个不带音调控制功放加装一个高低音电路,即音调控制电路,可以满足渲染某种气氛、达到某种效果、或补偿扬声器系统及放音场所的音响不足。
音调控制就是人为地改变信号里高、低频的成分,这个控制过程其实并没有改变节目里各种声音的音调(频率),所谓“音调控制”只是个习惯叫法,实际上是“高、低音成分调节”或“音色调节”。
一个良好的音调控制电路,要有足够的高、低音调节范围,但又同时要求高、低音从最强到最弱的整个调节过程里,中音信号(通常指1000赫)不发生明显的幅度变化,以保证音量大致不变。
音调电路图(四)介绍的是一款衰减式的音调控制电路图。
本电路主要是由晶体管和RC网所络组成。
如下图所示,由于C4、R的分路作用,对高频分量有很大的衰减,相对提升了低音。
当滑动触点位于电位器下端时,C被短路,音频信号通过Q、R5、C3、马送到VTz的基极,由于Q与C串联,由于C3容量较小,对低音信号呈现较大的容抗,低音难以通过,因而低音被衰减了,所以RP2对低音起到了控制作用。
河南工业职业技术学院课程设计报告课程名称:模拟电子技术设计题目:音调控制电路的设计姓名:张琳浩学号: 0401100238 系别专业:电气工程系班级:电气1002班指导教师:杨云2011年06月24日音调控制电路的设计摘要:音调控制电路是利用利用电子线路的频率特性原理,用于适时调整音色,使之符合各种不同听音乐的要求,用来补偿音源的录音缺陷或音箱的频响等,由于其就够和使用方法比较简单,负作用少,因而对一般条件的用户来说使用音调控制器简单可靠,它的用途在音响系统中占有重要的地位。
正为了改善音响中的放音音质,在一般中、高档音响中都设有音调控制电路。
其实质是对放音通道频响特性实施控制。
音调的控制不像音量控制,它只对某一段频率的信号进行提升或衰减,不影响其它频段信号的输出,而音量是对整个音频信号频率范围进行同步控制。
关键词:反馈式音调控制电路负反馈音调控制电路目录第1章绪论 (3)1.1课题背景 (3)1.2 选题的目的 (3)1.3 选题的意义 (3)1.4 本课题主要研究内容 (4)第2章音调控制电路分析 (4)2.1 音调控制电路的基础知识 (4)2.1.1 什么是音调控制 (4)2.1.2音调控制电路的分类 (5)2.2 电容器的音调控制电路 (11)第3章整机电路的设计 (17)3.1 技术要求 (17)3.2整机电路图 (18)第4章音调控制电路的安装与调试 (19)4.1 电路安装与调试技术 (19)4.1.1 合理布局、分级装调 (19)4.1.2 调试技术 (19)第5章课程设计体会 (20)第6章参考文献 (21)第1章绪论1.1课题背景音调控制电路是利用电子线路的频率特性原理,人为地改变信号中高、低频成分的比重,适时调整音色,改善音响的放音音质;满足听者的爱好、渲染某种气氛、达到某种效果;补偿扬声器系统及放音场所的场所音响不足。
音调的控制是对某一段频率的信号进行提升或者衰减,不影响其它频段信号的输出。
音调控制电路原理
音调控制电路是一种用于调节音频信号频率和幅度的电路。
它通常用于音响系统、收音机、电视机、手机等设备中,可以通过调节音量、低音和高音来达到音频效果的优化。
音调控制电路原理如下:
1. 音量控制:音量控制主要通过变阻器电路来实现。
变阻器通过调节电路中的电阻值,从而调节信号的幅度大小,从而控制音量的大小。
2. 低音控制:低音控制主要通过滤波电路来实现。
滤波电路中通常包含一个或多个电容或电感元件,通过改变这些元件的值,可以使特定频率范围的信号通过,而将其他频率范围的信号滤除。
调节滤波电路中的元件值可以控制低音频率的增减。
3. 高音控制:高音控制也通过滤波电路来实现,与低音控制类似,但是高音控制更多的是通过调节共振频率和带宽来实现。
共振频率是指滤波电路的中心频率,带宽是指滤波电路的频带范围。
调节共振频率和带宽可以使高音的强弱得到控制。
音调控制电路通常由以上三个部分组成,通过调节不同的控制元件(如变阻器、电容、电感等)的值,可以实现对音响设备输出信号的频率和幅度的精确调整,从而实现不同的音效。
音调控制电路
音调控制电路
音调控制电路的作用主要是为了满足听音者自己的听音爱好,通过对声音某部分频率信号进行提升或者衰减,使整个的声场更加符合听音者对听觉的要求。
一般音响系统中通常设有低音调节和高音调节两个旋钮,用来对音频信号中的低频成分和高频成分进行提升或衰减。
比较高档的音响设备中多采用多频段频率均衡方式,以达到更细致地校正频响的效果。
