2017年湖南省湘潭市中考数学试题及答案
- 格式:doc
- 大小:265.07 KB
- 文档页数:15
XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。
湖南省湘潭市2017年中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(2017•湘潭)下列运算正确的是()A.|﹣3|=3 B.C.(a2)3=a5D.2a•3a=6a考点:单项式乘单项式;相反数;绝对值;幂的乘方与积的乘方。
分析:A、根据绝对值的性质可知负数的绝对值是它的相反数;B、根据相反数的定义可知负数的相反数是正数;C、根据幂的乘方法则计算即可;D、根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:A、|﹣3|=3,正确;B、应为﹣(﹣)=,故本选项错误;C、应为(a2)3=a2×3=a6,故本选项错误;D、应为2a•3a=6a2,故本选项错误.故选D.点评:综合考查了绝对值的性质,相反数的定义,幂的乘方和单项式乘单项式,是基础题型,比较简单.2.(2017•湘潭)已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3B.4C.5D.6考点:算术平均数;众数。
分析:要求平均数只要求出数据之和再除以总个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.解答:解:数据3,a,4,5的众数为4,即的4次数最多;即a=4.则其平均数为(3+4+4+5)÷4=4.故选B.点评:本题考查平均数与众数的意义.平均数等于所有数据之和除以数据的总个数;众数是一组数据中出现次数最多的数据.3.(2009•广州)下列函数中,自变量x的取值范围是x≥3的是()A.y=B.y=C.y=x﹣3 D.y=考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件。
分析:分式有意义,分母不等于0;二次根式有意义:被开方数是非负数就可以求出x的范围.解答:解:A、分式有意义,x﹣3≠0,解得:x≠3;B、二次根式有意义,x﹣3>0,解得x>3;C、函数式为整式,x是任意实数;D、二次根式有意义,x﹣3≥0,解得x≥3.故选D.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(2017•湘潭)如图,从左面看圆柱,则图中圆柱的投影是()A.圆B.矩形C.梯形D.圆柱考点:平行投影。
2017年湖南省湘潭市中考数学试题及参考答案一、选择题(本大题共8个小题,每小题3分,共24分) 1.2017的倒数是( )A .12017 B .12017- C .2017 D .2017- 2.如图所示的几何体的主视图是( )A. B. C. D.3.不等式组21x x <⎧⎨>-⎩的解集在数轴上表示为( )A. B.C. D.4.下列计算正确的是( )A .32a a a -= B= C.()3322a a = D .632a a a ÷=5.“莲城读书月”活动结束后,对八年级(三)班45人所阅读书籍数量情况的统计结果如下表所示:根据统计结果,阅读2本书籍的人数最多,这个数据2是( )A .平均数B .中位数 C.众数 D .方差 6.函数y =x 的取值范围是( )A .2x ≥-B .2x <- C. 0x ≥ D .2x ≠- 7.如图,在半径为4的O 中,CD 是直径,AB 是弦,且CD AB ⊥,垂足为点E ,90AOB ∠=°,则阴影部分的面积是( )A.44π- B .2π-4 C.π4 D.2π8.一次函数y ax b =+的图象如图所示,则不等式0ax b +≥的解集是( )A .2x ≥ B.2x ≤ C.4x ≥ D .4x ≤ 二、填空题(本大题共8个小题,每小题3分,共24分) 9.因式分解:22m n -= .10.截止2016年底,到韶山观看大型实景剧《中国出了个毛泽东》的观众约为925000人次,将925000用科学计数法表示为 . 11.计算:1322a a a -+=++ . 12.某同学家长应邀安参加孩子就读中学的开放日活动,他打算上午随机听一节孩子所在1班的课,下表是他拿到的当天上午1班的课表,如果每一节课被听的机会均等,那么他听数学课的概率是 .13.如图,在O 中,已知120AOB ∠=°,则ACB ∠= .14.如图,在ABC ∆中,D E 、分别是边AB AC 、的中点,则ADE ∆与ABC ∆的面积比:ADE ABC S S ∆∆= .15.如图,在Rt ABC ∆中,90C ∠=°,BD 平分ABC ∠交AC 于点D ,DE 垂直平分AB ,垂足为E 点,请任意写出一组相等的线段 .16.阅读材料:设11(,)a x y = ,22(,)b x y =,如果//a b ,则2121x y x y ⋅=⋅.根据该材料填空:已知(2,3)a = ,(4,)b m =,且//a b ,则m = .三、解答题 (本大题共10小题,共72分)17.(本题满分6分)计算:()02545π-+--°18.(本题满分6分)“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿.问笼中各有几只鸡和兔?19.(本题满分6分)从这2-,1,3三个数中任取两个不同的数,作为点的坐标. (1)写出该点所有可能的坐标; (2)求该点在第一象限的概率.20.(本题满分6分)如图,在ABCD 中,DE CE =连接AE 并延长交BC 的延长线于点F .(1)求证:ADE FCE ∆≅∆;(2)若2AB BC =,36F ∠=°,求B ∠的度数.21.(本题满分6分)为响应习总书记足球进校园的号召,某学校积极开展与足球有关的宣传与实践活动.学生会体育部为了解本学校对足球运动的态度,随机抽取了部分学生进行调查,并绘制了如下的统计图表(部分信息未给出).(1)在上面的统计表中m = ,n = .(2)请你将条形统计图补充完整;(3)该校共有学生1200人,根据统计信息,估计爱好足球运动(包括喜欢和非常喜欢)的学生有多少人?22.(本题满分6分)由多项式乘法:2()()()x a x b x a b x ab ++=+++,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:2()()()x a b x ab x a x b +++=++示例:分解因式:256x x ++=2(23)23x x +++⨯=(2)(3)x x ++ (1)尝试:分解因式:268x x ++=(x +___)(x +___);(2)应用:请用上述方法....解方程:2340x x --=. 23.(本题满分8分)某游乐场部分平面图如图所示,C E A 、、在同一直线上,D E B 、、在同一直线上,测得A 处与E 处的距离为80米,C 处与D 处的距离为34米,90C ∠=°,90ABE ∠=°,30BAE ∠=°. 1.7)≈≈(1)求旋转木马E 处到出口B 处的距离;(2)求海洋球D 处到出口B 处的距离(结果保留整数). 24.(本题满分8分)已知反比例函数ky x=的图象过点(3,1)A . (1)求反比例函数的解析式;(2)若一次函数6y ax =+(0)a ≠的图象与反比例函数的图象只有一个交点,求一次函数的解析式.25.(本题满分10分)已知抛物线的解析式为21520y x bx =-++.(1)当自变量2x ≥时,函数值y 随x 的增大而减少,求b 的取值范围;(2)如图,若抛物线的图象经过点(2,5)A ,与x 轴交于点C ,抛物线的对称轴与x 轴交于B . ①求抛物线的解析式;②在抛物线上是否存在点P ,使得PAB ABC ∠=∠?若存在,求出点P 的坐标;若不存在,请说明理由. 26.(本题满分10分)如图,动点M 在以O 为圆心,AB 为直径的半圆弧上运动(点M 不与点A B 、及 AB 的中点F 重合),连接OM .过点M 作ME AB ⊥于点E ,以BE 为边在半圆同侧作正方形BCDE ,过M 点作O 的切线交射线DC 于点N ,连接BM 、BN .(1)探究:如左图,当M 动点在 AF 上运动时; ①判断OEM MDN ∆∆ 是否成立?请说明理由;设ME NCk MN+=,k 是否为定值?若是,求出该定值,若不是,请说明理由;③设MBN α∠=,α是否为定值?若是,求出该定值,若不是,请说明理由;(2)拓展:如右图,当动点M 在 FB上运动时; 分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)参考答案一、选择题1—5:ADBAC ; 6—8:ADB. 二、填空题9. (m+n )(m-n ); 10. 9.25×105; 11.1; 12.14; 13. 60°; 14. 1:4; 15. BE=EA ; 16.6. 三、解答题17. 解:原式21312=+=-=. 18. 解:设鸡有x 只,兔有y 只,根据题意得352494x y x y +=⎧⎨+=⎩, 解得 2312x y =⎧⎨=⎩,答:有鸡23只,兔12只. 19. 解:(1)画树状图得:∴所有可能的坐标为(1,3)、(1,-2)、(3,1)、(3,-2)、(-2,1)、(-2,3);(2)∵共有6种等可能的结果,其中(1,3),(3,1)点落在第一项象限, ∴点刚好落在第一象限的概率2163==. 20. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD=BC , ∴∠D=∠ECF ,在△ADE 和△FCE 中,D ECF DE CE AED FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FCE (ASA ); (2)解:∵△ADE ≌△FCE , ∴AD=FC ,∵AD=BC ,AB=2BC , ∴AB=FB ,∴∠BAF=∠F=36°,∴∠B=180°-2×36°=108°.21. 解:(1)由题意抽取的总人数为m人.由题意5m=0.05,解得m=100,n=50100=0.5,故答案为:100,0.5(2)喜欢的人数为100×0.35=35,条形图如图所示,(3)1200×(0.05+0.35)=480人答:计爱好足球运动(包括喜欢和非常喜欢)的学生约为480人.22. 解:(1)x2+6x+8=x2+(2+4)x+2×4=(x+2)(x+4),故答案为:2,4;(2)∵x2-3x-4=0,x2+(-4+1)x+(-4)×1=0,∴(x-4)(x+1)=0,则x+1=0或x-4=0,解得:x=-1或x=4.23. 解:(1)∵在Rt△ABE中,∠BAE=30°,∴BE=12AE=12×80=40(米);(2)∵在Rt△ABE中,∠BAE=30°,∴∠AEB=90°-30°=60°,∴∠CED=∠AEB=60°,∴在Rt△CDE中,DE=341.7sin2CDCED≈∠=40(米),则BD=DE+BE=40+40=80(米).24. 解:(1)∵反比例函数y=kx的图象过点A(3,1),∴k=3,∴反比例函数的解析式为:y=3x;(2)解3 6y xy a x ⎧=⎪⎨⎪=+⎩得ax 2+6x-3=0, ∵一次函数y=ax+6(a≠0)的图象与反比例函数的图象只有一个交点,∴△=36+12a=0, ∴a=-3,∴一次函数的解析式为y=-3x+6.25. 解:(1)抛物线的对称轴为:x=10b ,由题意可知:x≥2时,函数值y 随 x 的增大而减少, ∴10b≤2, ∴b≤15; (2)①将A (2,5)代入抛物线的解析式中,∴5=-120×4+2b+5, ∴b=110,∴抛物线的解析式为:21152010y x x =-++, ②由于∠PAB=∠ABC ,当P 在对称轴的左侧时, 此时∠PAB=∠ABC , ∴PA ∥BC ,∴P 的纵坐标与A 的纵坐标相同, ∴P (0,5),当P 在对称轴的右侧时, 连接AP 并延长交x 轴于E , 此时∠PAB=∠ABC ∴AE=BE ,过点A 作AG ⊥x 轴于点G ,过点P 作PH ⊥x 轴于点H ,过点E 作EF ⊥AB 于点F ,∵B (1,0),A (2,5), ∴AG=5,BG=1,∴由勾股定理可知:AB= ∵AE=BE ,EF ⊥AB ,∴BF=12AB=,∵cos ∠ABC=BG AB =, ∴cos ∠ABC=BF BE = ∴BE=13,∴GE=BE-BG=12,∴tan ∠PEG=512AG GE =, 设P (x ,21152010x x -++),∵E (14,0),∴HE=14-x ,PH=21152010x x -++, ∴tan ∠PEG=512PH HE =,即2115520101412x x x -++=-, 解得:x=2(舍去)或x=253,∴P (253,8536)综上所述,P (0,5)或P (253,8536).26. 解:(1)①△OEM ∽△MDN 成立,理由如下:∵四边形BCDE 是正方形,∴BE=BC ,∠EBC=∠CDE=∠BCD=∠BED=90°, ∴∠EOM+∠EMO=90°, ∵MN 是⊙O 的切线,∴MN ⊥OM ,∠OMN=90°, ∴∠DMN+∠EMO=90°, ∴∠EOM=∠DMN , ∴△OEM ∽△MDN ;②k 值为定值1;理由如下:作BG ⊥MN 于G ,如图一所示:则BG ∥OM ,∠BGN=∠BGM=90°, ∴∠OMB=∠GBM , ∵OB=OM ,∴∠OBM=∠OMB , ∴∠OBM=∠GBM ,在△BME 和△BMG 中, 90? OBM GBM BED BGM BM BM ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△BME ≌△BMG (AAS ), ∴EM=GM ,BE=BG , ∴BG=BC ,在Rt △BGN 和Rt △BCN 中,B N B N B G BC =⎧⎨=⎩,∴Rt △BGN ≌Rt △BCN (HL ),∴GN=CN ,∴EM+NC=GM+NC=MN , ∴k=ME NC MNMN MN+==1; ③设∠MBN=α,α为定值45°;理由如下:∵△BME ≌△BMG ,Rt △BGN ≌Rt △BCN , ∴∠EBM=∠GBM ,∠GBN=∠CBN , ∴∠MBN=12∠EBC=45°, 即α=45°;(2)(1)中的①③结论保持不变;②结论:EM-CN=MN . 理由类似(1),作BG ⊥MN 于G ,如图二所示.。
