高二数学月考卷(数列)
- 格式:doc
- 大小:271.00 KB
- 文档页数:2
高二数学月考试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a n =cos n π,则数列{a n }是( ) A .递增数列 B .递减数列 C .常数列 D .摆动数列答案 D2.在数列2,9,23,44,72,…中,第6项是( ) A .82 B .107 C .100 D .83答案 B3.等差数列{a n }的前n 项和为S n ,若S 2=2,S 4=10,则S 6等于( )A .12B .18C .24D .42答案 C解析 思路一:设公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+d =2,4a 1+6d =10,解得a 1=14,d =32.则S 6=6a 1+15d =24.思路二:S 2,S 4-S 2,S 6-S 4也成等差数列,则2(S 4-S 2)=S 6-S 4+S 2,所以S 6=3S 4-3S 2=24.4.数列{a n }中,a 1=1,对所有n ≥2,都有a 1a 2a 3…a n =n 2,则a 3+a 5=( )A.6116B.25916155.(2016·辽宁五校协作联考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,S 表示△ABC 的面积,若a cos B +b cos A =c sin C ,S =14(b 2+c 2-a 2),则B 等于( )A .90°B .60°C .45°D .30°[解析] 由正弦定理得sin A cos B +sin B cos A =sin C sin C ,即sin(B +A )=sin 2C ,所以sin C =1,C =90°.根据三角形面积公式和余弦定理得S =12bc sin A , b 2+c 2-a 2=2bc cos A ,代入已知得12bc sin A =14·2bc cos A , 所以tan A =1,A =45°,因此B =45°. [答案] C6.已知△ABC 中,AB =3,AC =1,且B =30°,则△ABC 的面积等于( )A.32 B.34 C.32或 3 D.32或34答案:D7.已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=( )A .0B .- 32答案 B解析 由a 1=0,a n +1=a n -33a n +1(n ∈N *), 得a 2=-3,a 3=3,a 4=0,…,由此可知数列{a n }是周期变化的,周期为3,∴a 20=a 2=- 3.8.数列{a n }满足递推公式a n =3a n -1+3n -1(n ≥2),又a 1=5,则使得{a n +λ3n }为等差数列的实数λ=( )A .2B .5C .-12 D.12答案 C解析 a 1=5,a 2=23,a 3=95,令b n =a n +λ3n ,则b 1=5+λ3,b 2=23+λ9,b 3=95+λ27,∵b 1+b 3=2b 2,∴λ=-12.9.在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则{a n }的前n 项和S n 中最大的负数为( ) A .S 17 B .S 18 C .S 19 D .S 20 答案 C解析 ∵a 10<0,a 11>0,且a 11>|a 10|,∴a 11+a 10>0. S 20=20(a 1+a 20)2=10·(a 11+a 10)>0. S 19=19(a 1+a 19)2=192·2a 10<0.10、.设S n 为等差数列{a n }的前n 项和,若S 8=30,S 4=7,则a 4的值等于( )A.14B.94 C.134 D.174答案 C解析 由题意可知, ⎩⎪⎨⎪⎧8a 1+8×(8-1)d 2=30,4a 1+4×(4-1)d 2=7,解得⎩⎨⎧a 1=14,d =1.故a 4=a 1+3=134.11.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( )A .7B .5C .-5D .-7答案 D解析 ∵{a n }为等比数列,∴a 5a 6=a 4a 7=-8.联立⎩⎪⎨⎪⎧ a 4+a 7=2,a 4a 7=-8,可解得⎩⎪⎨⎪⎧ a 4=4,a 7=-2或⎩⎪⎨⎪⎧a 4=-2,a 7=4.当⎩⎪⎨⎪⎧ a 4=4a 7=-2时,q 3=-12,故a 1+a 10=a 4q 3+a 7q 3=-7; 当⎩⎪⎨⎪⎧a 4=-2a 7=4时,q 3=-2,同理,有a 1+a 10=-7. 12.已知等差数列{a n }的前n 项和为S ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为( )A.100101B.99101C.99100D.101100答案 A解析 S 5=5(a 1+a 5)2=5(a 1+5)2=15,∴a 1=1. ∴d =a 5-a 15-1=5-15-1=1.