当前位置:文档之家› 2016高考数学专题-导数讲义doc

2016高考数学专题-导数讲义doc

2016高考数学专题-导数讲义doc
2016高考数学专题-导数讲义doc

导数知识要点

一、导数与积分

1. 导数

设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ?时,则函数

)(x f Y =相应地有增量)()(00x f x x f y -?+=?,如果0→?x 时,y ?与x ?的比

x

y ??有极限(即

x

y

??无限趋近于某个常数),我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作)(0/

x f 或0

/

x x y =

x

x f x x f x y x f x x ?-?+=??=→?→?)

()(lim lim

)(0000

0/ 注:当x ?趋近于0时,x 趋近于0x

0000/)

()(lim )()(lim

)(0x x x f x f x x f x x f x f x x o

x --=?-?+=→→? 2. 导函数

如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数)(/

x f ,从而构成了一个新的函数)(/

x f 。称这个函数)(/

x f 为函数)(x f y =在开区间内的导函数,简称导数,也可记作)(/

x f 或/

y

即 )(/

x f =/

y =x

x f x x f x y x x ?-?+=??→?→?)

()(lim

lim

00 注:导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值。它们之间的关系是函数)(x f y =在点0x 处的导数就是导函数)(/

x f 在点0x 的函数值。 3. 导数的几何意义

函数)(x f 在0x x =处的导数就是曲线)(x f y =在点))(,(00x f x 处的切线的斜率,因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为

))(()(00/0x x x f x f y -=-。

例. 求曲线)2ln(+=x y 在点P )0,1-(处的切线方程

例. 经过原点)0,0(作函数23

3)(x x

x f +=的图像的切线,则切线方程为

4. 几种常见函数的导数 0'=C (C 为常数)

1')(-=n n nx x (R n ∈) x x cos )(sin '=

x x sin )(cos '-= x x 1)(ln '=

x x e e =')(

a

a a x x ln )('= a

x x a ln 1

)(log '

=

5. 运算法则

(1)导数的运算法则

''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=?

''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数)

)0(2'''

≠-=

??

?

??v v u v vu v u (2)复合函数的求导法则

)]([x u f y =的导数'

''

x u x

u y y =

例. 31292)(2

3

-+-=x x x x f

6. 定积分 (1) 概念

如果函数)(x f 在区间[]

b a ,上连续,用分点b x x x x x x a n i i ==-πΛπππΛπππ1210

将区间[]b a ,等分成n 个小区间,在每个小区间[]

i i x x ,1-上任取一点),,2,

1(n i i Λ=ξ,作和式

)()(1

1

i n

i n

i i f n a

b x f ξξ∑∑==-=

?,当∞→n 时,上述和式无限接近某个常数,这个常数叫做函数)(x f 在区间[]b a ,上的定积分,记作dx x f b

a

?)

(,即)(lim )(1

i n

i n b

a

f n

a

b dx x f ξ∑?=∞

→-= 这里a 和b 分别叫做积分的下限和上限,区间[]

b a ,叫做积分区间,函数)(x f 叫做被积函数,

x 叫做积分变量,dx x f )(叫做被积式.

注 :定积分数值只与被积函数及积分区间[]

b a ,有关, 与积分变量记号无关

???=

=

b

a b

a

b

a

du u f dt t f dx x f )()()(

(2)性质 ① dx x f k dx x kf b

a

b

a

??=)()( (k 为常数)

② []

???±

=

±b

a

b

a b a

dx x f dx x f dx x f x f )()()()(2

12

1

dx x f x f dx x f b

a b

c

a

???=

+)

()()

(c

(b c a ππ)

(3)微积分基本定理

一般的,如果)(x f 是区间[]

b a ,上的连续函数,并且)()('

x f x F =,那么

)()()

(a F b F dx x f b

a -=?,这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式,

为了方便,常常把)()(a F b F -记作b a x F )(,即)()()()

(a F b F x F dx x f b

a b a -==?. 例.计算下列定积分的值

① ?-2

15

)1(dx x

② dx x ?-2

2

2cos π

π

(4)常见定积分的公式 ①

b

a

n b

a n x n dx x 111

++=? (1-≠n )

b

a b

a

Cx dx C =? (C 为常数)

③ b

a b

a x dx x cos sin -=? ④

b

a b

a

x dx x sin cos =?

b

a b

a

x dx x

ln 1

=?

b a

x b

a x

e

dx

e =?