2017年湖南省湘潭市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.2017的倒数是( )A.B.﹣C.2017D.﹣2017【分析】依据倒数的定义求解即可.【解答】解:2017的倒数是.故选:A.【点评】本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键. 2.如图所示的几何体的主视图是( )A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图. 3.不等式组的解集在数轴上表示为( )A.B.C.D.【分析】根据在数轴上表示不等式解集的方法进行解答即可.【解答】解:∵x>﹣1,∴在﹣1处是空心圆点且折线向右,∵x<2,∴在2处是空心圆点且折现向左,不等式组的解集在数轴上表示在数轴上表示为:故选B.【点评】本题考查的是在数轴上表示不等式的解集,熟知小于向左,大于向右是解答此题的关键.4.下列计算正确的是( )A.3a﹣2a=a B.=C.(2a)3=2a3D.a6÷a3=a2【分析】分别根据合并同类项的法则、同底数幂的除法法则及幂的乘方与积的乘方法则对各选项进行逐一判断即可.【解答】解:A、3a﹣2a=a,故本选项正确;B、与不是同类项,不能合并,故本选项错误;C、(2a)3=8a3≠2a3,故本选项错误;D、a6÷a3=a3≠a2,故本选项错误.故选A.【点评】本题考查的是同底数幂的除法法则,熟知合并同类项的法则、同底数幂的除法法则及幂的乘方与积的乘方法则是解答此题的关键.5.“莲城读书月”活动结束后,对八年级(三)班45人所阅读书籍数量情况的统计结果如下表所示:阅读数量1本2本3本3本以上人数(人)1018134根据统计结果,阅读2本书籍的人数最多,这个数据2是( )A.平均数B.中位数C.众数D.方差【分析】一组数据中出现次数最多的数据叫做众数,由此即可判定2是众数【解答】解:由题意2出现的次数最多,故2是众数.故选C【点评】本题考查众数、平均数、中位数、方差等知识、解题的关键是熟练掌握这些基本概念,一组数据中出现次数最多的数据叫做众数,属于中考常考题型.6.函数y=中,自变量x的取值范围是( )A.x≥﹣2B.x<﹣2C.x≥0D.x≠﹣2【分析】根据自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【解答】解:根据题意得:x+2≥0,解得x≥﹣2.故选A.【点评】本题考查了函数自变量的取值范围问题,解题的关键是函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.7.如图,在半径为4的⊙O中,CD是直径,AB是弦,且CD⊥AB,垂足为点E,∠AOB=90°,则阴影部分的面积是( )A.4π﹣4B.2π﹣4C.4πD.2π【分析】首先证明S△AOE=S△OEB,可得S阴=S扇形OBC,由此即可解决问题.【解答】解:∵CD是直径,CD⊥AB,∠AOB=90°∴AE=EB,∠AOE=∠BOC=45°,∴S△AOE=S△OEB,∴S阴=S扇形OBC==2π,故选D.【点评】本题考查扇形的面积等计算、垂径定理等知识,解题的关键是灵活运用所学知识解决问题,学会把不规则图形转化为规则图形,属于中考常考题型.8.一次函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集是( )A.x≥2B.x≤2C.x≥4D.x≤4【分析】利用函数图象,写出函数图象不在x轴下方所对应的自变量的范围即可.【解答】解:不等式ax+b≥0的解集为x≤2.故选B.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.二、填空题(共8小题,每小题3分,满分24分)9.分解因式:m2﹣n2= (m+n)(m﹣n) .【分析】运用a2﹣b2=(a+b)(a﹣b)分解即可.【解答】解:原式=(m+n)(m﹣n),故答案为(m+n)(m﹣n).【点评】考查因式分解的知识;若只有两项,又没有公因式,应考虑用平方差公式分解.10.截止2016年底,到韶山观看大型实景剧《中国出了个毛泽东》的观众约为925000人次,将925000用科学记数法表示为 9.25×105 .【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将925000用科学记数法表示为:9.25×105.故答案为:9.25×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.计算: += 1 .【分析】根据分式的加法法则计算即可得.【解答】解:原式===1,故答案为:1.【点评】本题主要考查分式的加减法,熟练掌握分式的加减法则是解题的关键.12.某同学家长应邀参加孩子就读中学的开放日活动,他打算上午随机听一节孩子所在1班的课,下表是他拿到的当天上午1班的课表,如果每一节课被听的机会均等,那么他听数学课的概率是 .班级节次1班第1节语文第2节英语第3节数学第4节音乐【分析】根据概率公式可得答案.【解答】解:由表可知,当天上午1班的课表中听一节课有4种等可能结果,其中听数学课的有1种可能,∴听数学课的可能性概率是.故答案是:.【点评】本题考查的可能性的大小.用到的知识点为:概率=所求情况数与总情况数之比.13.如图,在⊙O 中,已知∠AOB=120°,则∠ACB= 60° .【分析】根据∠AOB的度数利用圆周角定理,即可得出∠ACB的度数.【解答】解:∵∠AOB=120°,点C在⊙O上,∴∠ACB=∠AOB=60°.故答案为:60°【点评】本题考查了圆周角定理,牢记“在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半”是解题的关键.14.如图,在△ABC中,D、E分别是边AB、AC的中点,则△ADE与△ABC的面积比S△ADE:S△ABC= 1:4 .【分析】根据三角形中位线定理得到DE∥BC,DE=BC,得到△ADE∽△ABC,根据相似三角形的性质计算即可.【解答】解:∵D、E分别是边AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=()2=,故答案为:1:4.【点评】本题考查的是相似三角形的性质、三角形中位线定理的应用,掌握相似三角形的面积比等于相似比的平方是解题的关键.15.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分AB,垂足为E点,请任意写出一组相等的线段 BE=EA .【分析】根据线段的垂直平分线的性质解答即可.【解答】解:∵DE垂直平分AB,∴BE=EA,故答案为:BE=EA.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.阅读材料:设=(x1,y1),=(x2,y2),∥,则x1y2=x2y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m= 6 .【分析】由题意设=(x1,y1),=(x2,y2),∥,则x1y2=x2y1,由此列出方程即可解决问题.【解答】解:由题意:∵=(2,3),=(4,m),且∥,∴2m=12,∴m=6,故答案为6.【点评】本题考查坐标与图形的性质,解题的关键是理解题意,学会构建方程解决问题,属于基础题.三、解答题(本大题共10小题,解答应写出文字说明、证明过程或演算步骤.请将解答过程写在答题卡相应位置上,满分72分)17.计算:|﹣2|+(5﹣π)0﹣sin45°.【分析】直接利用绝对值的性质以及零指数幂的性质和二次根式的性质分别化简求出答案.【解答】解:原式=2+1﹣×=2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、二次根式、绝对值等考点的运算.18.“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿.问笼中各有几只鸡和兔?【分析】本题可设鸡有x只,兔有y只,因“今有雉(鸡)兔同笼,上有三十五头,下有九十四足.”,所以有,解之得鸡的只数,兔的只数.【解答】解:设鸡有x只,兔有y只,根据题意得有,解之,得,即有鸡23只,兔12只.【点评】本题考查了二元一次方程组的应用.注意:每只兔子有4只足,每只鸡有2只足.解题关键是弄清题意,合适的等量关系,列出方程组.19.从﹣2,1,3这三个数中任取两个不同的数,作为点的坐标.(1)写出该点所有可能的坐标;(2)求该点在第一象限的概率.【分析】(1)首先根据题意画出树状图,然后由树状图可得所有等可能的结果;(2)由(1)得出点刚好落在第一象限的情况,由概率公式即可求出问题答案.【解答】解:(1)画树状图得:∴所有可能的坐标为(1,3)、(1,﹣2)、(3,1)、(3,﹣2)、(﹣2,1)、(﹣2,3);(2)∵共有6种等可能的结果,其中(1,3),(3,1)点落在第一项象限,∴点刚好落在第一象限的概率==.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,熟记各象限内点的符号特点是解题关键.20.如图,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB=2BC,∠F=36°.求∠B的度数.【分析】(1)利用平行四边形的性质得出AD∥BC,AD=BC,证出∠D=∠ECF,由ASA即可证出△ADE≌△FCE;(2)证出AB=FB,由等腰三角形的性质和三角形内角和定理即可得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠D=∠ECF,在△ADE和△FCE中,,∴△ADE≌△FCE(ASA);(2)解:∵△ADE≌△FCE,∴AD=FC,∵AD=BC,AB=2BC,∴AB=FB,∴∠BAF=∠F=36°,∴∠B=180°﹣2×36°=108°.【点评】此题主要考查了平行四边形的性质,全等三角形的判定与性质,等腰三角形的性质、三角形内角和定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键..21.为响应习总书记足球进校园的号召,某学校积极开展与足球有关的宣传与实践活动.学生会体育部为了解本学校对足球运动的态度,随机抽取了部分学生进行调查,并绘制了如下的统计图表(部分信息未给出). 态度 频数(人数)频率非常喜欢5 0.05 喜欢0.35 一般50n 不喜欢10 合计 ml (1)在上面的统计表中m= 100 ,n= 0.5 .(2)请你将条形统计图补充完整;(3)该校共有学生1200人,根据统计信息,估计爱好足球运动(包括喜欢和非常喜欢)的学生有多少人?【分析】(1)根据频数的定义,即可判断;(2)条形图如图所示;(3)用样本估计总体的思想,即可解决问题.【解答】解:(1)由题意抽取的总人数为m 人.由题意=0.05,解得m=100,n==0.5,故答案为100,0.5(2)喜欢的人数为100×0.35=35,条形图如图所示,(3)1200×(0.05+0.35)=480人答:计爱好足球运动(包括喜欢和非常喜欢)的学生约为480人.【点评】本题考查条形统计图、频数分布表、样本估计总体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.由多项式乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b)示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3)(1)尝试:分解因式:x2+6x+8=(x+ 2 )(x+ 4 );(2)应用:请用上述方法解方程:x2﹣3x﹣4=0.【分析】(1)类比题干因式分解方法求解可得;(2)利用十字相乘法将左边因式分解后求解可得.【解答】解:(1)x2+6x+8=x2+(2+4)x=2×4=(x+2)(x+4),故答案为:2,4;(2)∵x2﹣3x﹣4=0,∴(x+1)(x﹣4)=0,则x+1=0或x﹣4=0,解得:x=﹣1或x=4.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.23.某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠BAE=30°.(≈1.4,≈1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数).【分析】(1)在Rt△ABE中,利用三角函数即可直接求得BE的长;(2)在Rt△CDE中,利用三角函数求得DE的长,然后利用DB=DE+EB求解.【解答】解:(1)∵在Rt△ABE中,∠BAE=30°,∴BE=AE=×80=40(米);(2)∵在Rt△ABE中,∠BAE=30°,∴∠AEB=90°﹣30°=60°,∴∠CED=∠AEB=60°,∴在Rt△CDE中,DE=≈=20(米),则BD=DE+BE=20+40=60(米).【点评】本题考查了解直角三角形,正确理解三角函数的定义,理解边角关系是关键.24.已知反比例函数y=的图象过点A(3,1).(1)求反比例函数的解析式;(2)若一次函数y=ax+6(a≠0)的图象与反比例函数的图象只有一个交点,求一次函数的解析式.【分析】(1)把A(3,1)y=即可得到结论;(2)解得ax2+6x﹣3=0,根据题意得到△=36+12a=0,解方程即可得到结论.【解答】解:(1)∵反比例函数y=的图象过点A(3,1),∴k=3,∴反比例函数的解析式为:y=;(2)解得ax2+6x﹣3=0,∵一次函数y=ax+6(a≠0)的图象与反比例函数的图象只有一个交点,∴△=36+12a=0,∴a=﹣3,∴一次函数的解析式为y=﹣3x+6.【点评】本题考查了一次函数与反比例函数的交点问题,待定系数法求函数的解析式,一元二次方程根的判别式,正确的理解题意是解题的关键.25.已知抛物线的解析式为y=﹣x2+bx+5.(1)当自变量x≥2时,函数值y 随x的增大而减少,求b 的取值范围;(2)如图,若抛物线的图象经过点A(2,5),与x 轴交于点C,抛物线的对称轴与x 轴交于B.①求抛物线的解析式;②在抛物线上是否存在点P,使得∠PAB=∠ABC?若存在,求出点P 的坐标;若不存在,请说明理由.【分析】(1)由题意可知:对称轴只需要小于或等于2即可,从而可求出b的范围;(2)①将A代入抛物线解析式即可求出b的值.②由于∠PAB=∠ABC,且P在抛物线上,故需要对P的位置进行分类讨论即可.【解答】解:(1)抛物线的对称轴为:x=10b,由题意可知:x≥2时,函数值y 随x的增大而减少,∴10b≤2,∴b≤;(2)①将A(2,5)代入抛物线的解析式中,∴5=﹣×4+2b+5,∴b=,∴抛物线的解析式为:y=﹣x2+x+5,②由于∠PAB=∠ABC,当P在对称轴的左侧时,此时∠PAB=∠ABC,∴PA∥BC,∴P的纵坐标与A的纵坐标相同,∴P(0,5),当P在对称轴的右侧时,连接AP并延长交x轴于E,此时∠PAB=∠ABC∴AE=BE,过点A作AG⊥x轴于点G,过点P作PH⊥x轴于点H,过点E作EF⊥AB于点F,∵B(1,0),A(2,5),∴AG=5,BG=1,∴由勾股定理可知:AB=,∵AE=BE,EF⊥AB,∴BF=AB=,∵cos∠ABC==,∴cos∠ABC==,∴BE=13,∴GE=BE﹣BG=12,∴tan∠PEG==,设P(x,﹣x2+x+5),∵E(14,0),∴HE=14﹣x,PH=﹣x2+x+5,∴tan∠PEG==,即=,解得:x=2(舍去)或x=,∴P(,)综上所述,P(0,5)或P(,)【点评】本题考查二次函数的综合问题,涉及勾股定理,二次函数的性质,等腰三角形的性质,锐角三角函数等知识,综合程度较高,需要学生灵活运用所学知识.26.