光纤光栅传感器施加预应力的封装装置
- 格式:pdf
- 大小:371.87 KB
- 文档页数:6
预应力混凝土T梁有效预应力检测方法研究在现代桥梁建设中,预应力混凝土 T 梁因其良好的力学性能和经济性而得到广泛应用。
然而,要确保 T 梁在使用过程中的安全性和可靠性,有效预应力的准确检测至关重要。
有效预应力不足可能导致梁体开裂、下挠等问题,影响桥梁的使用寿命;而预应力过大则可能造成梁体局部破坏,同样不利于结构的稳定。
因此,研究有效的预应力混凝土 T 梁有效预应力检测方法具有重要的现实意义。
目前,常用的预应力混凝土 T 梁有效预应力检测方法主要包括以下几种:一、反拉法反拉法是一种直接检测有效预应力的方法。
其基本原理是在已经施加预应力的钢绞线或钢筋上进行反向张拉,通过测量反向张拉过程中的荷载和位移,计算出原有的有效预应力。
这种方法的优点是检测结果较为准确,能够直接反映梁体中钢绞线的实际预应力状态。
但反拉法也存在一些局限性,比如操作较为复杂,需要对梁体进行局部破坏,可能会对结构造成一定的损伤,而且检测效率相对较低,不适合大规模的检测工作。
二、振动法振动法是基于结构的动力特性与预应力之间的关系来检测有效预应力的。
当预应力发生变化时,梁体的自振频率、振型等动力特性也会相应改变。
通过测量梁体的振动参数,并结合理论分析和数值模拟,可以推算出有效预应力的大小。
振动法具有非破损、快速、可实现大面积检测等优点。
然而,该方法的检测精度受到多种因素的影响,如边界条件、梁体质量分布、测量误差等,因此在实际应用中需要对测量结果进行仔细的分析和修正。
三、磁弹法磁弹法是利用铁磁性材料在磁场中磁特性的变化来检测预应力的。
当钢绞线受到预应力作用时,其内部的磁畴结构会发生改变,从而导致磁导率等磁特性的变化。
通过测量钢绞线的磁特性参数,可以间接推算出有效预应力的大小。
磁弹法具有操作简便、检测速度快等优点,但对于复杂的桥梁结构和多根钢绞线的情况,测量结果的准确性可能会受到一定影响。
四、超声波法超声波法是通过测量预应力混凝土中超声波的传播速度、波幅等参数的变化来检测有效预应力的。
光纤光栅与结构集成工艺原理方法及国内外研究现状概述 概述光纤传感器种类繁多,能以高分辨率测量许多物理参数,与传统的机电类传感器相比具有很多优势,如:本质防爆、抗电磁干扰、抗腐蚀、耐高温、体积小、重量轻、灵活方便等,因此其应用范围非常广泛,并且特别适于恶劣环境中的应用。
但是因为裸光纤纤细、质脆、尤其是剪切能力差,直接将光纤光栅作为传感器在工程中遇到了铺设工艺上的难题。
因此,对裸FBG 进行封装,是将FBG 传感器在实际应用中推广的一个重要环节,对于研制满足航空航天领域需要的体积小、质量轻FBG 传感器具有重要意义。
一、光纤光栅工作原理光纤光栅的最基本原理是相位匹配条件:β1、β2是正、反向传输常数,Λ是光纤光栅的周期,在写入光栅的过程中确定下来。
当一束宽谱带光波在光栅中传输时,入射光在相应的频率上被反射回来,其余的不受影响从光栅的另外一端透射出来。
光纤光栅起到了光波选频的作用,反射的条件称为布拉格条件。
由光纤光栅相位匹配条件得到反射中心波长(布拉格波长)表达式:二、光纤光栅的写入2.1 短周期光纤光栅的写制内部写入法(又称驻波法) 将波长488nm 的基模氢离子激光从一个端面祸合到锗掺杂光纤中,经过光纤另一端面反射镜的反射,使光纤中的入射和反射激光相干涉形成驻波。
由于纤芯材料具有光敏性,其折射率发生相应的周期变化,于是形成了与干涉周期一样的立体折射率光栅。
此方法是早期使用的,该方法要求122πββ-=ΛΛ=n B 2λ锗含量很高,芯径很小,并且只能够制作布拉格波长与写入波长相同的光纤光栅,因此目前很少被采用。
全息成删法(又称外侧写入法) 1989年,Meltz等人首次用此方法制作了横向侧面曝光的光纤光栅。
用两束相干紫外光束在掺锗光纤的侧面相干,形成干涉图,利用光纤材料的光敏性形成光纤光栅。
写制设备装置如图2.1所示。
通过改变入射光波长或两相干光束之间的夹角,可以得到不同栅格周期的光纤光栅。
但是要得到高反射率的光栅,则对所用光源及周围环境有较高的要求。