(5)利用定积分求平面图形的面积 ① 画图象:在直角坐标系内画出大致图象

② 确定积分上、下限:借助图象的直观性求出交点坐标,确定被积函数与积分的上下限 ③ 用牛顿-莱布尼茨公式求面积:将曲边多边形的面积表示成若干定积分的和,计算定积分 例. 如图,阴影部分的面积是

A .32

B .329-

C .

3

32 D .

3

35

二、导数的应用

1. 函数的单调性

设函数)(x f y =在区间),(b a 内可导,导函数)(’

x f 在区间),(b a 内满足

0)('φx f ,则)(x f y =为增函数; 0)('πx f ,则)(x f y =为减函数

设函数)(x f y =在区间),(b a 内可导,导函数)(’

x f 在区间),(b a 的任意子区间内都不恒等于0,则

0)('

≥x f ,则)(x f y =为增函数;

0)('≤x f ,则)(x f y =为减函数

注:①0)('

φx f 是)(x f 递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不

是都有0)('

φx f ,有一个点例外即x =0时0)0('

=f ,同样0)('

πx f 是f (x )递减的充

分非必要条件.

②一般地,如果)(x f 在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的.

例1、判断下列函数的单调性及单调区间

(1)x x x f ln 23)(2

-= (2)1ln )(-=

x

x

x f (3)2

)1(2)(x e x x f x

--= (4)2

)(-=x e x f x

(5))20)(cos 1(sin )(π≤≤+=x x x x f

例2、已知函数)常数(R a x x

a

x x f ∈≠+=,0)(2

.若函数)(x f 在[)∞+,2上单调递增,求a

的取值范围.

变式训练: 已知函数13)(2

3

+-+=x x ax x f 在R 上是减函数,求a 的取值范围

例3、设函数)1ln()1()(++-=x a ax x f ,其中1-≥a ,求)(x f 的单调区间

变式训练:已知函数1,ln )1(2

1)(2

>-+-=a x a ax x x f ,试判断函数单调性

例4、当0>x 时,证明不等式 x

e x 221<+

变式训练:当1>x 时,证明不等式 )1ln(x x +>

2. 函数的极值 (1)定义

设函数)(x f 在点0x 附近有定义,如果对0x 附近的所有点,都有)()(0x f x f π

则)(0x f 是函数)(x f 的一个极大值,记作)(0极大值x f y =;如果对0x 附近的所有点,都有)()(0x f x f φ

,则)(0x f 是函数)(x f 的一个极小值,记作)(0极小值x f y =. 极

大值与极小值统称为极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。

注意以下几点:

(ⅰ)极值是一个局部概念。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小。并不意味着它在函数的整个的定义域内最大或最小。

(ⅱ)函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个。

(ⅲ)极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值,如下图所示,1x

(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点。而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。

由上图可以看出,在函数取得极值处,如果曲线有切线的话,则切线是水平的,从而有

)

(=

'x

f。但反过来不一定。如函数3x

y=,在0

=

x处,曲线的切线是水平的,但这点

的函数值既不比它附近的点的函数值大,也不比它附近的点的函数值小。假设

x使0

)

(

=

'x

f,那么

x在什么情况下是的极值点呢?

