电磁感应现象中的动态分析和能量
- 格式:pdf
- 大小:4.70 MB
- 文档页数:17
第45课时 电磁感应现象中的动力学问题和能量问题◇知识整理◇:一、电磁感应中的动力学问题这类问题覆盖面广,题型也多种多样;但解决这类问题的关键在于通过运动状态的分析来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等,基本思路是:二、电磁感应中的能量问题无论是使闭合回路的磁通量发生变化,还是使闭合回路的部分导体切割磁感线,都要消耗其它形式的能量,转化为回路中的电能。
这个过程不仅体现了能量的转化,而且保持守恒,使我们进一步认识包含电和磁在内的能量的转化和守恒定律的普遍性。
分析问题时,应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功,就可知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功,就可能有机械能参与转化;安培力做负功就将 能转化为 能,做正功将_____ 能转化为 能;然后利用能量守恒列出方程求解。
●预习检测●1.如图所示,在匀强磁场中,导体ab 与光滑导轨紧密接触,ab 在向右的拉力F 作用下以速度v 做匀速直线运动,当电阻R 的阻值增大时,若速度v 不变则 ( )A .F 的功率减小B .F 的功率增大C .F 的功率不变D .F 的大小不变2.如图所示,在光滑绝缘水平面上,有一矩形线圈以一定的速度进入匀强磁场区域,线圈全部进入匀强磁场区域时期动能恰好等于它在磁场外面时的一半,设磁场区域宽度大于线圈宽度,则 ( )A .线圈恰好完全离开磁场时停下B .线圈在未完全离开磁场时即已停下C .线圈能够通过场区不会停下D .线圈在磁场中某个位置停下课前准备区F=BIL临界状态态v 与a 方向关系 运动状态的分析a 变化情况F=ma 合外力 运动导体所受的安培力感应电流确定电源(E ,r ) rR EI +=◆考点突破◆考点1 动态分析与收尾速度【例1】如图所示,两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B .一根质量为m 的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度m v ,则( )A .如果B 增大,m v 将变大 B .如果α变大,m v 将变大C .如果R 变大,m v 将变大D .如果m 变小,m v 将变大【变式训练1】如图所示,AB 、CD 是两根足够长的固定平行金属导轨,两导轨间的距离为L ,导轨平面与水平面的夹角为θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B ,在导轨的 AC 端连接一个阻值为 R 的电阻,一根质量为m 、垂直于导轨放置的金属棒ab ,从静止开始沿导轨下滑,求此过程中ab 棒的最大速度。
电磁感应中的动力学问题【动力学问题的规律】1. 动态分析:求解电磁感应中的力学问题时,要抓好受力分析和运动情况的动态分析,导体在拉力作用下运动,切割磁感线产生感应电动势T感应电流T通电导体受安培力T合外力变化T加速度变化T速度变化,周而复始地循环,当循环结束时,加速度等于零,导体达到稳定运动状态。
2. 两种状态的处理:当导体处于平衡态一一静止状态或匀速直线运动状态时,处理的途径是:根据合外力等于零分析。
当导体处于非平衡态一一变速运动时,处理的途径是:根据牛顿第二定律进行动态分析,或者结合动量的观点分析•3. 常见的力学模型分析:先电后力”,即:先做源”的分析一一分离出电路中由电磁感应所产生的电源,求出电源参数E和r;再进行路”的分析一一分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便求解安培力;然后是力”的分析一一分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力;最后进行运动”状态的分析一一根据力和运动的关系,判断出正确的运动模型.【例1】如图所示,MN、PQ为足够长的平行金属导轨,间距L = 0.50 m,导轨平面与水平面间夹角0= 37° N、Q间连接一个电阻R= 5.0 R匀强磁场垂直于导轨平面向上,磁感应强度 B = 1.0 T.