∴a n =1+(n -1)×1=n .∴1a n a n +1=1n (n +1).设{1a n a n +1}的前n 项和为T n , 则T 100=11×2+12×3+…+1100×101=1-12+12-13+…+1100-1101 =1-1101=100101.13.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,其公差为( )A . 5 B. 4 C. 3 D. 214. 已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99.以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18答案 B解析 ∵a 1+a 3+a 5=105,a 2+a 4+a 6=99, ∴3a 3=105,3a 4=99,即a 3=35,a 4=33. ∴a 1=39,d =-2,得a n =41-2n .令a n =0且a n +1<0,n ∈N *,则有n =20.故选B.二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上)13.设等差数列{a n }的前n 项和为S n ,若S 9=72,则a 2+a 4+a 9=________.答案 2414.设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n =________. 答案 n (n +1)2+1解析 ∵a 1=2,a n +1=a n +n +1, ∴a n -a n -1=n ,a n -1-a n -2=n -1,a n -2-a n -3=n -2,…,a 3-a 2=3,a 2-a 1=2,a 1=2. 将以上各式的两边分别相加,得a n =[n +(n -1)+(n -2)+(n -3)+…+2+1]+1 =n (n +1)2+1.15.若数列{a n }的前n 项和为S n ,且满足S n =32a n -3,则数列{a n }的通项公式是________.答案 a n =2·3n解析 n ≥2时,S n =32a n -3,① S n -1=32a n -1-3,②①-②知a n =32a n -32a n -1,即12a n =32a n -1. ∴a n a n -1=3,由S n =32a n -3,得S 1=a 1=32a 1-3. 故a 1=6,∴a n =2·3n .16.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =________.答案 4解析 ⎩⎪⎨⎪⎧3S 3=a 4-2, ①3S 2=a 3-2, ②,①-②,得3a 3=a 4-a 3,4a 3=a 4,q=a 4a 3=4.17.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … … … … … …根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是________.答案 n 22-n2+3(n ≥3)解析 该数阵的第1行有1个数,第2行有2个数,…,第n 行有n 个数,则第n -1(n ≥3)行的最后一个数(n -1)(1+n -1)2=n 22-n2,则第n 行从左至右的第3个数为n 22-n2+3(n ≥3).18.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________.[解析] 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴当n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15) =20+110=130. [答案] 130三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)21(12分).(2016·西安质检)等比数列{a n }中,已知a 3=8,a 6=64.(1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解:(1)设{a n }的首项为a 1,公比为q ,由已知得8=a 1q 2,64=a 1q 5,解得q =2,a 1=2,所以a n =2n .(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设{b n }的公差为d ,则有⎩⎪⎨⎪⎧ b 1+2d =8,b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12,从而b n =-16+12(n -1)=12n -28,所以数列{b n }的前n 项和S n =n (-16+12n -28)2=6n 2-22n . 