如上左图所示,若

x是)

(x

f的极大值点,则

x两侧附近点的函数值必须小于)

(

x

f。因

此,

x的左侧附近)

(x

f只能是增函数,即0

)(>

'x

f。

x的右侧附近)

(x

f只能是减函数,即0

)

(<

'x

f,同理,如上右图所示,若

x是极小值点,则在

x的左侧附近)

(x

f只能是减函数,即0

)

(<

'x

f,在

x的右侧附近)

(x

f只能是增函数,即0

)(>

'x

f,从而我们得出结论:

x满足0

)

(

=

'x

f,且在

x的两侧)

(x

f的导数异号,则

x是)

(x

f的极值点,)

(

x

f是极值,并且如果)

(x

f'在

x两侧满足“左正右负”,则

x是)

(x

f的极大值点,)

(

x

f是极大值;如果)

(x

f'在

x两侧满足“左负右正”,则

x是)

(x

f的极小值点,)

(

x

f是极

小值。

例. 求函数4

4

3

1

3+

-

=x

x

y的极值。

(2)判断)

(

x

f是极值的方法

当函数)

(x

f在点

x处连续时,

①如果在

x附近的左侧0

)

(’φ

x

f,右侧0

)

(’π

x

f,那么)

(

x

f是极大值;

②如果在

x附近的左侧0

)

(’π

x

f,右侧0

)

(’φ

x

f,那么)

(

x

f是极小值.

注:①若点

x是可导函数)

(x

f的极值点,则)

('x

f=0. 但反过来不一定成立. 对于可导函

数,其一点

x是极值点的必要条件是若函数在该点可导,则导数值为零.

例如:函数3

)

(x

x

f

y=

=,0

=

x使)

('x

f=0,但0

=

x不是极值点.

②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是极小值点 (3)求极值步骤: ① 确定函数的定义域; ② 求导数;

③ 求方程/

y =0的根,这些根也称为可能极值点;

④ 检查在方程的根的左右两侧的符号,确定极值点。(最好通过列表法)

例1、 求下列函数的极值

(1)672

+-=x x y (2)x x y 273

-=

例2、已知函数x bx ax x f 3)(2

3

-+=在1±=x 的时候取极值,讨论)1()1(-f f 和是函数的极大还是极小值

例3、已知函数)0(3)(3≠+-=a b ax x x f

(1)若曲线)(x f y =在点),()2(2f 处与直线8=y 相切,求b a ,的值

(2)求函数)(x f 的单调区间和极值

3. 函数的最值

(1)在闭区间[]b a ,上连续的函数)(x f 在[]

b a ,上必有最大值与最小值; (2)求最值步骤:

设函数)(x f 在[]

b a ,上连续,在()

b a ,内可导 ①求)(x f 在(

)

b a ,内的极值;

②将)(x f 的各个极值与)(a f 、)(b f 比较,其中最大的一个是)(x f 的最大值,最小的

一个是)(x f 的最小值.

注:①.闭区间[]b a ,上的连续函数一定有最值;开区间),(b a 内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值.

②.函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个.

③.在解决实际应用问题中,关键在于建立数学模型和目标函数;如果函数在区间内只有一个极值点,那么根据实际意义判断是最大值还是最小值即可,不必再与端点的函数值进行比较.

例1、 函数452

+-=x x y 在区间[]1,1-上的最大值与最小值

2016年浙江省高考数学理科试题及答案

绝密★启用前 2016年普通高等学校招生全国统一考试(浙江卷) 理科数学 本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。满分150分。考试用时120分钟。考试结束后,将将本试卷和答题卡一并交回。 注意事项: 1. 答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。 2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。答案写在试卷上无效。 3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。不按以上要求作答的答案无效。 4. 填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 第I卷(共40分) 一、选择题:本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一个是符合题目要求的。 1.已知集合P=错误!未找到引用源。,Q=错误!未找到引用源。,则P错误!未找到引用源。= A.[2,3] B.(-2,3] C.[1,2) D.错误!未找到引用源。 2.已知互相垂直的平面错误!未找到引用源。交于直线l,若直线m,n满足错误!未找到引用源。,则 A.错误!未找到引用源。 B.错误!未找到引用源。 C.错误!未找到引用源。 D.错误!未找到引用源。 3.在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域错误! 未找到引用源。中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