将一根质量为m= 0.050 kg的金属棒放在导轨的ab位置,金属棒及导轨的电阻不计•现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好•已知金属棒与导轨间的动摩擦因数卩=0.50,当金属棒滑行至cd处时,其速度大小开始保持不变,位置cd与ab之间的距离s= 2.0 m .已知g = 10 m/s2, sin 37 = 0.60, cos 37° 0.80.求:(1) 金属棒沿导轨开始下滑时的加速度大小;(2) 金属棒到达cd 处的速度大小;⑶金属棒由位置ab 运动到cd 的过程中,电阻 R 产生的热量.突破训练1如图所示,相距为 L 的两条足够长的平行金属导轨,与水平面的夹角为 0,导轨上固定有质量为 m 、电阻为R 的两根相同的导体棒,导体棒 MN 上方轨道粗糙、下方轨道光滑,整个空间存在垂直于导轨平面的匀强磁 场,磁感应强度为 B.将两根导体棒同时释放后,观察到导体棒MN 下滑而EF 保持静止,当MN 下滑速度最大时,EF 与轨道间的摩擦力刚好达到最大静摩擦力,下列叙述正确的是【例2】 如图所示,在倾角 0= 37°勺光滑斜面上存在一垂直斜面向上的匀强磁场区域MNPQ ,磁感应强度B 的大小为5 T ,磁场宽度d = 0.55 m ,有一边长L = 0.4 m 、质量m 1= 0.6 kg 、电阻R = 2 Q 的正方形均 匀导体线框abed 通过一轻质细线跨过光滑的定滑轮与一质量为m 2= 0.4 kg 的物体相连,物体与水平面间的动摩擦因数 尸0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长. (取g = 10 m/s 2, sin 37° = 0.6, eos 37°=0.8)求:(1) 线框abed 还未进入磁场的运动过程中,细线中的拉力为多少? (2) 当ab 边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab 边距磁场MN 边界的距离x 多大?⑶在⑵问中的条件下,若 ed 边恰离开磁场边界 PQ 时,速度大小为2 m/s ,求整个运动过程中 ab 边产生的热量为多少?审题指导 1.线框abed 未进入磁场时,线框沿斜面向下加速, m 2沿水平面向左加速,属连接体问题.2. ab 边刚进入磁场时做匀速直线运动,可利用平衡条件求速度.3•线框从开始运动到离开磁场的过程中,线框和物体组成的系统减少的机械能转化为线框的焦耳热. 解析A •导体棒 MN 的最大速度为2mgRsin 02~2B 2L 2B .导体棒EF 与轨道之间的最大静摩擦力为mgs in 0C .导体棒D .导体棒 MN 受到的最大安培力为 MN 所受重力的最大功率为mgs in0 2 2 2m g Rsin 0B L突破训练2如图所示,光滑斜面的倾角为 B,斜面上放置一矩形导体线框 abcd,ab 边的边长为h,bc 边的边长为 J线框的质量为 m ,电阻为R ,线框通过绝缘细线绕过光滑的定滑轮与一重物相连,重物质量为 M.斜面上ef 线(ef 平 行底边)的右方有垂直斜面向上的匀强磁场, 磁感应强度为 B ,如果线框从静止开始运动,进入磁场的最初一段时间是做匀速运动的,且线框的ab 边始终平行于底边,则下列说法正确的是D .该匀速运动过程产生的焦耳热为(Mg — mgsin 0)12突破训练3如图所示,平行金属导轨与水平面间的倾角为 0,导轨电阻不计,与阻值为R 的定值电阻相连,匀强磁感应强度为B •有一质量为m 、长为I 的导体棒从ab 位置获得平行于斜面、 大小为v 的初也为R 的导体棒ab 与导轨垂直放置,它与导轨粗糙接触且始终接触良好. 当导体棒运动达到稳定状态时速率为 v ,此时整个电路消耗的电功率为重力功率的3.已知重力加速度为g ,导轨电阻不计,求:(1)匀强磁场的磁感应强度 B 的大小和达到稳定状态后导体棒 ab 中的电流强度I ;(2)如果导体棒ab 从静止释放沿导轨下滑 x 距离后达到稳定状态,这一过程回路中产生的电热是多少? (3)导体棒ab 达到稳定状态后,断开开关 S ,从这时开始导体棒 ab 下滑一段距离后,通过导体棒 ab 横截面的电荷量为q ,求这段距离是多少?A .线框进入磁场前运动的加速度为 Mg — mgsi n BB .线框进入磁场时匀速运动的速度为Mg — mgsin 0 RBl i22 B l iC .