22(12分).在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知(b -2a )cos C +c cos B =0.(1)求C ;(2)若c =7,b =3a ,求△ABC 的面积.[解] (1)由已知及正弦定理得:(sin B -2sin A )cos C +sin C cos B =0,sin B cos C +cos B sin C =2sin A cos C ,sin(B +C )=2sin A cos C ,∴sin A =2sin A cos C .又sin A ≠0,得cos C =12.又C ∈(0,π),∴C =π3. (2)由余弦定理得:c 2=a 2+b 2-2ab cos C ,∴⎩⎪⎨⎪⎧a 2+b 2-ab =7,b =3a ,解得a =1,b =3. 故△ABC 的面积S =12ab sin C =12×1×3×32=334.23.(本小题满分12分)已知等比数列{a n }的各项均为正数,且6223219,132a a a a a ==+ (1)求数列{a n }的通项公式;(2)设,3log n n a b -= ,求数列{11+n n b b }的前n 项的和n T (详见《活页》P112页T21)24.(本小题满分14分)数列{a n }满足)(33,1111+++∈+==N n a a a a nn n n n . ( 1 )证明:数列{nna 3}是等差数列;(2)求数列{a n }的通项公式 ;(3)设n n a n n b )1(+=,求数列b n }的前n 项的和S n . (详见《活页》P100页T21)。
2022-2023学年广东省佛山市顺德区重点中学高二(下)月考数学试卷(3月份)及参考答案第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1.已知数列{}n a 中,452+-=n n a n ,则数列{}n a 的最小项是()A.第1项B.第3项、第4项C.第4项D.第2项、第3项2.在数列{}n a 中,4211+==+n n a a a ,,若2022=n a ,则=n ()A.508B.507C.506D.5053.等差数列{}n a 的前11项和4411=S ,则=++873a a a ()A.9B.10C.11D.124.在等比数列{}n a 中.已知487531=+=+a a a a ,,则=+++1513119a a a a ()A.11B.6C.3D.185.已知数列{}n a 是递增的等比数列,1+2+3=14,123=64,则公比=()A.12B.1C.2D.46.若数列{}n a 对任意正整数都有1+22+33+…+B =2−1,则22+55=()A.17B.18C.34D.847.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25B.24C.20D.198.已知等差数列{}n a 的前项和为,若7+8>0,7+9<0,则取最大值时的值为()A.8B.5C.6D.7二、多选题(本大题共4小题,共20.0分。
在每小题有多项符合题目要求)9.正项等比数列{}n a的前项和为,已知3=2+101,4=3.下列说法正确的是()A.1=9B.{}是递增数列C.{+118}为等比数列D.{log3}是等比数列10.记为公差不为0的等差数列{}n a的前项和,则()A.3,6−3,9−6成等差数列B.33,66,99成等差数列C.9=26−3D.9=3(6−3)11.已知数列{}n a中,1=2,+1+1=1,∈+,则()A.2022=1B.1+2+3+…+2002=1011C.123…2022==1011D.12+23+34+…+20222023=−101112.如图所示,图1是边长为1的正方形,以正方形的一边为斜边作等腰直角三角形,再以等腰直角三角形的两个直角边为边分别作正方形得到图2,重复以上作图,得到图3,…….记图1中正方形的个数为1,图2中正方形的个数为2,图3中正方形的个数为3,……,图中正方形的个数为,下列说法正确的有()A.5=63B.图5中最小正方形的边长为14C.1+2+3+……+10=2036D.若=255,则图中所有正方形的面积之和为8第II卷(非选择题)三、填空题(本大题共4小题,共24.0分)13.设数列{}n a满足1=2=2+2K1,则3=.14.《九章算术》是我国古代的数学巨著,书中有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百錢.欲令高爵出少,以次漸多,問各幾何?“意思是:“有大夫、不更、簪裹、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成等差数列,这5个人各出多少钱?“在这个问题中,若大夫出6钱,则上造出的钱数为.15.数列{}n a中,=−12+1−32(≥2,∈∗),且1=1,则数列的通项公式为=.16.已知数列{}n a满足1=1,且+1=++1,则=,数列{1}的前项和=.四、解答题(本大题共6小题,共70.0分。
