材料力学第一章轴向拉伸和压缩资料重点
- 格式:ppt
- 大小:3.82 MB
- 文档页数:51
第一章绪论第一节材料力学的任务与研究对象一、材料力学的任务1.研究构件的强度、刚度和稳定度载荷:物体所受的主动外力约束力:物体所受的被动外力强度:指构件抵抗破坏的能力刚度:指构件抵抗变形的能力稳定性:指构件保持其原有平衡状态的能力2.研究材料的力学性能二、材料力学的研究对象根据几何形状以及各个方向上尺寸的差异,弹性体大致可以分为杆、板、壳、体四大类。
1.杆:一个方向的尺寸远大于其他两个方向的尺寸的弹性体。
轴线:杆的各截面形心的连线称为杆的轴线;轴线为直线的杆称为直杆;轴线为曲线的杆称为曲杆。
按各截面面积相等与否,杆又分为等截面杆和变截面杆。
2.板:一个方向的尺寸远小于其他两个方向的尺寸,且各处曲率均为零,这种弹性体称为板3.壳:一个方向的尺寸远小于其他两个方向的尺寸,且至少有一个方向的曲率不为零,这种弹性体称为板4.体:三个方向上具有相同量级的尺寸,这种弹性体称为体。
第二节变形固体的基本假设一、变形固体的变形1.变形固体:材料力学研究的构件在外力作用下会产生变形,制造构件的材料称为变形固体。
(所谓变形,是指在外力作用下构建几何形状和尺寸的改变。
)2.变形弹性变形:作用在变形固体上的外力去掉后可以消失的变形。
塑性变形:作用在变形固体上的外力去掉后不可以消失的变形。
又称残余变形。
二、基本假设材料力学在研究变形固体时,为了建立简化模型,忽略了对研究主体影响不大的次要原因,保留了主体的基本性质,对变形固体做出几个假设:连续均匀性假设认为物体在其整个体积内毫无间隙地充满物质,各点处的力学性质是完全相同的。
各向同性假设任何物体沿各个方向的力学性质是相同的小变形假设认为研究的构件几何形状和尺寸的该变量与原始尺寸相比是非常小的。
第三节 构件的外力与杆件变形的基本形式一、构件的外力及其分类1.按照外力在构件表面的分布情况:度,可将其简化为一点分布范围远小于杆的长集中力:一范围的力连续分布在构件表面某分布力: 二、杆件变形的基本形式杆件在各种不同的外力作用方式下将发生各种各样的变形,但基本变形有四种:轴向拉伸或压缩、剪切、扭转和弯曲。
材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
材料力学 - 轴向拉伸和压缩材料力学是研究材料性质和行为的学科,包括弹性、塑性、疲劳、断裂等方面。
在材料力学中,轴向拉伸和压缩是重要的力学测试方法。
轴向拉伸测试轴向拉伸测试是材料测试中最常用的测试方法之一。
该测试方法涉及将试验样品拉伸至破裂点,并测量在拉伸过程中的应力和应变。
在这种测试中,试验样品的截面积比长度更重要,因为应力是由试样的横截面积决定的。
实验过程首先,通过切割样品制备试样。
样品应该是长条状,尺寸应该足够大,能够容纳拉伸机的夹具和测量设备。
然后将样品置于拉伸机上,将试样夹具固定在机器的上部,并将另一个夹具固定在机器的下部。
然后将机器调整到适当的测试条件,比如设置测试速度、卸载条件等。
开始拉伸后,由于拉伸过程会导致不均匀应变,需要使用应变计进行应变测量。
最后,测试结果应该包括应力 - 应变曲线和破坏点。
结果解释轴向拉伸测试的结果由两种性质构成:杨氏模量和屈服强度。
杨氏模量衡量材料的弹性变形特性,而屈服强度则衡量材料开始塑性变形的能力。
在拉伸试验中,将出现线性区域,在该区域,样品的杨氏模量可由应力-应变曲线的斜率计算。
当样品的应变超过线性区域后,就会进入塑性区域,此时材料会表现出不可逆的形变特性。
轴向压缩测试轴向压缩测试是一种用于测量材料在压缩负载下的应变和应力的测试方法。
在这种测试中,材料试件放置在压力夹具之间,并受到垂直于试件轴向的载荷。
压缩测试与轴向拉伸测试非常相似,但它们的结果不同。
由于材料的差异,它们所能承受的压缩力和拉伸力也会存在一定的不同。
实验过程样品制备和夹具的选择与轴向拉伸测试类似,但是在拉伸试验机与压缩机之间存在差异。
进行轴向压缩测试时,需要将夹具安装在垂直于轴向的方向上,并将试件放置在夹具内。
与轴向拉伸测试相同,需要记录测试过程中的应变和应力变化。
结果解释与轴向拉伸测试一样,轴向压缩测试的结果也由杨氏模量和屈服强度构成。
杨氏模量是指在材料的弹性变形区域中,材料的应力与应变的比例系数。
【陆工总结材料力学考试重点】之(第1章)轴向拉伸与压缩1、轴向拉伸与压缩的特点?答:受力特点:杆件两端受沿轴线方向的拉力或压力作用。
变形特点:杆件各横截面沿轴线方向均匀伸长或缩短。
2、轴力的求取方法——截面法?答:如图,用假想截面将杆件截开,根据左边部分杆件的平衡,可得:F N=F p。
3、轴力的正负号规定?答:使杆件产生拉伸变形为正“+”,使杆件产生压缩变形为负“-”。
4、轴力图及其特点?答:表示轴力沿杆轴线方向变化关系的图形称为轴力图。
结论(轴力图的特征):在受集中力作用的截面处,其轴力图发生突变,突变值等于该截面上受到的集中力。