线框做匀速运动的总时间为Mg — mgRsi n 0 磁场垂直穿过导轨平面, 速度向上运动,最远到达 a b 位置,滑行的距离为 s ,导体棒的电阻也为 R , 与导 轨之间的动摩 擦因数 为e 则A •上滑过程中导体棒受到的最大安培力为1 2B .上滑过程中电流做功发出的热量为 ?mv — mgs(sin 0+ QOS0)1 2 C .上滑过程中导体棒克服安培力做的功为2mv 2 12【例3】 如图所示,足够长的金属导轨MN 、PQ 平行放置,间距为 L ,与水平面成 0角,导轨与定值电阻 Ri 和R 2相连,且 R i = R 2= R , R i 支路串联开关S ,原来S 闭合•匀强磁场垂直导轨平面向上,有一质量为 m 、有效电阻 现将导体棒ab 从静止释放,沿导轨下滑,3.在如图所示倾角为B 的光滑斜面上,存在着两个磁感应强度大小均为B 的匀强磁场,区域I 的磁场方向垂直斜注意:双棒类运动模型问题分析:如图所示,质量都为 m 的导线a 和b 静止放在光滑的无限长水平导轨上,两导轨间宽度为 L ,整个装置处于竖直向上的匀强磁场中,磁场的磁感强度为B ,现对导线b 施以水平向右的恒力 F ,求回路中的最大电流•程中加速度a 与下落距离h 的关系图象如图乙所示, g 取10 m/s 2,则 A .匀强磁场的磁感应强度为1 TB .杆ab 下落0.3 m 时金属杆的速度为1 m/sC .杆ab 下落0.3 m 的过程中R 上产生的热量为 0.2 JD .杆ab 下落0.3 m 的过程中通过 R 的电荷量为0.25 C 突破训练4 (多选题)如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒 ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒 F 水平向右拉金属棒 cd ,经过足够长时间以后()A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于 2F/3D •两金属棒间距离保持不变1.如图所示,足够长的平行金属导轨倾斜放置,倾角为ab 、cd 的质量之比为2 L 用一沿导轨方向的恒力课后练习37°宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Q.导体棒MN 垂直导轨放置,质量为 0.2 kg ,接入电路的电阻为 1 Q,两端与导轨接触良好,与导轨间 的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒 10 m/s , sin 37 = 0.6)A . 2.5 m/s 1 W C . 7.5 m/s 9 WMN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取( )B . 5 m/s 1 W D . 15 m/s 9 W2•如图甲所示,电阻不计且间距 L = 1 m 的光滑平行金属导轨竖直放置,上端接一阻值 R = 2 Q 的电阻,虚线 00'F 方有垂直于导轨平面向里的匀强磁场,现将质量m = 0.1 kg 、电阻不计的金属杆 ab 从OO'上方某处由静止释放,金属杆在下落的过程中与导轨保持良好接触且始终水平.已知杆 ab 进入磁场时的速度 v 0= 1 m/s ,下落0.3 m 的过 ( )5.如图所示,一对平行光滑轨道放置在水平面上,两轨道间距 I = 0.20 m ,电阻R = 1 Q 有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻均忽略不计,整个装置处于磁感应强度(1)杆的质量m 和加速度a 的大小;t 内,通过电阻 R 电量的表达式(用B 、l 、R 、a 、t 表示).面向上,区域n 的磁场方向垂直斜面向下, 磁场的宽度均为L.一质量为m 、电阻为R 、边长为专的正方形导体线圈, 在沿平行斜面向下的拉力 F 作用下由静止开始沿斜面下滑,当ab 边刚越过GH 进入磁场I 时,恰好做匀速直线运 动,下列说法中正确的有(重力加速度为g)A .从线圈的ab 边刚进入磁场I 到线圈 de 边刚要离开磁场n 的过程中,线圈 ab 边中 产生的感应电流先沿 b T a 方向再沿b 方向B .线圈进入磁场I 过程和离开磁场n 过程所受安培力方向都平行斜面向上 4R mgsin 0+ FC .