高二数学数列试题答案及解析1.定义一种运算&,对于,满足以下性质:(1)2&2=1,(2)(&2=(&2)+3,则2008&2的数值为【答案】-3008【解析】(&2=(&2)+3,即(&2)=(&2-3,则 2&2,4&2,6&2,(&2)构成等差数列,(&2)=2&2+(1004-1)*(-3)=-30082.已知等差数列{an }的前n 项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列的前n 项和【答案】(1);(2)【解析】(1)设等差数列的首项,公差分别是,代入公式;(2)将和代入通项公式,整理,第二步是裂项相消,整理.试题解析:(1)因为S3=0,S5=-5。
(6分)(2)所以数列的前n项和…+=…+=。
(6分)【考点】1.等差数列的前n项和;2.等差数列的通项公式;3.裂项相消法求和.3.已知数列是首项为的等比数列,是的前项和,且,则数列的前项和为A.或B.或C.D.【答案】A【解析】显然,则,解得,则成等比数列,其公比为,则其前5项和为或.【考点】等比数列的求和公式.4.已知数列的前项和为,.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前项和为,,点在直线上,若存在,使不等式成立,求实数的最大值.【答案】(1);(2)4.【解析】(1)利用进行求解;(2)先利用点在直线上求得的通项,再利用求得,再利用错位相减法进行求和.试题解析:(Ⅰ)(1)(2)(2)-(1)得,即,成等比数列,公比为..(Ⅱ)由题意得:,成等差数列,公差为.首项,,,当时,,当时,成立,.,令,只需.(3)(4)(3)-(4)得:.为递增数列,且 ,,实数的最大值为.【考点】1.的应用;(2)错位相减法.5.已知正项数列的前项和为,对任意,有.(1)求数列的通项公式;(2)令,设的前项和为,求证:【答案】(1)(2)证明见解析.【解析】第一问根据题中所给的条件,令取时,对应的式子写出,之后两式相减,可得相邻两项的差为常数,从而得到数列为等差数列,令,可得数列的首项,从而求得数列的通项公式,第二问对式子进行分母有理化,化简可得,再求和,中间项就消没了,从而证得结果.试题解析:(1)由可得,,两式相减得,整理得,根据数列是正项数列,所以有,且有,所以数列是以为首项,以为公比的等比数列,所以有;(2)【考点】求数列的通项公式,数列求和问题.6.等差数列中,,则前7项的和()A.B.28C.63D.36【答案】C【解析】由等差中项可得, .故C正确.【考点】1等差数列的性质;2等差数列的前项和.7.(本小题满分12分)已知是一个等差数列,且。
高二数学数列试题答案及解析1.设等差数列的公差为d,前项和为,等比数列的公比为.已知,,,.(Ⅰ)求数列,的通项公式;(Ⅱ)当时,记,求数列的前项和.【答案】(Ⅰ)或;(Ⅱ).【解析】(Ⅰ)由题意有,即,解得或故或.(Ⅱ)由,知,,故,于是,①.②①-②可得,故.【考点】本题综合考查等差数列、等比数列和错位相减法求和,属中档题.2.已知数列的前项和构成数列,若,则数列的通项公式________.【答案】【解析】当时,,当时,,综上所述,,故答案为.【考点】数列通项与前项和之间的关系以及公式的应用.【方法点睛】本题主要考查数列通项与前项和之间的关系以及公式的应用,属于难题.已知求的一般步骤:(1)当时,由求的值;(2)当时,由,求得的表达式;(3)检验的值是否满足(2)中的表达式,若不满足则分段表示;(4)写出的完整表达式.3.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n个图案中有白色地面砖块.【答案】4n+2【解析】第个图案有块,第个图案有块,第个图案有块,所以第个图案有块【考点】观察数列的通项4.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为升.【答案】【解析】由题意可知,解得,所以.【考点】等差数列通项公式.5.在等差数列{an }中,S15>0,S16<0,则使an>0成立的n的最大值为 ().A.6B.7C.8D.9【答案】C【解析】依题意得S15==15a8>0,即a8>0;S16==8(a1+a16)=8(a8+a9)<0,即a8+a9<0,a9<-a8<0.因此使an>0成立的n的最大值是8,选C.6.已知数列是等比数列,,是和的等差中项.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1)(2)【解析】(1)求等比数列通项公式,一般方法为待定系数法,即列出两个独立条件,解方程组即可,本题可利用等比数列通项公式广义定义求解,即,而是和的等差中项,都转化为:(2)先代入求解,再根据错位相减法求和,注意项的符号变化,项数的确定.试题解析:(1)设数列的公比为,因为,所以,.因为是和的等差中项,所以.即,化简得.