如图,动点M在以O为圆心,AB为直径的半圆弧上运动(点M不与点A、B 及的中点F 重合),连接OM.过点M 作ME⊥AB于点E,以BE为边在半圆同侧作正方形BCDE,过点M作⊙O的切线交射线DC于点N,连接BM、BN.(1)探究:如图一,当动点M在上运动时;①判断△OEM∽△MDN是否成立?请说明理由;②设=k,k是否为定值?若是,求出该定值,若不是,请说明理由;③设∠MBN=α,α是否为定值?若是,求出该定值,若不是,请说明理由;(2)拓展:如图二,当动点M 在上运动时;分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.①由正方形的性质得出BE=BC,∠EBC=∠CDE=∠BCD=∠BED=90°,由切线的性质和直角三角形的性质证出∠EOM=∠DMN,即可得出△OEM∽△MDN;②作BG⊥MN于G,则BG∥OM,∠BGN=∠BGM=90°,由平行线的性质和等腰三角形的性质得出∠OBM=∠GBM,由AAS证明△BME≌△BMG,得出EM=GM,BE=BG,证出BG=BC,由HL证明Rt△BGN≌Rt△BCN,得出GN=CN,证出EM+NC=GM+NC=MN,即可得出结论;③由全等三角形的性质得出∠EBM=∠GBM,∠GBN=∠CBN,求出∠MBN=∠EBC=45°即可;(2)(1)中的三个结论保持不变;解法同(1).【解答】解:(1)①△OEM∽△MDN成立,理由如下:∵四边形BCDE是正方形,∴BE=BC,∠EBC=∠CDE=∠BCD=∠BED=90°,∴∠EOM+∠EMO=90°,∵MN是⊙O的切线,∴MN⊥OM,∴∠OMN=90°,∴∠DMN+∠EMO=90°,∴∠EOM=∠DMN,∴△OEM∽△MDN;②k值为定值1;理由如下:作BG⊥MN于G,如图一所示:则BG∥OM,∠BGN=∠BGM=90°,∴∠OMB=∠GBM,∵OB=OM,∴∠OBM=∠OMB,∴∠OBM=∠GBM,在△BME和△BMG中,,∴△BME≌△BMG(AAS),∴EM=GM,BE=BG,∴BG=BC,在Rt△BGN和Rt△BCN中,,∴Rt△BGN≌Rt△BCN(HL),∴GN=CN,∴EM+NC=GM+NC=MN,∴k===1;③设∠MBN=α,α为定值45°;理由如下:∵△BME≌△BMG,Rt△BGN≌Rt△BCN,∴∠EBM=∠GBM,∠GBN=∠CBN,∴∠MBN=∠EBC=45°,即α=45°;(2)(1)中的三个结论保持不变;理由同(1),作BG⊥MN于G,如图二所示.【点评】本题是圆的综合题目,考查了正方形的性质、切线的性质、全等三角形的判定与性质、直角三角形的性质等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.。
湖南省湘潭市中考数学试卷一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.(3分)(•湘潭)﹣5的相反数是()A.5B.C.﹣5 D.考点:相反数.专题:计算题.分析:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.解答:解:﹣5的相反数是5.故选A.点评:本题主要考查相反数的概念和意义:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.2.(3分)(•湘潭)一组数据1,2,2,3.下列说法正确的是()A.众数是3 B.中位数是2 C.极差是3 D.平均数是3考点:极差;算术平均数;中位数;众数.分析:根据极差、众数、中位数及平均数的定义,结合各选项进行判断即可.解答:解:A、众数为2,故本选项错误;B、中位数是2,故本选项正确;C、极差为2,故本选项错误;D、平均数为2,故本选项错误;故选B.点评:本题考查了极差、中位数、平均数、众数的知识,掌握基本定义即可解答本题,难度一般.3.(3分)(•湘潭)如图是由三个小方体叠成的一个立体图形,那么它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.析:解答:解:从上面看易得两个横向排列的正方形.故选B.点评:本题考查了三视图的知识,属于基础题,要求同学们掌握俯视图是从物体的上面看得到的视图.4.(3分)(•湘潭)下列图形中,是中心对称图形的是()A.平行四边形B.正五边形C.等腰梯形D.直角三角形考点:中心对称图形分析:根据中心对称的定义,结合所给图形即可作出判断.解答:解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点评:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5.(3分)(•湘潭)一元二次方程x2+x﹣2=0的解为x1、x2,则x1•x2=()A.1B.﹣1 C.2D.﹣2考点:根与系数的关系.专题:计算题.分析:直接根据根与系数的关系求解.解答:解:根据题意得x1•x2==﹣2.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.6.(3分)(•湘潭)下列命题正确的是()A.三角形的中位线平行且等于第三边B.对角线相等的四边形是等腰梯形C.四条边都相等的四边形是菱形D.相等的角是对顶角考点:命题与定理分析:利用三角形中位线的性质,等腰梯形、菱形、对顶角的性质分别进行判断,即可得出答案.解答:解:A、三角形的中位线平行于三角形的第三边并且等于第三边的一半,故本选项错误;B、正方形,矩形对角线均相等,故本选项错误;C、四条边都相等的四边形是菱形,故本选项正确;D、相等的角不一定是对顶角,故本选项错误;故选C.点评:此题考查了命题与定理,熟练掌握各特殊四边形的判定和性质是解答此类问题的关键.7.(3分)(•湘潭)如图,点P(﹣3,2)是反比例函数(k≠0)的图象上一点,则反比例函数的解析式()A.B.C.D.考点:待定系数法求反比例函数解析式.分析:把P点坐标代入反比例函数解析式即可算出k的值,进而得到答案.解答:解:∵点P(﹣3,2)是反比例函数(k≠0)的图象上一点,∴k=﹣3×2=﹣6,∴反比例函数的解析式为y=,故选:D.点评:此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是反比例函数图象经过的点必能满足解析式.8.(3分)(•湘潭)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.B D=CE B.A D=AE C.D A=DE D.B E=CD考点:等腰三角形的性质分析:根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.解答:解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误.故选C.点评:本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,小综合题,熟练掌握全等三角形的判定与性质是解题的关键.二、填空题(本大题共8个小题,请将答案写在答题卡的相应位置上,每小题3分,满分24分)9.(3分)(•湘潭)|﹣3|=3.考点:绝对值分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|﹣3|=3.故答案为:3.点评:此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.10.(3分)(•湘潭)如右图,已知:AB∥CD,∠C=25°,∠E=30°,则∠A=55°.考点:平行线的性质专题:计算题.分析:由AB与CD平行,利用两直线平行得到一对同位角相等,求出∠EFD的度数,而∠EFD为三角形ECF的外角,利用外角性质即可求出∠EFD的度数,即为∠A的度数.解答:解:∵∠EFD为△ECF的外角,∴∠EFD=∠C+∠E=55°,∵CD∥AB,∴∠A=∠EFD=55°.故答案为:55°点评:此题考查了平行线的性质,以及三角形的外角性质,熟练掌握平行线的性质是解本题的关键.11.(3分)(•湘潭)到底,湘潭地区总人口约为3020000人,用科学记数法表示这一数为 3.02×106.考点:科学记数法—表示较大的数分科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,析:要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3020000用科学记数法表示为3.02×106.故答案为:3.02×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(•湘潭)湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为2x+16=3x.考点:由实际问题抽象出一元一次方程分析:根据“送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完”表示出牛奶的总盒数,进而得出答案.解答:解:设敬老院有x位老人,依题意可列方程:2x+16=3x,故答案为:2x+16=3x.点评:此题主要考查了由实际问题抽象出一元一次方程,根据已知表示出牛奶的总盒数是解题关键.13.(3分)(•湘潭)“五一”假期,科科随父母在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,他从中任意抽取1张寄给外地工作的姑姑,则恰好抽中印有主席故居图案明信片的概率是.考点:概率公式分析:由在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,直接利用概率公式求解即可求得答案.解答:解:∵在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,∴恰好抽中印有主席故居图案明信片的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.14.(3分)(•湘潭)函数:中,自变量x的取值范围是x≠﹣1.考点:函数自变量的取值范围专计算题.题:分析:根据分式有意义的条件是分母不为0;分析原函数式可得关系式x+1≠0,解可得答案.解答:解:根据题意可得x+1≠0;解可得x≠﹣1;故答案为x≠﹣1.点评:求解析法表示的函数的自变量取值范围时:当函数表达式是分式时,要注意考虑分式的分母不能为0.15.(3分)(•湘潭)计算:=2.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及零指数幂、特殊角的三角函数值、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=×+1=1+1=2.故答案为2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、特殊角的三角函数值、二次根式化简等考点的运算.16.(3分)(•湘潭)如图,根据所示程序计算,若输入x=,则输出结果为2.考点:函数值;估算无理数的大小专题:图表型.分析:根据>1选择左边的函数关系式进行计算即可得解.解答:解:∵x=>1,∴y=2﹣1=3﹣1=2.故答案为:2.点评:本题考查了函数值的计算,比较简单,准确选择函数关系式是解题的关键.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应的位置上,满分72分)17.(6分)(•湘潭)解不等式组..考点:解一元一次不等式组分析:首先分别计算出两个不等式的解集,再根据“大小小大中间找”找出公共解集即可.解答:解:,由①得:x≥2,由②得:x≤4,不等式组的解集为:2≤x≤4.点评:此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(6分)(•湘潭)先化简,再求值:,其中x=﹣2.考点:分式的化简求值.专题:计算题.分析:先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.解答:解:原式=÷=×=,当x=﹣2时,原式=﹣=﹣1.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)(•湘潭)如图,C岛位于我南海A港口北偏东60方向,距A港口60海里处,我海监船从A港口出发,自西向东航行至B处时,接上级命令赶赴C岛执行任务,此时C岛在B处北偏西45°方向上,海监船立刻改变航向以每小时60海里的速度沿BC行进,则从B处到达C岛需要多少小时?考点:解直角三角形的应用-方向角问题分析:分别在Rt△ACD与Rt△BCD中,利用三角函数的性质,即可求得BC的长,继而求得答案.解答:解:∵在Rt△ACD中,∠CAD=30°,∴CD=×60=30海里,∵在Rt△BCD中,∠CBD=45°,∴BC=30×=60海里,60÷60=1(小时).答:从B处到达C岛需要1小时.点评:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.20.(6分)(•湘潭)4月20日8时,四川省芦山县发生7.0级地震,某市派出抢险救灾工程队赶芦山支援,工程队承担了2400米道路抢修任务,为了让救灾人员和物资尽快运抵灾区,实际施工速度比原计划每小时多修40米,结果提前2小时完成,求原计划每小时抢修道路多少米?考点:分式方程的应用分析:首先设原计划每小时抢修道路x米,则实际施工速度为每小时抢修道路(x+40)米,根据题意可得等量关系:原计划修2400米道路所用时间﹣实际修2400米道路所用时间=2小时,根据等量关系,列出方程即可.解答:解:设原计划每小时抢修道路x米,由题意得:﹣=2,解得:x1=200,x2=﹣240,经检验:x1=200,x2=﹣240,都是原分式方程的解,x=﹣240不合题意,舍去,答:原计划每小时抢修道路200米.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意解出分式方程后要进行检验.21.(6分)(•湘潭)6月5日是世界环境日,今年“世界环境日”中国的主题为“同呼吸,共奋斗”,旨在释放和传递:建设美丽中国,人人共享、人人有责的信息,小文积极学习与宣传,并从四个方面A:空气污染,B:淡水资源危机,C:土地荒漠化,D:全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项).