线圈ab 边刚进入磁场 I 时的速度大小为 B L 「D •线圈进入磁场I 做匀速运动的过程中,拉力 F 所做的功等于线圈克服安培力所做的功 4.图中EF 、GH 为平行的金属导轨,其电阻可不计, R 为电阻,C 为电容器,AB 为可在EF 和GH 上滑动的导体横 杆.有匀强磁场垂直于导轨平面. 若用I 1和I 2分别表示 横杆AB( ) A .匀速滑动时,I i = 0, I 2= 0 B .匀速滑动时,丨1工0 12工0 C .加速滑动时,I 1= 0 , I 2= 0图中该处导线中的电流,则当 D .加速滑动时,11工0 12工0E A G B H垂直轨道面向下.现用一外力 F 沿轨道方向拉杆,使之做匀加速运动,测得外力 F 与时间t 的关系如图所示.求X XXX XX X X XXR L 2L X 1 ―> X FX X X X XB = 0.50 T 的匀强磁场中,磁场方向(2)杆开始运动后的时间6•两根足够长的光滑金属导轨平行固定在倾角为B的斜面上,它们的间距为d。
法拉第电磁感应的应用(一)【知识梳理】:电磁感应现象中的力学和能量问题;1.电磁感应中,导体运动切割磁感线而产生感应电流,感应电流在磁场中将受到安培力的作用,动态分析中,抓住“速度变化引起安培力的变化”,正确分析受力情况和运动情况.结合平衡问题和牛顿第二定律以及运动学公式求解.例题2.如图,光滑斜面的倾角α= 30°,在斜面上放置一矩形线框abcd ,ab 边的边长l 1 = l m ,bc 边的边长l 2= 0.6 m ,线框的质量m = 1 kg ,电阻R = 0.1Ω,线框通过细线与重物相连,重物质量M = 2 kg ,斜面上ef 线(ef ∥gh )的右方有垂直斜面向上的匀强磁场,磁感应强度B = 0.5 T ,如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef 线和gh 的距离s = 11.4 m ,(取g = 10.4m/s 2),求:(1)线框进入磁场前重物M 的加速度; (2)线框进入磁场时匀速运动的速度v ;(3)ab 边由静止开始到运动到gh 线处所用的时间t ; (4)ab 边运动到gh 线处的速度大小和在线框由静止开始到运动到gh 线的整个过程中产生的焦耳热。
“思路分析”(1)线框进入磁场前,线框仅受到细线的拉力F T ,斜面的支持力和线框重力,重物M 受到重力和拉力F T 。
运用牛顿第二定律可得因为线框进入磁场的最初一段时间做匀速运动所以重物受力平衡(3)线框abcd 进入磁场前时,做匀加速直线运动;进磁场的过程中,做匀速直线运动;进入磁场后到运动到gh 线,仍做匀加速直线运动。
“解答” (1)对线框,由F T – mg sin α= ma .平向右或有水平向右的分量,但安培力若有竖直向上的分量,应小于导体棒所受重力,否则导体棒会向上跳起而不是向右摆,由左手定则可知,磁场方向斜向下或竖直向下都成立,A 错;当满足导体棒“向右摆起”时,若磁场方向竖直向下,则安培力水平向右,在导体棒获得的水平冲量相同的条件下,所需安培力最小,因此磁感应强度也最小,B 正确;设导体棒右摆初动能为E k ,摆动过程中机械能守恒,有E k = mgl (1–cos θ),导体棒的动能是电流做功而获得的,若回路电阻不计,则电流所做的功全部转化为导体棒的动能,此时有W = IEt = qE = E k ,得W = mgl (1–cos θ),(1cos )mglq Eθ=-,题设条件有电源内阻不计而没有“其他电阻不计”的相关表述,因此其他电阻不可忽略,那么电流的功就大于mgl (1–cos θ),通过的电量也就大于(1cos )mglEθ-,C 错D 正确.“解答”BD“解题回顾”安培力的冲量与通过导线的电量相关,“冲量→电量”、“做功→能量”是力电综合的二条重要思路。
电磁感应中的动力学问题分析学荥阳市第二高级中电磁感应与力学综合问题中的运动的动态分析和能量转化的特点1.两种状态处理(1)导体处于平衡态:静止或匀速直线运动状态.处理方法:根据平衡条件合外力为零列式分析.(2)导体处于非平衡态:加速度不为零.根据牛顿第二定律进行动态分析或结合功能关系分析.2.运动的动态分析3.能量转化特点【例1】如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为l。
M、P两点间接有阻值为R的电阻。