5、轴向拉压杆件横截面上的正应力公式?答:σ=F NA正应力的正负号规定:拉应力为正,压应力为负。
6、轴向拉压杆件的强度条件?答:对于杆件来说,当材料一定时,其许用正应力[σ](即杆件能够正常工作时横截面上任何一点所允许的最大正应力)为一常数,故为保证轴向拉压杆件的强度安全,就必须使杆件横截面上的最大正应力σmax满足:σmax≤[σ]7、应力集中现象及应用?答:如图A处,因有切口、开槽、螺纹等,使横截面面积A剧烈变小,而轴力F N=F不变,而σ=F NA,故发生应力局部增大现象,称为应力集中。
8、拉压变形与胡克定律?答:如图,设杆件原长为l,横截面尺寸为b×h,在轴向载荷F的作用下产生拉伸变形。
绝对变形量:∆l=±F N lEA(拉伸取“+”,压缩取“-”)相对变形量(正应变,也称线应变):=∆ll又:σ=F NA ,则:=∆ll=F N lEAl=F NEA=E即:σ=(胡克定律)由图可知,当杆件伸长(或缩短时),横截面尺寸相应就会变细(或变粗)。
=∆ll称为轴向线应变,而==称为横向正应变,且=。
式中:为泊松比,其值一般小于0.5。
9、材料拉伸、压缩时的力学性能?答:(1)低碳钢拉伸时的力学性能低碳钢拉伸时的σ关系曲线低碳钢拉伸过程可分为四个阶段:1)弹性阶段(OB段)B点对应的应力σ称为弹性极限。
材料力学(一)轴向拉伸与压缩【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。
为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。
【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。
【内容讲解】一、基本概念强度——构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形。
刚度——构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。
稳定性——构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。
杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。
根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。
二、材料力学的基本假设工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。
(一)连续性假设——假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。
这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。
(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。
按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体)。
(三)各向同性假设——沿各个方向均具有相同力学性能。
具有该性质的材料,称为各向同性材料。
综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。
三、外力内力与截面法(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力。
外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等。
当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况。
工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。
解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa 上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△l CD =CD LEA σ=0△L DB =DB LEA σ=-0.01mm(2) ∴ABl∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知材料的弹性模量E=200Gpa,试求各段的应力和应变.解:31.8127ACACCBCBPMPaSPMPaSσσ====ACACACLNLEA EAσε===1.59*104,CBCBCBLNLEA EAσε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa.解:QNllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。