以下是他收集数据后,绘制的不完整的统计图表:关注问题频数频率A 24 0.4B 12 0.2C n 0.1D 18 m合计 a1请你根据图表中提供的信息解答以下问题:(1)根据图表信息,可得a=60;(2)请你将条形图补充完整;(3)如果小文所在的学校有1200名学生,那么你根据小文提供的信息估计该校关注“全球变暖”的学生大约有多少人?考点:条形统计图;用样本估计总体;频数(率)分布表.分析:(1)根据空气污染的频数除以对应的频率即可求出a的值;(2)由a的值,减去其它频数求出n的值,补全条形统计图即可;(3)求出表格中m的值,乘以1200即可得到结果.解答:解:(1)根据题意得:24÷0.4=60,即a=60;故答案为:60;(2)根据题意得:n=60﹣(24+12+18)=6,补全条形统计图,如图所示;(3)由表格得:m=0.3,根据题意得:该校关注“全球变暖”的学生大约有1200×0.3=360(人).点评:此题考查了条形统计图,频数(率)分布表,以及用样本估计总体,弄清题意是解本题的关键.22.(6分)(•湘潭)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.(1)求销售量y与定价x之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.考点:一次函数的应用分析:(1)由图象可知y与x是一次函数关系,又由函数图象过点(11,10)和(15,2),则用待定系数法即可求得y与x的函数关系式;(2)根据(1)求出的函数关系式,再求出每件该商品的利润,即可求得求超市每天销售这种商品所获得的利润.解答:解:(1)设y=kx+b(k≠0),由图象可知,,解得,故销售量y与定价x之间的函数关系式是:y=﹣2x+32;(2)超市每天销售这种商品所获得的利润是:W=(﹣2x+32)(13﹣10)=﹣6x+96.点评:此题考查了一次函数的应用问题,此题综合性较强,难度一般,解题的关键是理解题意,根据题意求得函数解析式,注意待定系数法的应用,注意数形结合思想的应用.23.(8分)(•湘潭)5月12日是母亲节,小明去花店买花送给母亲,挑中了象征温馨、母爱的康乃馨和象征高贵、尊敬的兰花两种花,已知康乃馨每支5元,兰花每支3元,小明只有30元,希望购买花的支数不少于7支,其中至少有一支是康乃馨.(1)小明一共有多少种可能的购买方案?列出所有方案;(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案购花,求他能实现购买愿望的概率.考点:一元一次不等式组的应用分析:(1)设购买康乃馨x支,购买兰花y支,根据条件建立不等式组,运用分类讨论思想求出其解即可.(2)当小明先购买一张2元的祝福卡,小明购花的钱就只有28元了,求出能够购花的方案,就可以求出实现愿望的概率.解答:解:(1)设购买康乃馨x支,购买兰花y支,由题意,得,∵x、y为正整数,当x=1时,y=6,7,8符合题意,当x=2时,y=5,6符合题意,当x=3时,y=4,5符合题意,当x=4时,y=3符合题意,当x=5时,y=1舍去,当x=6时,y=0舍去.共有8种购买方案,方案1:购买康乃馨1支,购买兰花6支;方案2:购买康乃馨1支,购买兰花7支;方案3:购买康乃馨1支,购买兰花8支;方案4:购买康乃馨2支,购买兰花5支;方案5:购买康乃馨2支,购买兰花6支;方案6:购买康乃馨3支,购买兰花4支;方案7:购买康乃馨3支,购买兰花5支;方案8:购买康乃馨4支,购买兰花3支;(2)由题意,得,,购花的方案有:方案1:购买康乃馨1支,购买兰花6支;方案2:购买康乃馨1支,购买兰花7支;方案4:购买康乃馨2支,购买兰花5支;方案5:购买康乃馨2支,购买兰花6支;∴小明实现购买方案的愿望有5种,而总共有8中购买方案,∴小明能实现购买愿望的概率为P=.点评:本题考查了列不等式组及运用分类讨论思想解答方案设计的运用,概率在实际问题中的运用,解答时根据不等式组及分类讨论思想求出购买方案是关键.24.(8分)(•湘潭)在数学活动课中,小辉将边长为和3的两个正方形放置在直线l 上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.考点:正方形的性质;全等三角形的判定与性质.分析:(1)根据正方形的性质可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“边角边”证明△AOD和△COF全等,根据全等三角形对应边相等即可得证;(2)与(1)同理求出CF=AD,连接DF交OE于G,根据正方形的对角线互相垂直平分可得DF⊥OE,DG=OG=OE,再求出AG,然后利用勾股定理列式计算即可求出AD.解答:解:(1)AD=CF.理由如下:在正方形ABCO和正方形ODEF中,AO=CO,OD=OF,∠AOC=∠DOF=90°,∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF,在△AOD和△COF中,,∴△AOD≌△COF(SAS),∴AD=CF;(2)与(1)同理求出CF=AD,如图,连接DF交OE于G,则DF⊥OE,DG=OG=OE,∵正方形ODEF的边长为,∴OE=×=2,∴DG=OG=OE=×2=1,∴AG=AO+OG=3+1=4,在Rt△ADG中,AD===,∴CF=AD=.点评:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,熟练掌握正方形的四条边都相等,四个角都是直角,对角线相等且互相垂直平分是解题的关键,(2)作辅助线构造出直角三角形是解题的关键.25.(10分)(•湘潭)如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D 点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x 轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.考相似形综合题点:分析:(1)过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,求出DC=5,OC=4,OB=3,根据四边形DBPC是平行四边形求出DC=BP=5,求出OP=2即可;(2)证△PCO∽△CBO,得出=,求出OP=即可;(3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,过P作PM⊥DC交DC延长线于M,求出PM、OP的长即可;②当⊙P与BC相切时,根据△COB∽△PBM得出=,求出R=12即可;③当⊙P与DB相切时,证△ADB∽△MPB得出=,求出R即可.解答:解:(1)∵D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y 轴,垂足分别为A、C两点,∴DC=5,OC=4,OB=3,∵DC⊥y轴,x轴⊥y轴,∴DC∥BP,∵PC∥DC,∴四边形DBPC是平行四边形,∴DC=BP=5,∴OP=5﹣3=2,2÷1=2,即当t为2秒时,PC∥BD;(2)∵PC⊥BC,x轴⊥y轴,∴∠COP=∠COB=∠BCP=90∴,∴∠PCO+∠BCO=90°,∠CPO+∠PCO=90°,∴∠CPO=∠BCO,∴△PCO∽△CBO,∴=,∴=,∴OP=,÷1=,即当t为秒时,PC⊥BC;(3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,如图1,过P作PM⊥DC交DC延长线于M,则PM=OC=4=OP,4÷1=4,即t=4;②如图2,当⊙P与BC相切时,∵∠BOC=90°,BO=3,OC=4,由勾股定理得:BC=5,∵∠PMB=∠COB=90°,∠CBO=∠PBM,∴△COB∽△PBM,∴=,∴=,R=12,12÷1=12,即t=12秒;③根据勾股定理得:BD==2,如图3,当⊙P与DB相切时,∵∠PMB=∠DAB=90°,∠ABD=∠PBM,∴△ADB∽△MPB,∴=,∴=,R=6+12;(6+12)÷1=6+12,即t=(6+12)秒.点评:本题考查了勾股定理,切线的性质和判定,相似三角形的性质和判定的应用,主要考查学生的计算和推理能力.26.(10分)(•湘潭)如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2的图象过C点.(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.考点:二次函数综合题.分析:如解答图所示:(1)首先构造全等三角形△AOB≌△CDA,求出点C的坐标;然后利用点C的坐标求出抛物线的解析式;(2)首先求出直线BC与AC的解析式,设直线l与BC、AC交于点E、F,则可求出EF的表达式;根据S△CEF=S△ABC,列出方程求出直线l的解析式;(3)首先作出▱PACB,然后证明点P在抛物线上即可.解答:解:(1)如答图1所示,过点C作CD⊥x轴于点D,则∠CAD+∠ACD=90°.∵∠OBA+∠OAB=90°,∠OAB+∠CAD=90°,∴∠OAB=∠ACD,∠OBA=∠CAD.∵在△AOB与△CDA中,∴△AOB≌△CDA(ASA).∴CD=OA=1,AD=OB=2,∴OD=OA+AD=3,∴C(3,1).∵点C(3,1)在抛物线y=x2+bx﹣2上,∴1=×9+3b﹣2,解得:b=﹣.∴抛物线的解析式为:y=x2﹣x﹣2.(2)在Rt△AOB中,OA=1,OB=2,由勾股定理得:AB=.∴S△ABC=AB2=.设直线BC的解析式为y=kx+b,∵B(0,2),C(3,1),∴,解得k=﹣,b=2,∴y=﹣x+2.同理求得直线AC的解析式为:y=x﹣.如答图1所示,设直线l与BC、AC分别交于点E、F,则EF=(﹣x+2)﹣(x﹣)=﹣x.△CEF中,CE边上的高h=OD﹣x=3﹣x.由题意得:S△CEF=S△ABC,即:EF•h=S△ABC,∴(﹣x)•(3﹣x)=×,整理得:(3﹣x)2=3,解得x=3﹣或x=3+(不合题意,舍去),∴当直线l解析式为x=3﹣时,恰好将△ABC的面积分为相等的两部分.(3)存在.如答图2所示,过点C作CG⊥y轴于点G,则CG=OD=3,OG=1,BG=OB﹣OG=1.过点A作AP∥BC,且AP=BC,连接BP,则四边形PACB为平行四边形.过点P作PH⊥x轴于点H,则易证△PAH≌△BCG,∴PH=BG=1,AH=CG=3,∴OH=AH﹣OA=2,∴P(﹣2,1).抛物线解析式为:y=x2﹣x﹣2,当x=﹣2时,y=1,即点P在抛物线上.∴存在符合条件的点P,点P的坐标为(﹣2,1).点评:本题是二次函数综合题型,考查了二次函数的图象与性质、一次函数的图象与性质、待定系数法、全等三角形、平行四边形、等腰直角三角形等知识点.试题难度不大,但需要仔细分析,认真计算.。
湘潭市2017年初中毕业学业考试数 学 试 题 卷(考试时量:120分钟 满分:120分)考生注意:本试卷分试题卷和答题卡两部分,全卷共三道大题,26道小题.请考生将解答过程全部填(涂)写在答题卡上,写在试题卷上无效,考试结束后,将试题卷和答题卡一并上交.一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分) 1.下列等式成立是A. 22=-B. 1)1(-=--C.1÷31)3(=- D.632=⨯- 2.数据:1,3,5的平均数与极差分别是A.3,3B.3,4C.2,3D.2,43.不等式组⎩⎨⎧≤>21x x 的解集在数轴上表示为4.一个几何体的三视图如下图所示,这个几何体是A.球B. 圆柱C.长方体D.圆锥5.下列四边形中,对角线相等且互相垂直平分的是 A.平行四边形B.正方形C.等腰梯形D.矩形6.在平面直角坐标系中,点A (2,3)与点B 关于x 轴对称,则点B 的坐标为 A.(3,2) B.(-2,-3) C.(-2,3) D.(2,-3) 7.一元二次方程0)5)(3(=--x x 的两根分别为A. 3, -5B. -3,-5C. -3,5D.3,58. 在同一坐标系中,一次函数1+=ax y 与二次函数a x y +=2的图像可能是二、填空题(本大题共8个小题,请将答案写在答题卡的相应位置上,每小题3分,满分24分)9.因式分解:12-x =_____________.10.为改善湘潭河东地区路网结构,优化环境,增强城市功能,湘潭市河东风光带于2010年7月18日正式开工,总投资为880000000元,用科学计数法表示这一数字为_____________元.11.如右图,a ∥b ,若∠2=130°,则∠1=_______度. 12.函数11-=x y 中,自变量x 的取值范围是_________. 13.湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程为______________.14. 端午节吃粽子是中华民族的习惯.今年农历五月初五早餐时,小明妈妈端上一盘粽子,其中有3个肉馅粽子和7个豆沙馅粽子,小明从中任意拿出一个,恰好拿到肉馅粽子的概率是_____.15.如图,已知:△ABC 中,DE ∥BC ,AD =3,DB =6,AE =2,则EC =_______.16.规定一种新的运算:ba b a 11+=⊗,则=⊗21____.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应的位置上,满分72分) 17.(本题满分6分)计算:o 45cos 2)2011(201+---π.A E CBD2l1 ab18.(本题满分6分) 先化简,再求值:)111(+-x x x ,其中15-=x .19.(本题满分6分)莲城中学九年级数学兴趣小组为测量校内旗杆高度,如图,在C 点测得旗杆顶端A 的仰角为30°,向前走了6米到达D 点,在D 点测得旗杆顶端A 的仰角为60°(测角器的高度不计).⑴ AD =_______米;⑵ 求旗杆AB 的高度(73.13≈).20.(本题满分6分)2017年我市体卫站对某校九年级学生体育测试情况进行调研,从该校360名九年级学生中抽取了部分学生的成绩(成绩分为A 、B 、C 三个层次)进行分析,绘制了频数分布表与频数分布直方图(如图),请根据图表信息解答下列问题:⑴ 补全频数分布表与频数分布直方图;⑵ 如果成绩为A 等级的同学属于优秀,请你估计该校九年级约有多少人达到优秀水平?21.(本题满分6分)某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边长为x 米,求x 的整数解.22.(本题满分6分)九年级某班组织班团活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买钢笔和笔记本两种奖品,已知钢笔2元/支,笔记本1元/本,且每样东西至少买一件.⑴ 有多少种购买方案?请列举所有可能的结果;⑵ 从上述方案中任选一种方案购买,求买到的钢笔与笔记本数量相等的概率.23.(本题满分8分)如图,已知一次函数()0≠+=k b kx y 的图像与x 轴,y 轴分别交于A (1,0)、B (0,-1)两点,且又与反比例函数()0≠=m xmy 的图像在第一象限交于C 点,C 点的横坐标为2.⑴ 求一次函数的解析式;⑵ 求C 点坐标及反比例函数的解析式.8米24.(本题满分8分)两个全等的直角三角形重叠放在直线l 上,如图⑴,AB=6cm ,BC=8cm ,∠ABC=90°,将Rt △ABC 在直线l 上左右平移,如图⑵所示. ⑴ 求证:四边形ACFD 是平行四边形;⑵ 怎样移动Rt △ABC ,使得四边形ACFD 为菱形; ⑶ 将Rt △ABC 向左平移cm 4,求四边形DHCF 的面积.25.(本题满分10分)如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0). ⑴ 求抛物线的解析式;⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ在,求出符合条件的Q 点坐标;若不存在,请说明理由.D l图(2)FEC B AH26.(本题满分10分)已知,AB 是⊙O 的直径,AB=8,点C 在⊙O 的半径OA 上运动,PC ⊥AB ,垂足为C ,PC=5,PT 为⊙O 的切线,切点为T.⑴ 如图⑴,当C 点运动到O 点时,求PT 的长;⑵ 如图⑵,当C 点运动到A 点时,连结PO 、BT ,求证:PO ∥BT;⑶ 如图⑶,设y PT =2,x AC =,求y 与x 的函数关系式及y 的最小值.湘潭市2017年初中毕业学业考试数学试卷参考答案及评分标准二.填空题(每小题3分,满分24分)9.(x +1)(x -1) 10. 8.8×10811.50 12. x ≠1的一切实数图(1)13. 8x +38=50 14.错误!未找到引用源。