2020届高考数学导数的11个专题

目录 导数专题一、单调性问题 (2) 导数专题二、极值问题 (38) 导数专题三、最值问题 (53) 导数专题四、零点问题 (77) 导数专题五、恒成立问题和存在性问题 (118) 导数专题六、渐近线和间断点问题 (170) 导数专题七、特殊值法判定超越函数的零点问题 (190) 导数专题八、避免分类讨论的参变分离和变换主元 (201) 导数专题九、公切线解决导数中零点问题 (214) 导数专题十、极值点偏移问题 (219) 导数专题十一、构造函数解决导数问题 (227)

导数专题一、单调性问题 【知识结构】 【知识点】 一、导函数代数意义:利用导函数的正负来判断原函数单调性; 二、分类讨论求函数单调性:含参函数的单调性问题的求解,难点是如何对参数进行分类讨论, 讨论的关键在于导函数的零点和定义域的位置关系. 三、分类讨论的思路步骤: 第一步、求函数的定义域、求导,并求导函数零点; 第二步、以导函数的零点存在性进行讨论;当导函数存在多个零点的时,讨论他们的大小关系及与 区间的位置关系(分类讨论); 第三步、画出导函数的同号函数的草图,从而判断其导函数的符号(画导图、标正负、截定义域);第四步、(列表)根据第五步的草图列出f '(x),f (x)随x 变化的情况表,并写出函数的单调区间; 第五步、综合上述讨论的情形,完整地写出函数的单调区间,写出极值点,极值与区间端点函数 值比较得到函数的最值. 四、分类讨论主要讨论参数的不同取值求出单调性,主要讨论点: 1.最高次项系数是否为0; 2.导函数是否有极值点; 3.两根的大小关系; 4.根与定义域端点讨论等。 五、求解函数单调性问题的思路: (1)已知函数在区间上单调递增或单调递减,转化为f '(x) ≥ 0 或f '(x) ≤ 0 恒成立; (2)已知区间上不单调,转化为导函数在区间上存在变号零点,通常利用分离变量法求解参 变量的范围; (3)已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于 零有解. 六、原函数单调性转化为导函数给区间正负问题的处理方法 (1)参变分离; (2)导函数的根与区间端点直接比较;

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

高考数学导数专题复习(基础精心整理)学生版

导数专题复习(基础精心整理)学生版 【基础知识】 1.导数定义:在点处的导数记作k = 相应的切线方程是))((000x x x f y y -'=- 2.常见函数的导数公式: ①;②;③;④; ⑤;⑥;⑦;⑧ 。 3.导数的四则运算法则: (1) (2) (3) 4.导数的应用: (1)利用导数判断函数单调性: ①是增函数;②为减函数;③为常数; (2)利用导数求极值:①求导数;②求方程的根;③列表得极值(判断零点两边的导函数的正负)。 (3)利用导数求最值:比较端点值和极值 【基本题型】 一、求()y f x =在0x 处的导数的步骤:(1)求函数的改变量()()00y f x x f x ?=+?-;(2)求平均变化率 ()()00f x x f x y x x +?-?=?V ;(3)取极限,得导数()00lim x y f x x →?'=?V 。 例1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1)(0则的值是( ) A. 41- B. 2 C. 4 1 D. -2 变式1:()()()为则设h f h f f h 233lim ,430 --='→( ) A .-1 B.-2 C .-3 D .1 二、导数的几何意义 ()f x 0x x x f x x f x f x x y x ?-?+='=='→?) ()(lim )(|000 00'0C ='1()n n x nx -='(sin )cos x x ='(cos )sin x x =-'()ln x x a a a =x x e e =')('1(log )ln a x x a =x x 1 )(ln '= )()()()(])()(['+'='x g x f x g x f x g x f 2)()()()()()()(x g x g x f x g x f x g x f ' -'=' ??? ? ??' ?'='x u u f x u f ))(()(0)(x f x f ?>')(0)(x f x f ?<')(0)(x f x f ?≡')(x f '0)(='x f