光纤光栅传感器的封装光纤光栅是一种新型的光无源器件,它通过在光纤轴向上建立周期性的折射率分布来改变或控制光在该区域的传播行为和方式。
其中,具有纳米级折射率分布周期的光纤光栅称为光纤布喇格光栅(即FBG ,若非特别声明,下文中的光纤光栅均指光纤布喇格光栅)。
光纤光栅因具有制作简单、稳定性好、体积小、抗电磁干扰、使用灵活、易于同光纤集成及可构成网络等诸多优点,近年来被广泛应用于光传感领域。
经过近十几年来的研究,光纤光栅的传感机理己基本探明,用于测量各种物理量的多种结构光纤光栅传感器己被制作出来。
目前,光纤光栅传感器可以检测的物理量包括温度、应变、应力、位移、压强、扭角、扭知(扭应力)、加速度、电流、电压、磁场、频率及浓度等。
一、光纤光栅的封装技术由于裸的光纤光栅直径只有125m μ,在恶劣的工程环境中容易损伤,只有对其进行保护性的封装(如埋入衬底材料中),才能赋子光纤光栅更稳定的性能,延长其寿命传感器才能交付使用。
同时,通过设计封装的结构,选用不同的封装材料,可以实现温度补偿,应力和温度的增敏等功能,这类“功能型封装”的研究正逐渐受到重视。
1、 温度减敏和补偿封装由于光纤光栅对应力和温度的交叉敏感性,在实际应用中,经常在应力传感光栅附近串联或并联一个参考光栅,用于消除温度变化的影响。
这种方法需要消耗更多的光栅,增加了传感系统的成本。
若用热膨胀系数极小且对温度不敏感的材料对光纤光栅进行封装,将很大程度上减小温度对应力测量精确性的影响。
另外,采用具有负温度系数的材料进行封装或设计反馈式机构,可以对光纤光栅施加一定应力,以补偿温度导致的布喇格波长的漂移,使0/λλ∆的值趋近于0。
对于封装的光纤布喇格光栅而言,其波长漂移λ∆与应变ε和温度变化T ∆的关系式可表示为式(1),基于弹性衬底材料的光纤光栅温度补偿关系式为()1s e a a a T p ξε++-=∆- (1) 式中:(1/)(/)n dn dT ξ=;(1/)(/)e p n dn d ε=-;(1/)(/)a L dL dT =。
预应力梁锚下有效预应力的快速检测方法分析在现代建筑和桥梁工程中,预应力梁因其能够提高结构的承载能力、减小裂缝和变形等优点而得到广泛应用。
然而,要确保预应力梁的安全性和可靠性,准确检测锚下有效预应力至关重要。
锚下有效预应力不足可能导致结构性能下降,甚至引发安全事故;而过大的预应力则可能造成材料浪费和结构的不利影响。
因此,寻找快速、准确且可靠的检测方法成为了工程领域的重要研究课题。
目前,常见的预应力梁锚下有效预应力检测方法主要包括:一、油压表法油压表法是一种传统且较为直接的检测方法。
在预应力施加过程中,通过安装在千斤顶油路中的油压表测量压力,并结合千斤顶的活塞面积计算出施加的预应力大小。
这种方法操作相对简单,但精度容易受到油压表精度、千斤顶摩阻以及油路泄漏等因素的影响。
而且,油压表法只能在施工过程中进行检测,对于已经建成的预应力梁难以实施。
二、应变片法应变片法是通过在预应力筋或混凝土表面粘贴应变片,测量其在预应力作用下的应变,然后根据材料的力学性能计算出预应力大小。
该方法具有较高的精度,但安装应变片的过程较为复杂,需要专业人员操作,且应变片容易受到外界环境的干扰,影响测量结果的准确性。
三、超声波法超声波法是利用超声波在预应力筋中的传播速度与预应力大小之间的关系来进行检测。
当预应力筋受到拉伸时,其内部的微观结构发生变化,从而导致超声波传播速度的改变。
通过测量超声波的传播速度,可以推算出锚下有效预应力。
这种方法具有无损检测的优点,但检测结果的准确性受到多种因素的影响,如预应力筋的材质、直径、混凝土的质量等。
四、磁弹法磁弹法是基于铁磁性材料在磁场中磁导率随应力变化的特性来检测预应力。
预应力筋通常为钢绞线,具有铁磁性。
通过在预应力筋表面施加磁场,并测量磁导率的变化,可以间接得到预应力的大小。
磁弹法具有快速、非接触测量的优点,但对于复杂的现场环境和多根预应力筋的情况,测量结果可能会受到干扰。
近年来,一些新的快速检测方法也逐渐崭露头角:一、光纤光栅法光纤光栅传感器具有体积小、精度高、抗干扰能力强等优点。