湖南省湘潭市中考数学试卷一、选择题(本大题共8个小题,每小题3分,满分24分)1、(•湘潭)下列等式成立是( )A 、|﹣2|=2B 、﹣(﹣1)=﹣1C 、1÷(﹣3)=13D 、﹣2×3=6考点:有理数的混合运算。
分析:A ,﹣2的绝对值为2,正确;B ,负负得正,得数应为1,故错误;C ,正负乘除得正,错误;D ,同选项C ,故错误.解答:解:A 、﹣2的绝对值为2,故本选项正确;B 、负负得正,得数应为1,故本选项错误;C 、正负乘除得正,故本选项错误;D 、同选项C ,故本选项错误.故选A .点评:本题考查了有理数的混合运算,选项A ,负数的绝对值为正数,正确;B ,负负得正,得数应为1,故错误;C ,正负乘除得正,错误;D ,同选项C ,故错误.本题很容易选得A .2、(•湘潭)数据:1,3,5的平均数与极差分别是( )A 、3,3B 、3,4C 、2,3D 、2,4考点:极差;算术平均数。
专题:计算题。
分析:根据极差和平均数的定义即可求得.解答:解:x =1+3+53=3, 由题意可知,极差为5﹣1=4.故选B .点评:极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:①极差的单位与原数据单位一致.②如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确.3、(•湘潭)不等式组{x >1x ≤2的解集在数轴上表示为( ) A 、 B 、 C 、 D 、 考点:在数轴上表示不等式的解集;解一元一次不等式组。
专题:存在型。
分析:先根据在数轴上表示不等式组解集的方法表示出不等式组的解集,再找出符合条件的选项即可. 解答:解:不等式组{x >1x ≤2在数轴上表示为:故选A .点评:本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 4、(•湘潭)一个几何体的三视图如下图所示,这个几何体是( )A 、球B 、圆柱C 、长方体D 、圆锥考点:由三视图判断几何体。
2017年湖南省湘潭市中考数学试卷满分:120分 版本:人教版一、选择题(每小题3分,共8小题,合计24分) 1、2017的倒数是()A.12017B.-12017C.2017D.-2017答案:A ,解析倒数的定义,乘积为1的两个数字互为倒数。
2、如图所示的几何体的主视图是()A. B.C.D.答案:D ,解析:立体几何的三视图。
3、不等式组⎩⎨⎧x<2x>-1 的解集在数轴上表示为()答案:B,解析:不等式组的解集,同大取大,同小取小,大小小大取中间,大大小小无解。
4、下列计算正确的是()A.3a-2a=aB.2+5=7C.(2a)3=2a 3D.a 6÷a 3=a 3答案:A ,A 是同类项相加,系数相加减,字母及字母的指数不变,B 不是同类二次根式不好相加,错;C ,积的乘方,积中的各个因式分别乘方,再把幂相乘,(2a)3=23a 3,错。
D ,同底数幂的除法,底数不变指数相减,a 6÷a 3=a 2。
5、“莲城读书月”活动结束后,对八年级(三)班45人所阅读书籍数量情况的统计结果如下表所示: 阅读数量 1本 2本 3本 3本以上 人数(人)1018134根据统计结果,阅读2本书籍的人数最多,这个数据2是( ) A.平均 B.中位数 C.众数 D.方差答案:C ,解析:考查统计的有关知识,主要包括平均数,中位数,众数,方差,出现次数最多的是众数。
6.函数y=x+2中,自变量x 的取值范围是( ) A.x≥-2 B.x<-2 C.x≥0D.x≠-2答案:答案:A ,这个函数的解析式里面含有二次根式,二次根式的意义,被开方数要大于等于0. 7.如图,在半径为4的⊙O 中,CD 是直径,AB 是弦,且CD ⊥AB ,垂足为点E ,∠AOB=900,则阴影部分的面积是() A.4π-4 B.2π-4 C.4π D.2π答案:D ,此题考查的是圆的面积的求法,可将下半部分的阴影部分往左边移动,得到所求的阴影部分的面积为圆的面积的18。
2017年湖南省湘潭市中考数学模拟试卷(4月份)一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.(3分)下面计算正确的是()A.2﹣1=﹣2 B. C.(m•n3)2=m•n6D.m6÷m2=m42.(3分)函数中,自变量x的取值范围是()A.x≠3 B.x≥3 C.x>3 D.x≤33.(3分)如图是一个几何体的实物图,则其主视图是()A.B.C.D.4.(3分)在Rt△ABC中,∠C=90°,sinA=,则cosB的值等于()A.B.C.D.5.(3分)已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.中位数是9 C.众数是5 D.极差是56.(3分)如图,AD∥BE,∠GBE的平分线BF的反向延长线交AD的反向延长线于M点,若∠BAD=70°,则∠M的度数为()A.20°B.35°C.45°D.70°7.(3分)如图,PA、PB是⊙O的切线,切点分别是A,B,如果∠P=60°,那么∠AOB等于()A.60°B.90°C.120° D.150°8.(3分)如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中错误的有()A.1个 B.2个 C.3个 D.4个二、填空题(本题共8个小题,每小题3分,满分24分).9.(3分)计算:﹣|﹣2|=.10.(3分)如图,直线a∥b,直线c与直线a、b都相交,∠1=70°,则∠2=°.11.(3分)反比例函数y=(k≠0)的图象经过点(2,﹣3),若点(1,n)在反比例函数的图象上,则n等于.12.(3分)如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是cm2.13.(3分)用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数是.14.(3分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切,切点为D.如果∠A=35°,那么∠C等于.15.(3分)“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是.16.(3分)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,满分72分).17.(6分)计算:+2sin30°﹣()0.18.(6分)先化简再计算:,其中x=3,y=2.19.(6分)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5=;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.20.(6分)如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2)(1)求反比例函数的表达式;(2)根据图象直接写出当mx>时,x的取值范围;(3)计算线段AB的长.21.(6分)如图,高速公路BC(公路视为直线)的最高限速为120km/h,在该公路正上方离地面20m的点A处设置了一个测速仪,已知在点A测得点B的俯角为45°,点C的俯角为30°,测速仪监测到一辆汽车从点B匀速行驶到点C所用的时间是1.5s,试通过计算,判决该汽车在这段限速路上是否超速.(参考数据:≈1.7)22.(6分)我校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校1800名学生一餐浪费的食物可供多少人食用一餐?23.(8分)如图,在梯形ABCD中,AD∥BC,AB=CD,分别以AB,CD为边向外侧作等边三角形ABE和等边三角形DCF,连AF,DE.求证:AF=DE.24.(8分)为响应环保组织提出的“低碳生活”的号召,李明决定不开汽车而改骑自行车上班.有一天,李明骑自行车从家里到工厂上班,途中因自行车发生故障,修车耽误了一段时间,车修好后继续骑行,直至到达工厂(假设在骑自行车过程中匀速行驶).李明离家的距离y(米)与离家时间x(分钟)的关系表示如图:(1)李明从家出发到出现故障时的速度为米/分钟;(2)李明修车用时分钟;(3)求线段BC所对应的函数关系式.(不要求写出自变量的取值范围)25.(10分)如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.26.(10分)在平面直角坐标系中,抛物线过原点O,且与x轴交于另一点A,其顶点为B.孔明同学用一把宽为3cm带刻度的矩形直尺对抛物线进行如下测量:①量得OA=3cm;②把直尺的左边与抛物线的对称轴重合,使得直尺左下端点与抛物线的顶点重合(如图1),测得抛物线与直尺右边的交点C的刻度读数为4.5.请完成下列问题:(1)写出抛物线的对称轴;(2)求抛物线的解析式;(3)将图中的直尺(足够长)沿水平方向向右平移到点A的右边(如图2),直尺的两边交x轴于点H、G,交抛物线于点E、F.求证:S=(EF2﹣9).梯形EFGH2017年湖南省湘潭市中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.(3分)下面计算正确的是()A.2﹣1=﹣2 B. C.(m•n3)2=m•n6D.m6÷m2=m4【解答】解:A、2﹣1=,故A错;B、=2,故B错;C、(m•n3)2=m2n6,故C错;D、m6÷m2=m4;故D对.故选D.2.(3分)函数中,自变量x的取值范围是()A.x≠3 B.x≥3 C.x>3 D.x≤3【解答】解:∵有意义的条件是:x﹣3≥0.∴x≥3.故选:B.3.(3分)如图是一个几何体的实物图,则其主视图是()A.B.C.D.【解答】解:从正面看可得到一个矩形和一个下底和矩形相邻的梯形的组合图,故选C.4.(3分)在Rt△ABC中,∠C=90°,sinA=,则cosB的值等于()A.B.C.D.【解答】解:在Rt△ABC中,∠C=90°,∠A+∠B=90°,则cosB=sinA=.故选B.5.(3分)已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.中位数是9 C.众数是5 D.极差是5【解答】解:A、这组数据的平均数是:(12+5+9+5+14)÷5=9,正确;B、把这组数据从小到大排列为:5,5,9,12,14,最中间的数是9,则中位数是9,正确;C、5出现了2次,出现的次数最多,则众数是5,正确D、极差是:14﹣5=9,故本选项错误;故选D.6.(3分)如图,AD∥BE,∠GBE的平分线BF的反向延长线交AD的反向延长线于M点,若∠BAD=70°,则∠M的度数为()A.20°B.35°C.45°D.70°【解答】解:∵∠BAD=70°,AD∥BE,∴∠GBE=70°,又∵BF平分∠GBE,∴∠FBE=35°,∴∠M=∠FBE=35°,故选:B.7.(3分)如图,PA、PB是⊙O的切线,切点分别是A,B,如果∠P=60°,那么∠AOB等于()A.60°B.90°C.120° D.150°【解答】解:∵PA是圆的切线.∴∠OAP=90°同理∠OBP=90°根据四边形内角和定理可得:∠AOB=360°﹣∠OAP﹣∠OBP﹣∠P=360°﹣90°﹣90°﹣60°=120°故选C.8.(3分)如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中错误的有()A.1个 B.2个 C.3个 D.4个【解答】解:(1)图象与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,正确;(2)图象与y轴的交点在1的下方,所以c<1,错误;(3)∵对称轴在﹣1的右边,∴﹣>﹣1,又∵a<0,∴2a﹣b<0,正确;(4)当x=1时,y=a+b+c<0,正确;故错误的有1个.故选:A.二、填空题(本题共8个小题,每小题3分,满分24分).9.(3分)计算:﹣|﹣2|=1.【解答】解:原式=3﹣2=1,故答案为:1.10.(3分)如图,直线a∥b,直线c与直线a、b都相交,∠1=70°,则∠2=70°.【解答】解:如图:∵直线a∥b,∠1=70°,∴∠3=∠1=70°,∴∠2=∠3=70°,故答案为:70.11.(3分)反比例函数y=(k≠0)的图象经过点(2,﹣3),若点(1,n)在反比例函数的图象上,则n等于﹣6.【解答】解:∵反比例函数y=(k≠0)的图象经过点(2,﹣3),∴=﹣3,解得k=﹣6,∴反比例函数解析式为y=﹣,∵点(1,n)在反比例函数的图象上,∴n=﹣=﹣6.故答案为:﹣6.12.(3分)如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是16cm2.【解答】解:∵AC=4cm,BD=8cm,∴菱形的面积=×4×8=16cm2.故答案为,16.13.(3分)用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数是3n+2.