高低音调节的音调电路,根据其在整机电路中的位置,可分为衰减式、负反馈式以及衰减负反馈混合式音调控制电路三种。
这种电路一般使用高音、低音两个调节电位器;但在少数普及型机中,也有用一个电位器兼作高低音音调控制电路的。
图4所示为负反馈式高低音调节的音调控制
电路。
该电路调试方便、信噪比高,目前大多数的普及型功放都采用这种电路。
图中C1、C2的容量大于C3,对于低音信号C1与C2可视为开路,而对于高音信号C3可视为短路。
低音调节时,当W1滑臂到左端时,C1被短路,C2对低音信号容抗很大,可视为开路;低音信号经过R1、R3直接送入运放,输入量最大;而低音输出则经过R2、W1、R3负反馈送入运放,负反馈量最小,因而低音提升最大;当W1滑臂到右端时,则刚好与上述情形相反,因而低音衰减最大。
不论W1的滑臂怎样滑动,因为C1、C2对高音信号可视为是短路的,所以此时对高音信号无任何影响。
高音调节时,当W2滑臂到左端时,因C3对高音信号可视为短路,高音信号经过R4、C3直接送入运放,输入量最大;而高音输出则经过R5、W2、C3负反馈送入运放,负反馈量最小,因而高音提升最大;当W2滑臂到右端时,则刚好相反,因而高音衰减最大。
不论W2的滑臂怎样滑动,因为C3对中低音信号可视为是开路的,所以此时对中低音信号无任何影响。
普及型功放一般都使用这种音调处理电路。
使用时必须注意的是,为避免前级电路对音调调节的影响,接入的前级电路的输出阻抗必需尽可能地小,应与本级电路输入阻抗互相匹配。
图5所示为衰减式高低音调节的音调控制电路。
电容C1、C2的容量大于电容C3、C4;对于高音信号C1与C2可视为短路,而对于低音信号则可视为开路;C3与C4对于高音信号可视为短路,而对于中低音信号则可视为开路,具体原理分析读者可自行参考图4的情况分析。
图6所示为衰减负反馈混合式高低音调
节的音调控制电路。
低音输入衰减网络由R1、R2、W1左臂、C1组成,低音负反馈网络由R6、R3、W1右臂、C2组成;高音输入衰减网络由R1、R4、W2左臂、C3组成,高音负反馈网络由R6、R5、W2右臂、C3组成;C1、C2、C3的作用与图2中的完全一样。
电路原理分析读者亦可自行参考图4的情况分析。
目前,许多中高档AV功放电路中都采用了专用音调控制IC,如M62411FP、TDA7315、TDA7449等。
图7所示的AV功放电路,使用了TDA7449,其内部含有高低音调节电路,它通过I2C总线由单板CPU输入控制数据来调节音调,高、低音调节范围均为±14dB,调节步进台阶为2dB每级;该电路外接元件少,控制简单、精确。
3.音量、响度补偿、平衡控制等电路常用的音量控制方式是信号衰减式,由电位器来完成。
通过调节信号的衰减量,改变扩音系统输出功率的大小,从而使扬声器重放出来的声音强弱得到调节,实现音量控制。
现在AV功放中一般都使用步进式双联同轴电位器作主声道音量控制。
为实现遥控,也有采用双联马达电位器的。
在中高档机中则使用数字式电子音量控制的较多,通过可360度全方位旋转的脉冲电位器或按键与单片CPU来控制专用音量
IC,达到控制音量的目的。
响度补偿控制,是为了弥补人耳在音量小时对声音的低频域及高频域的听觉灵敏度下降的缺陷,而自动改变放大器频响的一种电路。
常用方法是将特定的阻容网络接入音量电位器的抽头**同构成响度控制,调节音量时使高、低音的提升量自动变化。
图8为普及型功放常采用的响度控制电路,当音量电位器关小且开关SW接通时,电位器W的上半部分与C1构成并联高音提升网络,而电位器下半部分电阻与C2、R并联构成中高频衰减网络,也就是低音提升网络。
这样就起到了等响度补偿作用。
当SW接到断开位置时,响度补偿则取消。
平衡控制电路是通过校正左右声道的增益差来调节左右声道的音量差别,达到校正声像偏移的目的。
图9为普及型功放常采用的一种控制方式,仅使用一个线性电位器。
当滑动臂位于中心位置时,两声道输出幅度相等(设定两输入幅度相等),每个声道的插入损耗均为
3dB。
当滑动臂滑向任一顶端时,一个声道的强度增加3dB左右,而另一个声道的强度则变得很小,甚至变为零,这样就实现了左右平衡控制。
这种电路要求使用的电位器阻值较高,一般为47~100kΩ,阻值变化规律相对于中点具有对称性。
在中高档AV功放中则大多采用电子平衡控制电路,如图7所示的TDA7449其内部含有电子平衡控制电路,通过单片CPU 输入控制数据来调节左右平衡量,能在-80~0dB范围内以1dB每级的变化量调节左右声
道的平衡变化。
张晓中写。