2018年浙江省杭州市高考数学一联考试卷(理科)含有答案精解

2016年浙江省杭州市高考数学一模试卷(理科) 一、选择题:本大题共8小题,每小题5分,共40分. 1.(5分)设集合A={x|x2﹣2x≥0},B={x|﹣1<x≤2},则(?R A)∩B=() A.{x|﹣1≤x≤0}B.{x|0<x<2}C.{x|﹣1<x<0}D.{x|﹣1<x≤0} 2.(5分)若sinx﹣2cosx=,则tanx=() A.B.C.2 D.﹣2 3.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的侧面PAB的面积是() A.B.2 C.D. 4.(5分)命题:“?x0∈R,x02+1>0或x0>sinx0”的否定是() A.?x∈R,x2+1≤0且x≤sinx B.?x∈R,x2+1≤0或x≤sinx C.?x0∈R,x+1≤0且x0>sinx0 D.?x0∈R,x+1≤0或x0≤sinx0 5.(5分)设x,满足f(a)f(b)f(c)<0(0<a<b<c),若函数f(x) 存在零点x0,则() A.x0<a B.x0>a C.x0<c D.x0>c 6.(5分)设点P为有公共焦点F1、F2的椭圆M和双曲线Г的一个交点,且cos∠F1PF2=,椭圆M的离心率为e1,双曲线Г的离心率为e2.若e2=2e1,则e1=()A.B.C.D. 7.(5分)在Rt△ABC中,∠C是直角,CA=4,CB=3,△ABC的内切圆交CA,CB于点D,E,点P是图中阴影区域内的一点(不包含边界).若=x+y,则x+y的值可以是()

A.1 B.2 C.4 D.8 8.(5分)记S n是各项均为正数的等差数列{a n}的前n项和,若a1≥1,则() A.S2m S2n≥S m+n2,lnS2m lnS2n≤ln2S m+n B.S2m S2n≤S m+n2,lnS2m lnS2n≤ln2S m+n C.S2m S2n≥S m+n2,lnS2m lnS2n≥ln2S m+n D.S2m S2n≤S m+n2,lnS2m lnS2n≥ln2S m+n 二、填空题:本题7小题,多空题每题6分,单空题每题4分,共36分. 9.(4分)设ln2=a,ln3=b,则e a+e b=.(其中e为自然对数的底数) 10.(6分)设函数f(x)=﹣ln(﹣x+1);g(x)=,则g(﹣2)=;函数y=g(x)+1的零点是. 11.(6分)设实数x,y满足不等式组,若z=2x+y,则z的最大值等于,z的 最小值等于. 12.(6分)设直线l1:(m+1)x﹣(m﹣3)y﹣8=0(m∈R),则直线l1恒过定点;若过原点作直线l2∥l1,则当直线l1与l2的距离最大时,直线l2的方程为. 13.(6分)如图,△ABC是等腰直角三角形,AB=AC,∠BCD=90°,且BC=CD=3.将△ABC沿BC的边翻折,设点A在平面BCD上的射影为点M,若点M在△BCD内部(含边界),则点M的轨迹的最大长度等于;在翻折过程中,当点M位于线段BD上时,直线AB和CD所成的角的余弦值等于. 14.(4分)设x>0,y>0,且(x﹣)2=,则当x+取最小值时,x2+=.

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

[历年真题]2016年浙江省高考数学试卷(理科)

2016年浙江省高考数学试卷(理科) 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.(5分)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(?R Q)=()A.[2,3]B.(﹣2,3]C.[1,2)D.(﹣∞,﹣2]∪[1,+∞) 2.(5分)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则() A.m∥l B.m∥n C.n⊥l D.m⊥n 3.(5分)在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为AB,则|AB|=() A.2 B.4 C.3 D.6 4.(5分)命题“?x∈R,?n∈N*,使得n≥x2”的否定形式是() A.?x∈R,?n∈N*,使得n<x2B.?x∈R,?n∈N*,使得n<x2 C.?x∈R,?n∈N*,使得n<x2D.?x∈R,?n∈N*,使得n<x2 5.(5分)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期() A.与b有关,且与c有关B.与b有关,但与c无关 C.与b无关,且与c无关D.与b无关,但与c有关 6.(5分)如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n ,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若≠A n +1 d n=|A n B n|,S n为△A n B n B n+1的面积,则() A.{S n}是等差数列B.{S n2}是等差数列 C.{d n}是等差数列 D.{d n2}是等差数列