【解答】解:∵n=1时,有5枚,即3×1+2枚;n=2时,有8枚,即3×2+2枚;n=3时,有11枚,即3×3+2枚;…;∴n=n时,有3n+2枚.14.(3分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切,切点为D.如果∠A=35°,那么∠C等于20°.【解答】解:如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,即∠ODC=90°,∵AB为直径,∴∠COD=2∠A=70°,∴∠C=90°﹣70°=20°,故答案为:20°.15.(3分)“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是.【解答】解:直角三角形的两条直角边的长分别是2和1,则小正方形的边长为1,根据勾股定理得大正方形的边长为,=,针扎到小正方形(阴影)区域的概率是.16.(3分)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是3﹣π(结果保留π).【解答】解:过D点作DF⊥AB于点F.∵AD=2,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB﹣AE=2,∴阴影部分的面积:4×1﹣﹣2×1÷2=4﹣π﹣1=3﹣π.故答案为:3﹣π.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,满分72分).17.(6分)计算:+2sin30°﹣()0.【解答】解:原式=3+2×﹣1=3+1﹣1=3.18.(6分)先化简再计算:,其中x=3,y=2.【解答】解:原式==x+y﹣2x+y=﹣x+2y;当x=3,y=2时,原式=﹣3+4=1.19.(6分)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5==;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.【解答】解:根据观察知答案分别为:(1);;(2);;(3)a1+a2+a3+a4+…+a100=×(1﹣)+×(﹣)+×(﹣)+×(﹣)+…+×=(1﹣+﹣+﹣+﹣+…+﹣)=(1﹣)=×=.20.(6分)如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2)(1)求反比例函数的表达式;(2)根据图象直接写出当mx>时,x的取值范围;(3)计算线段AB的长.【解答】解:(1)把A(1,2)代入y=得:k=2,即反比例函数的表达式是y=;(2)把A(1,2)代入y=mx得:m=2,即直线的解析式是y=2x,解方程组得出B点的坐标是(﹣1,﹣2),∴当mx>时,x的取值范围是﹣1<x<0或x>1;(3)过A作AC⊥x轴于C,∵A(1,2),∴AC=2,OC=1,由勾股定理得:AO==,同理求出OB=,∴AB=2.21.(6分)如图,高速公路BC(公路视为直线)的最高限速为120km/h,在该公路正上方离地面20m的点A处设置了一个测速仪,已知在点A测得点B的俯角为45°,点C的俯角为30°,测速仪监测到一辆汽车从点B匀速行驶到点C所用的时间是1.5s,试通过计算,判决该汽车在这段限速路上是否超速.(参考数据:≈1.7)【解答】解:连接AB,AC,过点A作BC的垂线AD,垂足为D,如图,∠1=45°,∠2=30°,AD=20m,在△ABC中,依题意∠ABC=45°,∠ACB=30°,在△ABD中,BD=AD=20,在Rt△ADC中,DC=AD=20=34,∴BC=BD+DC=20+34=54,∴汽车从点B匀速行驶到点C的速度==36(m/s)=129.6(km/h)>120km/h,∴此车超速.22.(6分)我校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校1800名学生一餐浪费的食物可供多少人食用一餐?【解答】解:(1)400÷40%=1000(人),故答案为1000人.(2)剩少量的人数是:1000﹣400﹣250﹣150=200(名),(3)答:该校1800名学生一餐浪费的食物可供360人食用一餐.23.(8分)如图,在梯形ABCD中,AD∥BC,AB=CD,分别以AB,CD为边向外侧作等边三角形ABE和等边三角形DCF,连AF,DE.求证:AF=DE.【解答】证明:∵AD∥BC,AB=CD,∴梯形ABCD为等腰梯形,∴∠BAD=∠CDA,又∵△ABE和△DCF是等边三角形,∴AE=AB,DF=CD,∠BAE=∠CDF=60°,∴AE=DF,∠DAE=∠ADF,在△DAE和△ADF中∴△DAE≌△ADF,∴AF=DE.24.(8分)为响应环保组织提出的“低碳生活”的号召,李明决定不开汽车而改骑自行车上班.有一天,李明骑自行车从家里到工厂上班,途中因自行车发生故障,修车耽误了一段时间,车修好后继续骑行,直至到达工厂(假设在骑自行车过程中匀速行驶).李明离家的距离y(米)与离家时间x(分钟)的关系表示如图:(1)李明从家出发到出现故障时的速度为200米/分钟;(2)李明修车用时5分钟;(3)求线段BC所对应的函数关系式.(不要求写出自变量的取值范围)【解答】解:(1)200;(2)5;(3)设线段BC解析式为:y=kx+b,过点(25,4000)和(20,3000),依题意得:.解得:k=200,b=﹣1000所以解析式为y=200x﹣1000.25.(10分)如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.【解答】解:(1)∵CD∥AB,∴∠BAC=∠DCA又∵AC⊥BC,∠ACB=90°,∴∠D=∠ACB=90°,∴△ACD∽△BAC.(2)Rt△ABC中,AC==8cm,∵△ACD∽△BAC,∴=,即,解得:DC=6.4cm.(3)过点E作AB的垂线,垂足为G,∵∠ACB=∠EGB=90°,∠B公共,∴△ACB∽△EGB,∴,即,故;y=S△ABC﹣S△BEF==;故当t=时,y的最小值为19.26.(10分)在平面直角坐标系中,抛物线过原点O,且与x轴交于另一点A,其顶点为B.孔明同学用一把宽为3cm带刻度的矩形直尺对抛物线进行如下测量:①量得OA=3cm;②把直尺的左边与抛物线的对称轴重合,使得直尺左下端点与抛物线的顶点重合(如图1),测得抛物线与直尺右边的交点C的刻度读数为4.5.请完成下列问题:(1)写出抛物线的对称轴;(2)求抛物线的解析式;(3)将图中的直尺(足够长)沿水平方向向右平移到点A的右边(如图2),直尺的两边交x轴于点H、G,交抛物线于点E、F.求证:S=(EF2﹣9).梯形EFGH【解答】(1)解:直线;(2)解:设抛物线的解析式为:y=ax(x﹣3),当时,,即;当时,,即,依题意得:,解得:,∴抛物线的解析式为:;(3)证明:过点E作ED⊥FG,垂足为D,设,则,得:S=,梯形EFGH∵,=.∴S梯形EFGH。
2017 年中考数学试卷一、选择题:本大题共12 小题,每小题 3 分,共 36 分,在每小题给出的四个选项中,只有一个是正确的,每小题选对得 3 分,选错、不选或多选,均不得分.1.从新华网获悉:商务部5 月 27 日发布的数据显示,一季度,中国与“一带一路”沿线国家在经贸合作领域保持良好发展势头,双边货物贸易总额超过16553亿元人民币, 16553 亿用科学记数法表示为()A. 1.6553×108 B. 1.6553× 1011C.1.6553×1012D. 1.6553× 1013【分析】科学记数法的表示形式为a× 10n的形式,其中 1≤a< 10,n 为整数.确||定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n是负数.【解答】解:将16553 亿用科学记数法表示为: 1.6553× 1012.故选: C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤| a| <10,n 为整数,表示时关键要正确确定 a 的值以及n 的值.2.某校排球队 10 名队员的身高(厘米)如下:195, 186,182,188,188, 182,186,188, 186,188.这组数据的众数和中位数分别是()A. 186, 188 B. 188,187 C.187,188 D.188,186【分析】根据众数和中位数的定义求解可得.【解答】解:将数据重新排列为:182、182、 186、186、186、188、 188、188、188、 195,∴众数为 188,中位数为=187,故选: B.【点评】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.3.下列运算正确的是()A. 3x2+4x2=7x4 B. 2x33x3=6x3C. a÷a﹣2=a3D.(﹣a2b)3=﹣a6b3【分析】原式各项计算得到结果,即可作出判断.【解答】解: A、原式 =7x2,不符合题意;B、原式 =6x6,不符合题意;C、原式 =aa2=a3,符合题意;D、原式 =﹣a6 b3,不符合题意,故选 C【点评】此题考查了整式的混合运算,以及负整数指数幂,熟练掌握运算法则是解本题的关键.2π 0+(﹣)﹣2的结果是()4.计算﹣()+(+ )A.1 B.2 C.D.3【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣()2+(+π)0+(﹣)﹣2=﹣2+1+4=3故选: D.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣>1,得:x<﹣2,解不等式 3﹣x≥ 2,得: x≤1,∴不等式组的解集为x<﹣ 2,故选: B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.为了方便行人推车过某天桥,市政府在 10m 高的天桥一侧修建了40m 长的斜道(如图所示),我们可以借助科学计算器求这条斜道倾斜角的度数,具体按键顺序是()A.B.C.D.【分析】先利用正弦的定义得到sinA=0.25,然后利用计算器求锐角∠ A .【解答】解: sinA===0.25,所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为故选 A.【点评】本题考查了计算器﹣三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.7.若 1﹣22x c=0的一个根,则 c 的值为()是方程 x ﹣+A.﹣ 2 B.4﹣2 C.3﹣D.1+【分析】把 x=1﹣代入已知方程,可以列出关于 c 的新方程,通过解新方程即可求得 c 的值.【解答】解:∵关于x 的方程 x2﹣2x c=0的一个根是 1﹣,+∴( 1﹣)2﹣2(1﹣) +c=0,解得, c=﹣2.故选: A.【点评】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.8.一个几何体由n 个大小相同的小正方体搭成,其左视图、俯视图如图所示,则 n 的最小值是()A.5 B.7 C.9 D.10【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出第二层和第三层的个数,从而算出总的个数.【解答】解:由题中所给出的左视图知物体共三层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少1+2+4=7.故选 B.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.9.甲、乙两人用如图所示的两个转盘(每个转盘别分成面积相等的 3 个扇形)做游戏,游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是()A.B.C.D.5 种,进而可得【分析】首先画出树状图,然后计算出数字之和为偶数的情况有答案.【解答】解:如图所示:数字之和为偶数的情况有 5 种,因此加获胜的概率为,故选: C.【点评】此题主要考查了画树状图和概率,关键是掌握概率 =所求情况数与总情况数之比.10.如图,在 ? ABCD 中,∠ DAB 的平分线交 CD 于点 E,交 BC 的延长线于点G,∠ABC 的平分线交 CD 于点 F,交 AD 的延长线于点 H,AG 与 BH 交于点 O,连接 BE,下列结论错误的是()A. BO=OH B.DF=CE C.DH=CG D.AB=AE【分析】根据平行四边形的性质、等腰三角形的判定和性质一一判断即可.【解答】解:∵四边形 ABCD 是平行四边形,∴AH∥ BG,AD=BC ,∴∠ H=∠HBG,∵∠ HBG=∠ HBA ,∴∠ H=∠HBA ,∴AH=AB ,同理可证 BG=AB ,∴AH=BG ,∵ AD=BC ,∴DH=CG,故③正确,∵AH=AB ,∠ OAH= ∠ OAB ,∴OH=OB,故①正确,∵DF∥AB,∴∠DFH=∠ABH ,∵∠ H=∠ABH ,∴∠ H=∠DFH,∴DF=DH ,同理可证 EC=CG,∵ DH=CG,∴DF=CE,故②正确,无法证明 AE=AB ,故选 D.【点评】本题考查平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.已知二次函数 y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数 y=(b+c)x 与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.【分析】先根据二次函数的图象,确定a、 b、c 的符号,再根据 a、b、c 的符号判断反比例函数y=与一次函数y=( b+c) x的图象经过的象限即可.【解答】解:由二次函数图象可知a>0,c>0,由对称轴 x=﹣>0,可知b<0,当 x=1 时, a+b+c<0,即 b+c<0,所以正比例函数 y=(b+c) x 经过二四象限,反比例函数 y=图象经过一三象限,故选 C.【点评】本题主要考查二次函数图象的性质、一次函数的图象的性质、反比例函数图象的性质,关键在于通过二次函数图象推出 a、b、c 的取值范围.12.如图,正方形上,若反比例函数ABCD 的边长为 5,点y= ( k≠ 0)的图象过点A 的坐标为(﹣4,0),点B C,则该反比例函数的表达式为(在 y 轴)A. y=B.y=C.y=D.y=【分析】过点 C 作 CE⊥ y 轴于 E,根据正方形的性质可得 AB=BC ,∠ABC=90°,再根据同角的余角相等求出∠ OAB= ∠CBE,然后利用“角角边”证明△ ABO 和△ BCE 全等,根据全等三角形对应边相等可得 OA=BE=4 ,CE=OB=3,再求出 OE,然后写出点 C 的坐标,再把点 C 的坐标代入反比例函数解析式计算即可求出 k 的值.