一、实验目的本次实验旨在了解光纤光栅传感技术的基本原理、工作过程以及其在实际应用中的重要性。
通过实验,掌握光纤光栅传感器的制作方法、传感特性以及传感信号的处理技术,为后续研究光纤光栅传感器在相关领域的应用打下基础。
二、实验原理光纤光栅传感器是一种基于光纤布拉格光栅(FBG)原理的新型传感器。
当外界物理量(如温度、应变、压力等)作用于光纤光栅时,光栅的布拉格波长会发生相应的变化,从而实现物理量的测量。
三、实验仪器与材料1. 光纤光栅传感器实验装置2. 光纤光谱分析仪3. 恒温水浴箱4. 拉伸机5. 氧化铝薄膜四、实验步骤1. 光纤光栅传感器的制作(1)将一根单模光纤切割成一定长度,并利用氧化铝薄膜对光纤进行腐蚀,形成光纤光栅。
(2)将制作好的光纤光栅固定在实验装置上,并进行封装。
2. 温度传感实验(1)将光纤光栅传感器放入恒温水浴箱中,分别设置不同的温度,记录光纤光谱分析仪输出的布拉格波长。
(2)分析温度与布拉格波长之间的关系,绘制温度-波长曲线。
3. 应变传感实验(1)将光纤光栅传感器连接到拉伸机上,施加不同大小的应变,记录光纤光谱分析仪输出的布拉格波长。
(2)分析应变与布拉格波长之间的关系,绘制应变-波长曲线。
五、实验结果与分析1. 温度传感实验实验结果显示,随着温度的升高,光纤光栅传感器的布拉格波长发生蓝移,且蓝移量与温度呈线性关系。
通过拟合曲线,得到温度-波长关系式:$$\Delta\lambda = aT + b$$其中,$\Delta\lambda$为布拉格波长变化量,$T$为温度,$a$和$b$为拟合参数。
2. 应变传感实验实验结果显示,随着应变的增大,光纤光栅传感器的布拉格波长发生红移,且红移量与应变呈线性关系。
通过拟合曲线,得到应变-波长关系式:$$\Delta\lambda = c\epsilon + d$$其中,$\Delta\lambda$为布拉格波长变化量,$\epsilon$为应变,$c$和$d$为拟合参数。
一、传感器背景及应用1.1传感器的背景传感器是高度自动化系统, 亦是现代尖端技术关键的组成部分, 因此, 传感器技术是当代高新技术着重发展的领域, 是各个国家科技进步的核心之一。
传感器是指能感受规定的被测信号(非电量) 并按照一定的规律(多指数学规律) 转换成可用信号(电量) 的器件或装置,通常由敏感元件和转换电路组成。
作为模拟人体感觉的“电五官”, 传感器的出现, 使物体存在了触觉、味觉和嗅觉等感官, 让难以测量的信号变得更易检测。
传感器是借助于敏感元件,将感受的信息按一定的规律转换成另一种信息的装置。
在一般情况下,是将信息转换成电量,以便进一步传输、显示。
研究、开发和制造传感器的技术涉及到许多学科,是一门跨学科的边缘科学技术。
随着现代测量、控制和自动化技术的发展,传感器技术己越来越为人们所重视,它是人类社会跨入信息时代的物质基础。
信息的采集和处理是信息社会的支柱之一,信息的处理依赖于计算机技术,而信息的采集则依赖于传感器。
在国外,随着生产自动化和实时控制的发展,为了更好地发挥计算机的效能,各国都已开始重视传感器技术的研究和开发。
前一时期,传感器技术没有跟上计算机技术的发展,信息的获得远远落后于信启、的处理,反过来又阻碍了计算机的应用和电子工业的发展。
因此近年来各国已把传感器技术摆到了重要的地位。
如美国空军200。
年报告中将传感器列为提高二十一世纪空军能力的十五项关键技术之一;在日本更认为“唯有模仿人脑的计算机与传感器的协调发展,才能决定技术的将来。
当务之急,是全力发展传感电子设备。
”总之,传感器技术在国民经济各部门、科学研究、国防建设、日常生活等各方面的应用十分广泛,从而形成了一个大的新型科学技术领域,随着科学技术的进一步发展,传感器技术的研究、开发还将日益扩大和深入,因此被视为80年代的关键技术而受到国内外的广泛瞩目是理所当然的。
1.2传感器在海洋中的应用海洋蕴藏着丰富的资源,影响着全球气候变化,海洋科学在海洋环境保护、能源开发、灾害预防、权益维护等多方面有着举足轻重的作用,同时也能为国家制定海洋政策提供科学依据。