2021年高考数学专题03 导数及其应用 (原卷版)

专题03 导数及其应用 易错点1 不能正确识别图象与平均变化率的关系 A , B 两机关单位开展节能活动,活动开始后两机关的用电量()()12W t W t ,与时间t (天)的关系如图 所示,则一定有 A .两机关单位节能效果一样好 B .A 机关单位比B 机关单位节能效果好 C .A 机关单位的用电量在0[0]t ,上的平均变化率比B 机关单位的用电量在0[0]t ,上的平均变化率大 D .A 机关单位与B 机关单位自节能以来用电量总是一样大 【错解】选C. 因为在(0,t 0)上,()1W t 的图象比()2W t 的图象陡峭,所以在(0,t 0)上用电量的平均变化率,A 机关单位比B 机关单位大. 【错因分析】识图时,一定要结合题意弄清图形所反映的量之间的关系,特别是单调性,增长(减少)的快慢等要弄清. 【试题解析】由题可知,A 机关单位所对应的图象比较陡峭,B 机关单位所对应的图象比较平缓,且用电量在0[0]t ,上的平均变化率都小于0,故一定有A 机关单位比B 机关单位节能效果好.故选B. 【参考答案】B 1.平均变化率

函数()y f x =从1x 到2x 的平均变化率为 2121 ()() f x f x x x --,若21x x x ?=-,2()y f x ?=-1()f x ,则平 均变化率可表示为y x ??. 2.瞬时速度 一般地,如果物体的运动规律可以用函数()s s t =来描述,那么,物体在时刻t 的瞬时速度v 就是物体在 t 到t t +?这段时间内,当t ?无限趋近于0时, s t ??无限趋近的常数. 1.巍巍泰山为我国的五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八,慢十八,不紧不慢又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线图.同样是登山,但是从A 处到B 处会感觉比较轻松,而从B 处到C 处会感觉比较吃力.想想看,为什么?你能用数学语言来量化BC 段曲线的陡峭程度吗? 【答案】见解析. 【解析】山路从A 到B 高度的平均变化率为h AB =1001 5005 -=-, 山路从B 到C 高度的平均变化率为h BC =15101 70504 -=-, ∴h BC >h AB , ∴山路从B 到C 比从A 到B 要陡峭的多. 易错点2 求切线时混淆“某点处”和“过某点” 若经过点P (2,8)作曲线3 y x =的切线,则切线方程为 A .12160x y --= B .320x y -+=

近3年2015-2017各地高考数学真题分类专题汇总--导数及其应用

2017年高考数学试题分类汇编及答案解析---导数及其应用 一、选择题(在每小题给出的四个选项中?只有一项是符合题目要求的) 1(2017北京文)已知函数1()3()3 x x f x =-?则()f x ( ) .A 是偶函数?且在R 上是增函数 .B 是奇函数?且在R 上是增函数 .C 是偶函数?且在R 上是减函数 .D 是奇函数?且在R 上是增函数 2.(2017新课标Ⅱ文)函数2()ln(28)f x x x =--的单调递增区间是( ) .A (,2)-∞- .B (,1)-∞ .C (1, )+∞ .D (4,)+∞ З.(2017山东文)设()()1 21,1x f x x x <<=-≥?? ,若()()1f a f a =+,则 1f a ?? = ??? ( )2.A 4.B 6.C 8.D 4.(2017山东文)若函数()e x f x 在()f x 的定义域上单调递增,则称函数()f x 具有M 性 质.下列函数中具有M 性质的是( ) x x f A -=2)(. .B ()2f x x = .C ()3x f x -= .D ()c o s f x x = 5.(2017新课标Ⅰ文数)函数sin21cos x y x = -的部分图像大致为( ) б.(2017新课标Ⅰ文数)已知函数()ln ln(2)f x x x =+-?则( ) .A )(x f y =在)2,0(单调递增 .B )(x f y =在)2,0(单调递减 .C )(x f y =的图像关于直线1=x 对称 .D )(x f y =的图像关于点)0,1(对称 7.(2017天津文)已知奇函数()f x 在R 上是增函数.若 0.8221 (log ),(log 4.1),(2)5a f b f c f =-==?则,,a b c 的大小关系为( ) .A a b c << .B b a c << .C c b a << .D c a b <<