因为公比,所以.所以().(2)因为,所以.所以.则,①. ②①-②得,,所以.【考点】等比数列通项公式,错位相减法求和7.等差数列,的前n项和分别为和,若则=________.【答案】.【解析】根据等差数列的性质,由.【考点】等差数列的性质.8.数列的一个通项公式是()A.B.C.D.【答案】B【解析】设此数列为,其符号为其绝对值为,可得通项公式.选B【考点】数列的通项公式9.《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第九日所织尺数为A.8B.9C.10D.11【答案】B【解析】该数列为等差数列,且,即,解得.【考点】等差数列,数学文化.10.等差数列{an}共有2n+1项,其中奇数项之和为4,偶数项之和为3,则n的值是()A.3B.5C.7D.9【答案】A【解析】利用等差数列的求和公式和性质得出,代入已知的值即可.解:设数列公差为d,首项为a1,奇数项共n+1项,其和为S奇===(n+1)an+1=4,①偶数项共n项,其和为S偶===nan+1=3,②得,,解得n=3故选A【考点】等差数列的前n项和.11.数列的一个通项公式是()A.B.C.D.【答案】B【解析】观察数列的前6项知,该数列是以1为首项2为公比的等比数列,所以.故选B.【考点】观察法求数列的通项公式.12.数列是等差数列,若,且它的前项和有最大值,那么当取得最小正值时,值等于( )A.11B.17C.19D.21【答案】C【解析】由于前项和有最大值,所以,根据,有,,,所以,,结合选项可知,选C.【考点】等差数列的基本性质.13.设等差数列的公差为d,若数列为递减数列,则()A.B.C.D.【答案】C【解析】因为是等差数列,则,又由于为递减数列,所以,故选C.【考点】1.等差数列的概念;2.递减数列.14.设数列{an },{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,那么由an+bn所组成的数列的第37项的值为()A.0B.37C.100D.-37【答案】C【解析】数列{an }和{bn}都是等差数列,所以是等差数列,首项,所以数列是常数列,所以第37项的值为100【考点】等差数列15.设是等差数列的前项和,已知,则等于()A.13B.35C.49D.63【答案】C【解析】依题意有,解得,所以.【考点】等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念. 在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.16.设等差数列{an }的前n项和为Sn,若S3=9,S6=36.则a7+a8+a9等于()A.63B.45C.36D.27【答案】B【解析】设公差为d,则解得a1=1,d=2,则a7+a8+a9=3a8=3(a1+7d)=45.17.已知等差数列中,,公差,则使前项和为取最小值的正整数的值是()A.4和5B.5和6C.6和7D.7和8【答案】C【解析】,所以使前项和取最小值的正整数的值为6和7【考点】数列性质18.设是等差数列的前项和,已知,则等于()A.13B.35C.49D.63【答案】C【解析】依题意有,解得,所以.【考点】等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念. 在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.19.已知数列的通项公式为,记数列的前项和为,若对任意的恒成立,则实数的取值范围_________.【答案】【解析】由题意可得,,即求的最大值,所以当n=3时,,所以,填。
20XX 高二年级数列测试题一、选择题(每小题5分,共60分)1.等差数列{a n }中,若a 2+a 8=16,a 4=6,则公差d 的值是( )A .1B .2C .-1D .-22.在等比数列{a n }中,已知a 3=2,a 15=8,则a 9等于( )A .±4B .4C .-4D .163.数列{a n }中,对所有的正整数n 都有a 1·a 2·a 3…a n =n 2,则a 3+a 5=( )A.6116B.259C.2519D.31154.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=( )A .8B .-8C .±8 D.985.等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 12=30,则S 13的值是( )A .130B .65C .70D .756.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .97.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N +,则S 10的值为( )A .-110B .-90C .90D .1108.