【解答】解:如图,过点 C 作 CE⊥ y 轴于 E,在正方形 ABCD 中, AB=BC ,∠ABC=90°,∴∠ ABO +∠ CBE=90°,∵∠ OAB +∠ ABO=90°,∴∠ OAB= ∠ CBE,∵点 A 的坐标为(﹣ 4,0),∴OA=4,∵ AB=5,∴ OB==3,在△ ABO 和△ BCE 中,,∴△ ABO ≌△ BCE(AAS ),∴OA=BE=4 , CE=OB=3,∴OE=BE﹣OB=4﹣ 3=1,∴点 C 的坐标为( 3,1),∵反比例函数 y= (k≠0)的图象过点 C,∴k=xy=3 ×1=3,∴反比例函数的表达式为y=.故选 A.【点评】本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点 D 的坐标是解题的关键.二、填空题:本大题共 6 小题,每小题 3 分,共 18 分,只要求填写最后结果.13.如图,直线 l1∥l2,∠ 1=20°,则∠ 2+∠3=200° .【分析】过∠ 2 的顶点作 l2的平行线 l,则 l ∥l1∥l2,由平行线的性质得出∠4=∠1=20°,∠BAC +∠3=180°,即可得出∠2+∠3=200°.【解答】解:过∠2 的顶点作l 2的平行线 l,如图所示:则 l∥ l1∥ l2,∴∠ 4=∠ 1=20°,∠ BAC +∠3=180°,∴∠ 2+∠ 3=180°+20°=200°;故答案为: 200°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.14.方程+=1 的解是x=3.【分析】方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:由原方程,得3﹣x﹣1=x﹣ 4,﹣2x=﹣6,x=3,经检验 x=3 是原方程的解.故答案是: x=3.【点评】本题考查了解分式方程,把分式方程转化为整式方程求解.最后注意需验根.15.阅读理解:如图1,⊙ O 与直线 a、b 都相切,不论⊙ O 如何转动,直线a、b 之间的距离始终保持不变(等于⊙ O 的直径),我们把具有这一特性的图形成为“等宽曲线”,图2 是利用圆的这一特性的例子,将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力既可以推动物体前进,据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的.拓展应用:如图 3 所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图4,夹在平行线 c,d 之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,若直线 c,d 之间的距离等于2cm,则莱洛三角形的周长为2π cm.【分析】由等宽曲线的定义知AB=BC=AC=2cm ,即可得∠ BAC= ∠ ABC= ∠ACB=60°,根据弧长公式分别求得三段弧的长即可得其周长.【解答】解:如图 3,由题意知 AB=BC=AC=2cm ,∴∠ BAC= ∠ ABC= ∠ACB=60°,∴在以点 C 为圆心、 2 为半径的圆上,∴的长为=,则莱洛三角形的周长为×3=2π,故答案为: 2π.【点评】本题主要考查新定义下弧长的计算,理解“等宽曲线”得出等边三角形是解题的关键.16.某广场用同一种如图所示的地砖拼图案,第一次拼成形如图 1 所示的图案,第二拼成形如图 2 所示的图案,第三次拼成形如图 3 所示的图案,第四次拼成形如图 4 所示的图案按照这样的规律进行下去,第n 次拼成的图案共有地砖2n2+2n.块.【分析】首先求出第一个、第二个、第三个、第四个图案中的地砖的数量,探究规律后即可解决问题.【解答】解:第一次拼成形如图 1 所示的图案共有 4 块地砖, 4=2×( 1×2),第二拼成形如图 2 所示的图案共有 12 块地砖, 12=2×( 2×3),第三次拼成形如图 3 所示的图案共有 24 块地砖, 24=2×( 3× 4),第四次拼成形如图 4 所示的图案共有 40 块地砖, 40=2×( 4× 5),第 n 次拼成形如图 1 所示的图案共有 2× n( n+1) =2n2+2n 块地砖,故答案为 2n2+2n.【点评】本题考查规律题目、解题的关键是学会从特殊到一般的探究方法,属于中考填空题中的压轴题.17.如图,A 点的坐标为(﹣1,5),B 点的坐标为(3,3),C 点的坐标为(5,3), D 点的坐标为( 3,﹣ 1),小明发现:线段 AB 与线段 CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是(1,1)或( 4,4).【分析】分点 A 的对应点为 C 或 D 两种情况考虑:①当点 A 的对应点为点 C 时,连接 AC 、BD ,分别作线段 AC、 BD 的垂直平分线交于点 E,点 E 即为旋转中心;②当点 A 的对应点为点 D 时,连接 AD 、 BC,分别作线段 AD 、 BC 的垂直平分线交于点 M ,点 M 即为旋转中心.此题得解.【解答】解:①当点 A 的对应点为点 C 时,连接 AC 、BD ,分别作线段AC、BD 的垂直平分线交于点E,如图 1 所示,∵A 点的坐标为(﹣ 1,5), B 点的坐标为( 3,3),∴ E 点的坐标为( 1, 1);②当点 A 的对应点为点 D 时,连接 AD 、BC,分别作线段 AD 、BC 的垂直平分线交于点 M ,如图 2 所示,∵A 点的坐标为(﹣ 1,5), B 点的坐标为( 3,3),∴ M 点的坐标为( 4,4).综上所述:这个旋转中心的坐标为( 1,1)或( 4,4).故答案为:( 1,1)或( 4, 4).【点评】本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键.18.如图,△ ABC 为等边三角形, AB=2 .若 P 为△ ABC 内一动点,且满足∠PAB= ∠ACP,则线段 PB 长度的最小值为.【分析】由等边三角形的性质得出∠ABC= ∠ BAC=60°, AC=AB=2 ,求出∠APC=120°,当 PB⊥AC 时, PB 长度最小,设垂足为D,此时 PA=PC,由等边三角形的性质得出AD=CD= AC=1 ,∠ PAC=∠ACP=30°,∠ABD=∠ABC=30° ,求出 PD=ADtan30°=AD=,BD=AD=,即可得出答案.【解答】解:∵△ ABC 是等边三角形,∴∠ ABC= ∠ BAC=60°,AC=AB=2 ,∵∠ PAB=∠ ACP,∴∠ PAC+∠ACP=60°,∴∠ APC=120°,当 PB⊥AC 时, PB 长度最小,设垂足为 D,如图所示:此时 PA=PC,则 AD=CD= AC=1 ,∠ PAC=∠ ACP=30°,∠ ABD= ∠ ABC=30°,∴ PD=ADtan30°=AD=,BD=AD=,∴ PB=BD﹣PD=﹣=;故答案为:.【点评】本题考查了等边三角形的性质、等腰三角形的性质、三角形内角和定理、勾股定理、三角函数等知识;熟练掌握等边三角形的性质是解决问题的关键.三、解答题:本大题共7 小题,共 66 分.19.先化简÷(﹣ x+1),然后从﹣<x<的范围内选取一个合适的整数作为x 的值代入求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后在﹣< x<中选取一个使得原分式有意义的整数值代入化简后的式子即可解答本题.【解答】解:x 1)÷(﹣+====,∵﹣<x<且 x 1≠ 0,x﹣ 1≠ 0,x≠ 0,x 是整数,+∴ x=﹣2 时,原式 =﹣.【点评】本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法,注意取得的 x 的值必须使得原分式有意义.20.某农场去年计划生产玉米和小麦共200 吨,采用新技术后,实际产量为225 吨,其中玉米超产 5%,小麦超产 15%,该农产去年实际生产玉米、小麦各多少吨?【分析】设农场去年计划生产小麦x 吨,玉米 y 吨,利用去年计划生产小麦和玉米 200 吨,则 x+y=200,再利用小麦超产15%,玉米超产 5%,则实际生产了225吨,得出等式( 1+5%)x+(1+15%) y=225,进而组成方程组求出答案.【解答】解:设农场去年计划生产小麦x 吨,玉米 y 吨,根据题意可得:,解得:,则 50×( 1+5%)=52.5(吨),150×( 1+15%)=172.5(吨),答:农场去年实际生产小麦52.5 吨,玉米 172.5 吨.【点评】此题主要考查了二元一次方程组的应用,根据计划以及实际生产的粮食吨数得出等式是解题关键.21.央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了 200 名学生;(2)将条形统计图补充完整;( 3)图 2 中“小说类”所在扇形的圆心角为126 度;(4)若该校共有学生2500 人,估计该校喜欢“社科类”书籍的学生人数.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:( 1)∵喜欢文史类的人数为 76 人,占总人数的 38%,∴此次调查的总人数为: 76÷38%=200 人,(2)∵喜欢生活类书籍的人数占总人数的 15%,∴喜欢生活类书籍的人数为: 200× 15%=30 人,∴喜欢小说类书籍的人数为:200﹣ 24﹣76﹣30=70 人,如图所示;( 3)∵喜欢社科类书籍的人数为:24 人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°× 35%=126°,(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的 12%,∴该校共有学生 2500 人,估计该校喜欢“社科类”书籍的学生人数: 2500×12%=300 人故答案为:( 1)200;( 3) 126【点评】本题考查统计问题,解题的关键是熟练运用统计学中的公式,本题属于基础题型.22.图 1 是太阳能热水器装置的示意图,利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算:如图 2,AB ⊥BC,垂足为点 B,EA ⊥AB ,垂足为点 A ,CD∥AB ,CD=10cm,DE=120cm, FG⊥ DE,垂足为点 G.( 1)若∠θ=37°50,′则 AB 的长约为83.2 cm;(参考数据: sin37 °50≈′0.61,cos37°50≈′0.79,tan37 °50≈′0.78)(2)若 FG=30cm,∠θ=60°求, CF 的长.【分析】(1)作 EP⊥BC、DQ⊥EP,知 CD=PQ=10,∠2+∠3=90°,由∠ 1+∠θ=90°且∠1=∠ 2知∠ 3=∠θ=37°50,根′据 EQ=DEsin∠3 和 AB=EP=EQ PQ 可得答案;+( 2)延长 ED、BC 交于点 K ,结合( 1)知∠θ=∠3=∠K=60°,从而由 CK=、KF=可得答案.【解答】解:( 1)如图,作 EP⊥BC 于点 P,作 DQ⊥ EP 于点 Q,则 CD=PQ=10,∠ 2+∠3=90°,∵∠ 1+∠ θ=90,°且∠ 1=∠2,∴∠ 3=∠ θ=37°50,′则 EQ=DEsin∠3=120× sin37 °50,′∴AB=EP=EQ+PQ=120sin37°50+10=83′.2,故答案为: 83.2;(2)如图,延长 ED、 BC 交于点 K ,由( 1)知∠θ=∠3=∠ K=60°,在 Rt△CDK 中, CK==,在 Rt△KGF 中, KF===,则 CF=KF﹣KC=﹣==.【点评】本题主要考查解直角三角形的应用,根据题意构建所需直角三角形和熟练掌握三角函数是解题的关键.23.已知: AB 为⊙ O 的直径, AB=2 ,弦 DE=1,直线 AD 与 BE 相交于点 C,弦 DE 在⊙ O 上运动且保持长度不变,⊙ O 的切线 DF 交 BC 于点F.( 1)如图 1,若 DE∥AB ,求证: CF=EF;( 2)如图 2,当点 E 运动至与点 B 重合时,试判断 CF 与 BF 是否相等,并说明理由.【分析】(1)如图 1,连接 OD、OE,证得△ OAD 、△ ODE、△ OEB、△ CDE 是等边三角形,进一步证得DF⊥CE 即可证得结论;(2)根据切线的性质以及等腰三角形的性质即可证得结论.【解答】证明:如图 1,连接 OD、OE,∵ AB=2,∴OA=OD=OE=OB=1 ,∵ DE=1,∴OD=OE=DE,∴△ ODE 是等边三角形,∴∠ ODE=∠ OED=60°,∵DE∥ AB ,∴∠ AOD=∠ ODE=60°,∠ EOB=∠OED=60°,∴△ AOD 和△△ OE 是等边三角形,∴∠ OAD=∠ OBE=60°,∴∠ CDE=∠ OAD=60°,∠ CED=∠OBE=60°,∴△ CDE 是等边三角形,∵DF 是⊙O 的切线,∴OD⊥DF,∴∠ EDF=90°﹣60°=30°,∴∠ DFE=90°,∴ DF⊥ CE,∴ CF=EF;( 2)相等;如图 2,点 E 运动至与点 B 重合时, BC 是⊙ O 的切线,∵⊙O的切线 DF 交 BC 于点 F,∴BF=DF,∴∠ BDF=∠ DBF,∵ AB 是直径,∴∠ ADB= ∠ BDC=90°,∴∠ FDC=∠ C,∴DF=CF,∴BF=CF.【点评】本题考查了切线的性质、平行线的性质、等边三角形的判定、等腰三角形的判定和性质,作出辅助线构建等边三角形是解题的关键.24.如图,四边形ABCD 为一个矩形纸片, AB=3 ,BC=2,动点 P 自 D 点出发沿 DC 方向运动至 C 点后停止,△ ADP 以直线 AP 为轴翻折,点 D 落在点 D1的位置,设 DP=x ,△ AD 1P 与原纸片重叠部分的面积为y.(1)当 x 为何值时,直线 AD 1过点 C?(2)当 x 为何值时,直线 AD 1过 BC 的中点 E?(3)求出 y 与 x 的函数表达式.【分析】(1)根据折叠得出AD=AD 1=2, PD=PD1=x ,∠ D= ∠AD 1P=90°,在Rt△ABC 中,根据勾股定理求出AC ,在 Rt△ PCD1中,根据勾股定理得出方程,求出即可;( 2)连接 PE,求出 BE=CE=1,在 Rt△ABE 中,根据勾股定理求出AE ,求出AD 1 =AD=2 ,PD=PD1=x,D1E=﹣2,PC=3﹣x,在Rt△PD1E和Rt△PCE中,根据勾股定理得出方程,求出即可;( 3)分为两种情况:当0<x ≤2 时, y=x;当 2<x≤3 时,点 D1在矩形 ABCD 的外部, PD1交 AB 于 F,求出 AF=PF,作 PG⊥AB 于 G,设 PF=AF=a,在 Rt △PFG 中,由勾股定理得出方程( x﹣a)2+22=a2,求出 a 即可.