(完整版)2016年浙江省高考数学试卷(文科)

2016年浙江省高考数学试卷(文科) 一、选择题 1.(5分)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(?U P)∪Q=() A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5} 2.(5分)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则() A.m∥l B.m∥n C.n⊥l D.m⊥n 3.(5分)函数y=sinx2的图象是() A.B.C. D. 4.(5分)若平面区域,夹在两条斜率为1的平行直线之间,则这两 条平行直线间的距离的最小值是() A.B.C.D. 5.(5分)已知a,b>0且a≠1,b≠1,若log a b>1,则() A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b ﹣1)(b﹣a)>0 6.(5分)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的() A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件

7.(5分)已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.()A.若f(a)≤|b|,则a≤b B.若f(a)≤2b,则a≤b C.若f(a)≥|b|,则a≥b D.若f(a)≥2b,则a≥b 8.(5分)如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则() A.{S n}是等差数列B.{S n2}是等差数列 C.{d n}是等差数列 D.{d n2}是等差数列 二、填空题 9.(6分)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3. 10.(6分)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是,半径是. 11.(6分)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=.12.(6分)设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x ﹣a)2,x∈R,则实数a=,b=. 13.(4分)设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上, 且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是. 14.(4分)如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是. 15.(4分)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是. 三、解答题

(完整版)高中数学导数压轴题专题训练

高中数学导数尖子生辅导(填选压轴) 一.选择题(共30小题) 1.(2013?文昌模拟)如图是f(x)=x3+bx2+cx+d的图象,则x12+x22的值是() A.B.C.D. 考点:利用导数研究函数的极值;函数的图象与图象变化. 专题:计算题;压轴题;数形结合. 分析:先利用图象得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x,求出其导函数,利用x1,x2是原函数的极值点,求出x1+x2=,,即可求得结论. 解答:解:由图得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x, ∴f'(x)=3x2﹣2x﹣2 ∵x1,x2是原函数的极值点 所以有x1+x2=,, 故x12+x22=(x1+x2)2﹣2x1x2==. 故选D. 点评:本题主要考查利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考查,属于基础题. 2.(2013?乐山二模)定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3﹣1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为() A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α 考点:导数的运算. 专题:压轴题;新定义. 分析:分别对g(x),h(x),φ(x)求导,令g′(x)=g(x),h′(x)=h(x),φ′(x)=φ(x),则它们的根分别为α,β,γ,即α=1,ln(β+1)=,γ3﹣1=3γ2,然后分别讨论β、γ的取值范围即可. 解答: 解:∵g′(x)=1,h′(x)=,φ′(x)=3x2, 由题意得: α=1,ln(β+1)=,γ3﹣1=3γ2, ①∵ln(β+1)=, ∴(β+1)β+1=e, 当β≥1时,β+1≥2, ∴β+1≤<2, ∴β<1,这与β≥1矛盾, ∴0<β<1; ②∵γ3﹣1=3γ2,且γ=0时等式不成立,

高考理科数学数学导数专题复习考试

高考数学导数专题复习 考试内容 导数的背影.导数的概念.多项式函数的导数. 利用导数研究函数的单调性和极值.函数的最大值和最小值.证明不等式恒成立考试要求: (1)了解导数概念的某些实际背景. (2)理解导数的几何意义. (3)掌握常用函数导数公式,会求多项式函数的导数. (4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值. (5)会利用导数求某些简单实际问题的最大值和最小值. (6)会利用导数证明不等式恒成立问题及相关问题 知识要点