一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。
整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下。
导轨和金属杆的电阻可忽略。
让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。
(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图。
(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小。
(3)求在下滑过程中,ab杆可以达到的速度最大值。
【例2】如图所示,两根足够长的固定的平行金属导轨位于倾角θ=30°的斜面上,导轨上、下端各接有阻值R=10 Ω的电阻,导轨自身电阻忽略不计,导轨宽度l=2 m,在整个导轨平面内都有垂直于导轨平面向上的匀强磁场,磁感应强度B=0.5 T。
质量为m=0.1 kg、电阻r=5 Ω的金属棒ab在较高处由静止释放,金属棒ab在下滑过程中始终与导轨垂直且与导轨接触良好。
当金属棒ab下滑高度h=3 m时,速度恰好达到最大值v=2 m/s。
求:(1)金属棒ab在以上运动过程中机械能的减少量;(2)金属棒ab在以上运动过程中导轨下端电阻R中产生的热量。
(取g=10 m/s2)【例3】如下图所示,两根正对的平行金属直轨道MN、M′N′位于同一水平面上,两轨道之间的距离l=0.50 m,轨道的MM′端接一阻值R=0.40 Ω的定值电阻,NN′端与两条位于竖直面内的半圆形光滑金属轨道NP、N′P′平滑连接,两半圆轨道的半径均为R0=0.50 m.直轨道的右端处于竖直向下、磁感应强度B=0.64 T的匀强磁场中,磁场区域的宽度d=0.80 m,且其右边界与NN′重合.现有一质量m=0.20 kg、电阻r=0.10 Ω的导体杆ab静止在距磁场的左边界x=2.0 m处.在与杆垂直的水平恒力F=2.0 N的作用下ab杆开始运动,当运动至磁场的左边界时撤去F,结果导体杆ab恰好能以最小速度通过半圆形轨道的最高点PP′.已知导体杆ab在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,g取10 m/s2,求:(1)导体杆刚进入磁场时,通过导体杆上的电流大小和方向.(2)导体杆穿过磁场的过程中通过电阻R上的电荷量.(3)导体杆穿过磁场的过程中整个电路中产生的焦耳热.1.如右图所示,竖直放置的两根平行金属导轨之间接有定值电阻R,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F作用下加速上升的一段时间内,力F做的功与安培力做的功的代数和等于()A.棒的机械能增加量B.棒的动能增加量C.棒的重力势能增加量D.电阻R上放出的热量2、.矩形线圈abcd,长ab=20 cm,宽bc=10 cm,匝数n=200,线圈回路总电阻R=5 Ω.整个线圈平面内均有垂直于线圈平面的匀强磁场穿过.若匀强磁场的磁感应强度B随时间t的变化规律如右图所示,则()A.线圈回路中感应电动势随时间均匀变化B.线圈回路中产生的感应电流为0.4 AC.当t=0.3 s时,线圈的ab边所受的安培力大小为0.016 ND.在1 min内线圈回路产生的焦耳热为48 J3、如右图所示,光滑金属导轨AC、AD固定在水平面内,并处在方向竖直向下、大小为B的匀强磁场中.有一质量为m的导体棒以初速度v0从某位置开始在导轨上水平向右运动,最终恰好静止在A点.在运动过程中,导体棒与导轨始终构成等边三角形回路,且通过A点的总电荷量为Q.已知导体棒与导轨间的接触电阻阻值为R,其余电阻不计,则()A .该过程中导体棒做匀减速运动B .该过程中接触电阻产生的热量为18mv 02 C .开始运动时,导体棒与导轨所构成回路的面积为QR BD .当导体棒的速度为12v0时,回路中感应电流大小为初始时的一半 4、如下图所示,电阻不计的平行金属导轨MN 和OP 放置在水平面内.MO 间接有阻值为R =3 Ω的电阻.导轨相距d =1 m ,其间有竖直向下的匀强磁场,磁感应强度B =0.5 T .质量为m =0.1 kg ,电阻为r =1 Ω的导体棒CD 垂直于导轨放置,并接触良好.用平行于MN 的恒力F =1 N 向右拉动CD .CD 受摩擦阻力Ff 恒为0.5 N .