【解答】解:( 1)如图 1,∵由题意得:△ ADP ≌△ AD 1P,∴AD=AD 1 =2,PD=PD1=x,∠ D=∠ AD1P=90°,∵直线 AD1过 C,∴PD1⊥AC,在Rt△ABC 中, AC==,CD1=﹣2,222在 Rt△PCD1中, PC =PD1+CD1,即( 3﹣x)2=x2+(﹣2)2,解得: x=,∴当x=时,直线AD1过点C;( 2)如图 2,连接 PE,∵E 为BC 的中点,∴ BE=CE=1,在 Rt△ABE 中, AE==,∵AD1 =AD=2 ,PD=PD1=x,∴D1E=﹣2,PC=3﹣x,在 Rt△PD1E 和 Rt△PCE 中,x2+(﹣2)2=(3﹣x)2+12,解得: x=,∴当 x=时,直线 AD 1过BC 的中点;E( 3)如图 3,当 0<x≤2 时, y=x,如图 4,当 2<x≤3 时,点 D1在矩形 ABCD 的外部, PD1交 AB 于 F,∵AB∥CD,∴∠ 1=∠ 2,∵∠1=∠3(根据折叠),∴∠ 2=∠ 3,∴ AF=PF,作 PG⊥AB 于 G,设 PF=AF=a,由题意得: AG=DP=x ,FG=x﹣a,在 Rt△PFG 中,由勾股定理得:( x﹣a)2+22=a2,解得: a=,所以y==,综合上述,当 0<x≤2 时, y=x;当 2<x≤3 时, y=.【点评】本题考查了勾股定理,折叠的性质,矩形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键,用了分类推理思想.25.如图,已知抛物线y=ax2+bx+c 过点 A (﹣ 1,0), B(3,0), C( 0, 3)点 M 、N 为抛物线上的动点,过点 M 作 MD ∥ y 轴,交直线 BC 于点 D,交 x 轴于点 E.( 1)求二次函数 y=ax2+bx+c 的表达式;( 2)过点 N 作 NF⊥x 轴,垂足为点 F,若四边形 MNFE 为正方形(此处限定点M在对称轴的右侧),求该正方形的面积;(3)若∠ DMN=90°,MD=MN ,求点 M 的横坐标.【分析】(1)待定系数法求解可得;(2)设点 M 坐标为( m,﹣m2+2m+3),分别表示出 ME=| ﹣m2+2m+3| 、MN=2m﹣2,由四边形 MNFE 为正方形知 ME=MN ,据此列出方程,分类讨论求解可得;( 3)先求出直线 BC 解析式,设点 M 的坐标为( a,﹣ a2+2a+3),则点 N(2﹣a,﹣ a2+2a+3)、点 D( a,﹣ a+3),由 MD=MN 列出方程,根据点 M 的位置分类讨论求解可得.【解答】解:( 1)∵抛物线 y=ax2+bx+c 过点 A(﹣ 1,0), B( 3,0),∴设抛物线的函数解析式为 y=a( x+1)( x﹣3),将点 C(0,3)代入上式,得: 3=a( 0+1)( 0﹣3),解得: a=﹣1,∴所求抛物线解析式为 y=﹣( x+1)( x﹣3)=﹣x2+2x+3;( 2)由( 1)知,抛物线的对称轴为 x=﹣=1,如图 1,设点 M 坐标为( m,﹣ m2+2m+3),∴ME=| ﹣m2+2m+3| ,∵M 、N 关于 x=1 对称,且点 M 在对称轴右侧,∴点 N 的横坐标为 2﹣m,∴ MN=2m ﹣2,∵四边形 MNFE 为正方形,∴ME=MN ,∴| ﹣ m2+2m+3| =2m﹣2,分两种情况:①当﹣m2 2m 3=2m﹣2 时,解得: m12(不符合题意,舍去),+ +=、m =﹣当 m=时,正方形的面积为( 2﹣2)2=24﹣8;②当﹣ m2+2m+3=2﹣2m 时,解得:m3, 4 ﹣(不符合题意,舍去),=2+m =2当 m=2+时,正方形的面积为 [ 2(2+)﹣ 2] 2=24+8 ;综上所述,正方形的面积为 24+8或 24﹣8 .(3)设 BC 所在直线解析式为 y=kx +b,把点 B(3,0)、 C(0,3)代入表达式,得:,解得:,∴直线 BC 的函数表达式为y=﹣x+3,设点 M 的坐标为( a,﹣ a2 +2a+3),则点 N( 2﹣ a,﹣ a2+2a+3),点 D(a,﹣a+3),①点 M 在对称轴右侧,即a>1,则 | ﹣ a+3﹣(﹣ a2+2a+3)| =a﹣( 2﹣ a),即 | a2﹣3a| =2a﹣2,若 a2﹣3a≥ 0,即 a≤0 或 a≥3,a2﹣3a=2a﹣ 2,解得: a=或a=<1(舍去);若 a2﹣3a< 0,即 0≤ a≤3,a2﹣ 3a=2﹣ 2a,解得: a=﹣1(舍去)或 a=2;②点 M 在对称轴右侧,即a<1,则 | ﹣ a+3﹣(﹣ a2+2a+3)| =2﹣a﹣a,即 | a2﹣3a| =2﹣2a,若 a2﹣3a≥ 0,即 a≤0 或 a≥3,a2﹣3a=2﹣2a,解得: a=﹣1 或 a=2(舍);若 a2﹣3a< 0,即 0≤ a≤3,a2﹣ 3a=2a﹣2,解得: a=(舍去)或a=;综上,点M 的横坐标为、2、﹣ 1、.【点评】本题主要考查二次函数的综合问题,熟练掌握待定系数法求函数解析式及两点间的距离公式、解方程是解题的关键.。
7.湘潭市2017年中考数学试题及答案一、选择题(共8小题,每小题3分,满分24分)1.(3分)2017的倒数是()A.B.﹣ C.2017 D.﹣20172.(3分)如图所示的几何体的主视图是()3.(3分)不等式组的解集在数轴上表示为()4.(3分)下列计算正确的是()A.3a﹣2a=a B.= C.(2a)3=2a3D.a6÷a3=a25.(3分)“莲城读书月”活动结束后,对八年级(三)班45人所阅读书籍数量情况的统计结果如下表所示:根据统计结果,阅读2本书籍的人数最多,这个数据2是()A.平均数B.中位数C.众数D.方差6.(3分)函数y=中,自变量x的取值范围是()A.x≥﹣2 B.x<﹣2 C.x≥0 D.x≠﹣27.(3分)如图,在半径为4的⊙O中,CD是直径,AB是弦,且CD⊥AB,垂足为点E,∠AOB=90°,则阴影部分的面积是()A.4π﹣4 B.2π﹣4 C.4πD.2π8.(3分)一次函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集是()A.x≥2 B.x≤2 C.x≥4 D.x≤4二、填空题(共8小题,每小题3分,满分24分)9.(3分)分解因式:m2﹣n2= .10.(3分)截止2016年底,到韶山观看大型实景剧《中国出了个毛泽东》的观众约为925000人次,将925000用科学记数法表示为.11.(3分)计算:+= .12.(3分)某同学家长应邀参加孩子就读中学的开放日活动,他打算上午随机听一节孩子所在1班的课,下表是他拿到的当天上午1班的课表,如果每一节课被听的机会均等,那么他听数学课的概率是.13.(3分)如图,在⊙O 中,已知∠AOB=120°,则∠ACB= .14.(3分)如图,在△ABC中,D、E分别是边AB、AC的中点,则△ADE与△ABC的面积比S△ADE:S△ABC= .15.(3分)如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE 垂直平分AB,垂足为E点,请任意写出一组相等的线段.16.(3分)阅读材料:设=(x1,y1),=(x2,y2),∥,则x1•y2=x2•y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m= .三、解答题(本大题共10小题,解答应写出文字说明、证明过程或演算步骤.请将解答过程写在答题卡相应位置上,满分72分)17.(6分)计算:|﹣2|+(5﹣π)0﹣sin45°.18.(6分)“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿.问笼中各有几只鸡和兔?19.(6分)从﹣2,1,3这三个数中任取两个不同的数,作为点的坐标.(1)写出该点所有可能的坐标;(2)求该点在第一象限的概率.20.(6分)如图,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB=2BC,∠F=36°.求∠B的度数.21.(6分)为响应习总书记足球进校园的号召,某学校积极开展与足球有关的宣传与实践活动.学生会体育部为了解本学校对足球运动的态度,随机抽取了部分学生进行调查,并绘制了如下的统计图表(部分信息未给出).(1)在上面的统计表中m= ,n= .(2)请你将条形统计图补充完整;(3)该校共有学生1200人,根据统计信息,估计爱好足球运动(包括喜欢和非常喜欢)的学生有多少人?22.(6分)由多项式乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b)示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3)(1)尝试:分解因式:x2+6x+8=(x+ )(x+ );(2)应用:请用上述方法解方程:x2﹣3x﹣4=0.23.(8分)某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B 在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠BAE=30°.(≈1.4,≈1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数).24.(8分)已知反比例函数y=的图象过点A(3,1).(1)求反比例函数的解析式;(2)若一次函数y=ax+6(a≠0)的图象与反比例函数的图象只有一个交点,求一次函数的解析式.25.(10分)已知抛物线的解析式为y=﹣x2+bx+5.(1)当自变量x≥2时,函数值y 随x的增大而减少,求b 的取值范围;(2)如图,若抛物线的图象经过点A(2,5),与x 轴交于点C,抛物线的对称轴与x 轴交于B.①求抛物线的解析式;②在抛物线上是否存在点P,使得∠PAB=∠ABC?若存在,求出点P 的坐标;若不存在,请说明理由.26.(10分)如图,动点M在以O为圆心,AB为直径的半圆弧上运动(点M 不与点A、B 及的中点F 重合),连接OM.过点M 作ME⊥AB于点E,以BE为边在半圆同侧作正方形BCDE,过点M作⊙O的切线交射线DC于点N,连接BM、BN.(1)探究:如图一,当动点M在上运动时;①判断△OEM∽△MDN是否成立?请说明理由;②设=k,k是否为定值?若是,求出该定值,若不是,请说明理由;③设∠MBN=α,α是否为定值?若是,求出该定值,若不是,请说明理由;(2)拓展:如图二,当动点M 在上运动时;分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)参考答案:一、选择题1.A.2.D.3.B.4.A.5.C 6.A.7.D.8.B.二、填空题9.(m+n)(m﹣n).10.9.25×105.11. 1 .12..13.60°.14.1:4 .15.BE=EA .16. 6 .三、解答题17.解:原式=2+1﹣×=2.18.解:设鸡有x只,兔有y只,根据题意得有,解之,得,即有鸡23只,兔12只.19.解:(1)画树状图得:∴所有可能的坐标为(1,3)、(1,﹣2)、(3,1)、(3,﹣2)、(﹣2,1)、(﹣2,3);(2)∵共有6种等可能的结果,其中(1,3),(3,1)点落在第一项象限,∴点刚好落在第一象限的概率==.20.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠D=∠ECF,在△ADE和△FCE中,,∴△ADE≌△FCE(ASA);(2)解:∵△ADE≌△FCE,∴AD=FC,∵AD=BC,AB=2BC,∴AB=FB,∴∠BAF=∠F=36°,∴∠B=180°﹣2×36°=108°.21.解:(1)由题意抽取的总人数为m人.由题意=0.05,解得m=100,n==0.5,故答案为100,0.5(2)喜欢的人数为100×0.35=35,条形图如图所示,(3)1200×(0.05+0.35)=480人答:计爱好足球运动(包括喜欢和非常喜欢)的学生约为480人.22.解:(1)x2+6x+8=x2+(2+4)x=2×4=(x+2)(x+4),故答案为:2,4;(2)∵x2﹣3x﹣4=0,∴(x+1)(x﹣4)=0,则x+1=0或x﹣4=0,解得:x=﹣1或x=4.23.解:(1)∵在Rt△ABE中,∠BAE=30°,∴BE=AE=×80=40(米);(2)∵在Rt△ABE中,∠BAE=30°,∴∠AEB=90°﹣30°=60°,∴∠CED=∠AEB=60°,∴在Rt△CDE中,DE=≈=20(米),则BD=DE+BE=20+40=60(米).24.解:(1)∵反比例函数y=的图象过点A(3,1),∴k=3,∴反比例函数的解析式为:y=;(2)解得ax2+6x﹣3=0,∵一次函数y=ax+6(a≠0)的图象与反比例函数的图象只有一个交点,∴△=36+12a=0,∴a=﹣3,∴一次函数的解析式为y=﹣3x+6.25.解:(1)抛物线的对称轴为:x=10b,由题意可知:x≥2时,函数值y 随x的增大而减少,∴10b≤2,∴b≤;(2)①将A(2,5)代入抛物线的解析式中,∴5=﹣×4+2b+5,∴b=,∴抛物线的解析式为:y=﹣x2+x+5,②由于∠PAB=∠ABC,当P在对称轴的左侧时,此时∠PAB=∠ABC,∴PA∥BC,∴P的纵坐标与A的纵坐标相同,∴P(0,5),当P在对称轴的右侧时,连接AP并延长交x轴于E,此时∠PAB=∠ABC∴AE=BE,过点A作AG⊥x轴于点G,过点P作PH⊥x轴于点H,过点E作EF⊥AB于点F,∵B(1,0),A(2,5),∴AG=5,BG=1,∴由勾股定理可知:AB=,∵AE=BE,EF⊥AB,∴BF=AB=,∵cos∠ABC==,∴cos∠ABC==,∴BE=13,∴GE=BE﹣BG=12,∴tan∠PEG==,设P(x,﹣x2+x+5),∵E(14,0),∴HE=14﹣x,PH=﹣x2+x+5,∴tan∠PEG==,即=,解得:x=2(舍去)或x=,∴P(,)综上所述,P(0,5)或P(,)26.解:(1)①△OEM∽△MDN成立,理由如下:∵四边形BCDE是正方形,∴BE=BC,∠EBC=∠CDE=∠BCD=∠BED=90°,∴∠EOM+∠EMO=90°,∵MN是⊙O的切线,∴MN⊥OM,∴∠OMN=90°,∴∠DMN+∠EMO=90°,∴∠EOM=∠DMN,∴△OEM∽△MDN;②k值为定值1;理由如下:作BG⊥MN于G,如图一所示:则BG∥OM,∠BGN=∠BGM=90°,∴∠OMB=∠GBM,∵OB=OM,∴∠OBM=∠OMB,∴∠OBM=∠GBM,在△BME和△BMG中,,∴△BME≌△BMG(AAS),∴EM=GM,BE=BG,∴BG=BC,在Rt△BGN和Rt△BCN中,,∴Rt△BGN≌Rt△BCN(HL),∴GN=CN,∴EM+NC=GM+NC=MN,∴k===1;③设∠MBN=α,α为定值45°;理由如下:∵△BME≌△BMG,Rt△BGN≌Rt△BCN,∴∠EBM=∠GBM,∠GBN=∠CBN,∴∠MBN=∠EBC=45°,即α=45°;(2)(1)中的三个结论保持不变;理由同(1),作BG⊥MN于G,如图二所示.。