等比数列{a n }是递减数列,前n 项的积为T n ,若T 13=4T 9,则a 8a 15=()A .±2B .±4C .2D .49.首项为-24的等差数列,从第10项开始为正数,则公差d 的取值X 围是( )A .d >83 B .d <3 C.83≤d <3 D.83<d ≤310.等比数列{}n a 中,首项为1a ,公比为q ,则下列条件中,使{}n a 一定为递减数列的条件是〔〕A .1q <B 、10,1a q ><C 、10,01a q ><<或10,1a q <>D 、1q >11. 已知等差数列{}n a 共有21n +项,所有奇数项之和为130,所有偶数项之和为120,则n 等于〔 〕A.9B.10C.11D.1212.设函数f (x )满足f (n +1)=2)(2n n f +(n ∈N +),且f (1)=2,则f (20)为( ) A .95 B .97 C .105 D .192二、填空题(每小题5分,共20分.把答案填在题中的横线上)13.已知等差数列{a n }满足:a 1=2,a 3=6.若将a 1,a 4,a 5都加上同一个数,所得的三个数依次成等比数列,则所加的这个数为________.14.已知数列{a n } 中,a 1=1且31111+=+n n a a (n ∈ N +),则a 10= 15.在数列{a n }中,a 1=1,a 2=2,且满足)2)(1(31≥-=+-n n a a n n ,则数列{a n }的通项公式为=n a16.已知数列满足:a 1=1,a n +1=a n a n +2,(n ∈N *),若b n +1=(n -λ)⎝ ⎛⎭⎪⎫1a n +1,b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值X 围为三、解答题(本大题共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.〔10分〕在数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0(n ∈N +).(1)求数列{a n }的通项公式;(2)求数列{a n }的前20项和为S 20.18.(12分)已知数列}{n a 前n 项和n n S n 272-=,(1)求|}{|n a 的前11项和11T ;(2) 求|}{|n a 的前22项和22T ;19.(12分)已知数列}{n a 各项均为正数,前n 项和为S n ,且满足 2S n =2n a + n -4(n ∈N +).(1)求证:数列}{n a 为等差数列;(2)求数列}{n a 的前n 项和S n .20.(12分)数列{}n a 的前n 项和记为n S ,()111,211n n a a S n +==+≥. 〔1〕求{}n a 的通项公式;〔2〕等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T .21.(12分)已知数列{a n },{b n }满足a 1=2,2a n =1+a n a n +1,b n =a n -1(b n ≠0).(1)求证数列{1b n}是等差数列; (2)令11+=n n a c ,求数列{n c }的通项公式.22.〔12分〕在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项.(1)求数列{}n a 的通项公式;(2)设(1)2n n n b a +=,记1234(1)n n n T b b b b b =-+-+-+-…,求n T .20XX 高二年级数列试题答案1---12:BBAB AAD C DCDB13---16:-11,41,⎪⎪⎩⎪⎪⎨⎧--=)(223)(213为偶数为奇数n n n n a n ,λ<2 17.解:(1)∵数列{a n }满足a n +2-2a n +1+a n =0,∴数列{a n }为等差数列,设公差为d .∴a 4=a 1+3d ,d =2-83=-2.∴a n =a 1+(n -1)d =8-2(n -1)=10-2n .(2) S n =)9(n n -得S 20= -22018.解:n n S n 272-=282-=∴n a n∴当14<n 时,0<n a 14≥n 时0≥n a(1)||||||112111a a a T +++= 176)(11111=-=++-=S a a(2)|)||(|)||||(|2214132122a a a a a T ++++++=2215141321)(a a a a a a +++++++-= 132213S S S -+-=25421322=-=S S19.(1)证明:当n=1时,有2a 1=+1-4,即-2a 1-3=0,解得a 1=3(a 1=-1舍去).当n≥2时,有2S n-1=+n-5,又2S n =+n-4,两式相减得2a n =-+1, 即-2a n +1=,也即(a n -1)2=,因此a n -1=a n-1或a n -1=-a n-1.