求:(1)CD 运动的最大速度是多少?(2)当CD 到最大速度后,电阻R 消耗的电功率是多少?(3)当CD 的速度为最大速度的一半时,CD 的加速度是多少?5.如右图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,一个磁感应强度B =0.50 T 的匀强磁场垂直穿过导轨平面,导轨的上端M 与P 间连接阻值为R =0.30 Ω的电阻,长为L =0.40 m 、电阻为r =0.20 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,通过传感器记录金属(g =10 m/s2)求:(2)金属棒的质量;(3)在前0.7 s 的时间内,电阻R 上产生的热量.6、如图甲所示,水平面上两根足够长的光滑金属导轨平行固定放置,间距为L=0.5 m,一端通过导线与阻值为R=0.5 Ω的电阻连接;导轨上放一质量为m=0.5 kg 的导体棒,导体棒与导轨的电阻忽略不计;导轨所在位置有磁感应强度为B=1 T 的匀强磁场,磁场的方向垂直导轨平面向上,现在给导体棒施加一水平向右的恒定拉力F,并每隔0.2 s 测量一次导体棒的速度,图乙是根据所测数据描绘出导体棒的v-t 图象.求:(1)力F 的大小;(2)t=2 s 时导体棒的加速度;(3)估算3.2 s 内电阻上产生的热量.7、如图所示,两根足够长的光滑平行金属导轨MN 、PQ 间距为0.5 m l ,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m=0.02 kg,电阻均为R=0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B=0.2 T,棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能够保持静止.取g=10 m/s2,(1)通过棒cd 的电流I 是多少,方向如何?(2)棒ab 受到的力F 多大?(3)棒cd 每产生Q=0.1 J 的热量,力F 做的功W 是多少?。
[电磁感应] 电磁感应综合问题包含次级知识点:电路问题、图像问题、动力学问题、能量问题【知识点总结】本部分内容包含:电磁感应中的动力学问题、电磁感应中的能量问题、电磁感应中的图像问题,电磁感应的电路问题,在利用能的转化和守恒定律解决电磁感应的问题时,要注意分析安培力做功的情况,因为安培力做的功是电能和其他形式的能之间相互转化的“桥梁”。
考点1. 电磁感应中的动力学问题1.电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此,电磁感应问题往往跟力学问题联系在一起,解决这类电磁感应中的力学问题,不仅要应用电磁学中的有关规律,如楞次定律、法拉第电磁感应定律、左右手定则、安培力的计算公式等,还要应用力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律、机械能守恒定律等。
要将电磁学和力学的知识综合起来应用。
2.电磁感应与动力学、运动学结合的动态分析,思考方法是:电磁感应现象中感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,循环结束时,加速度等于零,导体达到稳定状态.考点2.带电粒子在复合场中的运动实例1.在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流;将它们接上电容器,便可使电容器充电,因此电磁感应问题又往往跟电路问题联系在一起。
解决这类问题,不仅要考虑电磁感应中的有关规律,如右手定则、楞次定律和法拉第电磁感应定律等,还要应用电路中的有关规律,如欧姆定律、串联、并联电路电路的性质等。
2. 解决电磁感应中的电路问题,必须按题意画出等效电路图,将感应电动势等效于电源电动势,产生感应电动势的导体的电阻等效于内电阻,求电动势要用电磁感应定律,其余问题为电路分析及闭合电路欧姆定律的应用。
3. 一般解此类问题的基本思路是:①明确哪一部分电路产生感应电动势,则这部分电路就是等效电源②正确分析电路的结构,画出等效电路图③结合有关的电路规律建立方程求解.考点3.电磁感应中的能量问题1. 产生和维持感应电流的存在的过程就是其它形式的能量转化为感应电流电能的过程。