1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值 x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注: ①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ). ()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x x x y ??= ??| |,当x ?>0时,1=??x y ;当x ?<0时,1-=??x y ,故x y x ??→?0lim 不存在. 注: ①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义和物理意义: (1)几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点

(完整版)浙江省高考数学试卷(文科).doc

. 2016 年浙江省高考数学试卷(文科) 一、选择题 1.(5 分)已知全集 U={ 1,2,3,4,5, 6} ,集合 P={ 1,3,5} ,Q={ 1,2,4} , 则( ?U P)∪ Q=() A.{ 1} B.{ 3, 5} C. { 1,2,4,6} D.{ 1,2,3,4,5} 2.(5 分)已知互相垂直的平面α,β交于直线 l,若直线 m,n 满足 m∥α,n⊥ β,则() A.m∥ l B.m∥ n C.n⊥l D. m⊥n 3.(5 分)函数 y=sinx2的图象是() A.B.C. D. 4.( 5 分)若平面区域,夹在两条斜率为1的平行直线之间,则这两 条平行直线间的距离的最小值是() A.B.C.D. 5.(5 分)已知 a,b>0 且 a≠1,b≠1,若 log a b> 1,则() A.(a﹣1)( b﹣ 1)< 0 B.( a﹣ 1)(a﹣b)> 0 C.(b﹣ 1)(b﹣a)< 0 D .( b ﹣ 1)(b﹣a)> 0 6.(5 分)已知函数f(x)=x2+bx,则“b< 0”是“f(f(x))的最小值与f(x)的最小值相等”的() A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件

. .( 分)已知函数 f ( )满足: x ,x ∈R .( ) 7 5 x f (x )≥ | x| 且 f ( x )≥ 2 .若 ≤ .若 b ,则 a ≤b A f ( a )≤ | b| ,则 a b B f (a )≤ 2 .若 f ( a )≥ | b| ,则 a ≥ b .若 f (a )≥ 2 b ,则 a ≥b C D 8.( 5 分)如图,点列 {A n } 、{ B n } 分别在某锐角的两边上,且 | A n A n +1| =| A n +1A n +2| , n n +1 ,n ∈N * ,| B n n +1 n +1 n +2 , n ≠ n +1 , ∈ * ,(P ≠Q 表示点 P 与 Q 不 A ≠ A B | =| B B | B B n N 重 合 ) 若 d n n n , n 为 △n n n +1 的 面 积 , 则 ( ) =| A B | S A B B A .{ S n } 是等差数列 B . { S n 2 } 是等差数列 C .{ d n } 是等差数列 D .{ d n 2} 是等差数列 二、填空题 9.(6 分)某几何体的三视图如图所示(单位: cm ),则该几何体的表面积是 cm 2,体积是 cm 3. 10.( 6 分)已知 a ∈ R ,方程 a 2 x 2+(a+2)y 2+4x+8y+5a=0 表示圆,则圆心坐标 是 ,半径是 . 11.(6 分)已知 2cos 2x+sin2x=Asin (ωx +φ)+b (A >0),则 A= ,b= . 12.( 6 分)设函数 f (x )=x 3+3x 2+1,已知 a ≠ 0,且 f (x )﹣ f ( a ) =( x ﹣b )(x ﹣ a ) 2,x ∈R ,则实数 a= , b= . 13.(4 分)设双曲线 x 2﹣ =1 的左、右焦点分别为 F 1、F 2,若点 P 在双曲线上, 且△ F 1 2 为锐角三角形,则 | PF 1|+| PF 2| 的取值范围是 . PF 14.(4 分)如图,已知平面四边形 ABCD ,AB=BC=3,CD=1,AD= ,∠ADC=90°,沿直线 AC 将△ ACD 翻折成△ ACD ′,直线 AC 与 BD ′所成角的余弦的最大值 是 . 15.( 4 分)已知平面向量 , ,| | =1,| | =2, =1,若 为平面单位向量, 则 | |+| | 的最大值是 . 三、解答题

相关主题
文本预览
相关文档 最新文档