若a n -1=-a n-1, 则a n +a n-1=1.而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n-1,即a n -a n-1=1,因此数列{a n }为等差数列.(2)解:由(1)知a 1=3,d=1,所以数列{a n }的通项公式a n =3+(n-1)×1=n+2,即a n =n+2.得252n n S n +=21.(1)证明:∵b n =a n -1,∴a n =b n +1.又∵2a n =1+a n a n +1,∴2(b n +1)=1+(b n +1)(b n +1+1).化简得:b n -b n +1=b n b n +1.∵b n ≠0,∴b n b n b n +1-b n +1b n b n +1=1.即1b n +1-1b n=1(n ∈N +). 又1b 1=1a 1-1=12-1=1,∴{1b n}是以1为首项,1为公差的等差数列. (2)∴1b n =1+(n -1)×1=n .∴b n =1n .∴a n =1n +1=n +1n .∴1211+=+=n n a c n n 22.。
广西南宁市第二中学2024-2025学年高二上学期11月段考考试数学试卷一、单选题1.已知数列{}n a 满足点(),n n a 在直线21y x =-上,则2a =()A .3B .2C .1D .02.平行线230x y -+=与220x y --=之间的距离为()A BC .52D .53.在等差数列{}n a 中,若357911100a a a a a ++++=,则113a a +的值为()A .10B .20C .30D .404.已知()1,0A -,()10B ,,在x 轴上方的动点M 满足直线AM 的斜率与直线BM 的斜率之积为2,则动点M 的轨迹方程为()A .()22102y x x -=>B .()22102y x y -=>C .()22102x y x -=>D .()22102x y y -=>5.如图,已知一艘停在海面上的海监船O 上配有雷达,其监测范围是半径为25km 的圆形区域,一艘轮船从位于海监船正东40km 的A 处出发,径直驶向位于海监船正北30km 的B 处岛屿,速度为28km /h .这艘轮船能被海监船监测到的时长为()A .1小时B .0.75小时C .0.5小时D .0.25小时6.如图,椭圆2221(1)x y a a+=>与x 轴、y 轴正半轴分别交于点A 、B ,点P 是过左焦点F 1且垂直x 轴的直线与椭圆的一个交点,O 为坐标原点,若AB //OP ,则椭圆的焦距为()AB .C .1D .27.已知双曲线C :()222210,0x y a b a b-=>>的一条渐近线方程是y =,过其左焦点()F 作斜率为2的直线l 交双曲线C 于A ,B 两点,则截得的弦长AB =()A .B .C .10D .8.已知离心率为12的椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,上顶点为M ,线段2MF 的中点为N ,射线1F N 与C 交于点A ,若1AF =2AF =()A .63-B C D 二、多选题9.下列说法正确的是()A .过点(1,2)-且垂直于直线230x y -+=的直线方程为20x y +=B .过点(1,2)P 且在x 、y 轴截距相等的直线方程为20x y +=C .曲线2102x y +=过点10,8⎛⎫- ⎪⎝⎭的最短弦长为12;D .直线(2)4y k x =-+与曲线1y =k 的取值范围73,124⎛⎤⎥⎝⎦10.设拋物线2:4C y x =的焦点为F ,M 为C 上一动点,(3,1)E 为定点,则下列结论正确的是()A .准线l 的方程是2x =-B .||||ME MF +的最小值为4C .||||ME MF -的最大值为5D .以线段MF 为直径的圆与y 轴相切11.已知()22,,1(1,)Z n nf x y n x y n n =+-≥∈,定义方程(),,0=f x y n 表示的是平面直角坐标系中的“方圆系”曲线,记n S 表示“方圆系”曲线(),,0=f x y n 所围成的面积,则()A .“方圆系”曲线(),,10=f x y 所围成的面积为1B .24<S C .{}n S 是单调递增的数列D .“方圆系”曲线(),,20=f x y 上任意一点到原点的最大距离为142三、填空题12.已知圆221:(1)1C x y -+=,圆222:(4)16C x y -+=,则两圆公切线的方程为.13.已知首项为2的数列{}n a ,其前n 项和为n S ,且数列n S n ⎧⎫⎨⎩⎭是公差为1的等差数列()*N n ∈,则{}n a 的通项公式.14.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,若双曲线的左支上一点P 满足1221sin 3sin PF F PF F ∠=∠,以2F 为圆心的圆与1F P 的延长线相切于点M ,且112F M F P = ,则双曲线的离心率为.四、解答题15.已知等差数列{}n a 的前n 项和为n S ,满足24610,36a a S +==.(1)求数列{}n a 的通项公式;(2)设(1)nn n b a =-,求12320b b b b ++++ 16.已知点C 是平面直角坐标系中异于原点O 的一个动点,过点C 且与y 轴垂直的直线与直线2x =-交于点M ,且向量OC与向量OM 垂直.(1)求点C 的轨迹方程E ;(2)设C 位于第一象限,以OC 为直径的圆与y 轴相交于点N ,且30NCO ︒∠=,求OC 的值.17.在锐角ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足cos cos cos c a bC A B+=+(1)求角C 的大小;(2)若1ab =,求ABC V 外接圆的面积的最小值.18.如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,AB AD ⊥,//AD BC ,3PA BC ==,2AB AD ==,PB E 为PD 中点,点F 在PC 上,且3PC FC =.(1)求证:AB ⊥平面PAD ;(2)求平面FAE 与平面AED 夹角的余弦值;(3)线段AC 上是否存在点Q ,使得//DQ 平面FAE ,说明理由?19.已知椭圆()2222Γ:10x y a b a b +=>>的左、右焦点分别为12,F F ,设点(0,)A b ,在12AF F △中,12π2F AF ∠=,周长为2+.(1)求椭圆Γ的方程;(2)设不经过点A 的直线l 与椭圆Γ相交于B 、C 两点,若直线AB 与AC 的斜率之和为1-,求证:直线l 过定点,并求出该定点的坐标;(3)记第(2)问所求的定点为E ,点P 为椭圆Γ上的一个动点,试根据AEP △面积S 的不同取值范围,讨论AEP △存在的个数,并说明理由.。
高二数学数列试题1.已知等差数列中,前15项之和为,则等于()A.B.6C.12D.【答案】B【解析】略2.按照下列三种化合物的结构式及分子式的规律,写出后一种化合物的分子式是()A.C4H9B.C4H10C.C4H11D.C6H12【答案】B【解析】略3.等比数列的前项和为,且成等差数列.若,则=()A.7B.8C.15D.16【答案】C【解析】∵成等差数列,∴,∴,即,∴,∴.【考点】等差数列的性质、等比数列的前n项和.4.已知等差数列满足,则下列选项错误的是( )A.B.C.D.【答案】C【解析】根据等差数列的性质,可知,,,所以有A,B,D是正确的,只有C是错误的,故选C.【考点】等差数列的性质.5.在一个数列中,如果对任意,都有为常数,那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,公积为,记的前项和为,则:(1).(2).【答案】2;4700【解析】由题意可知,可知数列是以3为周期的循环数列..【考点】新概念.6.数列{an }中的前n项和Sn=n2-2n+2,则通项公式an=__________.【答案】【解析】当时,.当,所以数列的通项公式为【考点】已知数列的前n项和求数列通项公式.【方法点睛】已知数列的前n项和求通项的步骤:•当n=1时,;‚当时,,然后验证n=1是否满足时式子,如果满足合并为一个式子,如果不满足则结果写成分段函数的形式.7.已知等比数列中,,则()A.-2B.1C.2D.5【答案】D【解析】【考点】等比数列通项公式8.设是等差数列的前项和,若,则()A.B.C.D.【答案】A【解析】【考点】等差数列性质及求和公式9.已知数列{an }的前n项和Sn=a n-1(a是不为零的常数),则数列{an}()A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既非等差数列,也非等比数列【答案】C【解析】当时,,,∴数列是等差数列.当时,,∴数列是等比数列.综上所述,数列或是等差数列或是等比数列【考点】等差数列等比数列的判定10.在等差数列{an }中,已知a3+a8>0,且S9<0,则S1、S2、…S9中最小的是()A.S4B.S5C.S6D.S7【答案】B【解析】,数列为递减数列,前5项为负数,因此最小的是【考点】数列性质11.设等差数列满足,且,为其前n项和,则数列的最大项是()A.B.C.D.【答案】B【解析】由题意易得数列的公差,可得等差数列前27项为正数,从第28项起为负数,可得答案.设等差数列的公差为d,令∴递减的等差数列前27项为正数,从第28项起为负数,∴数列的最大项为,故选D.【考点】等差数列的函数特征【方法点睛】求等差数列前n项和Sn最值的两种方法(1)函数法:利用等差数列前n项和的函数表达式Sn=an2+bn,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①a1>0,d<0时,满足的项数m使得Sn取得最大值为Sm;②当a1<0,d>0时,满足的项数m使得Sn取得最小值为Sm.12.在等比数列{an}中,各项均为正值,且,,则.【答案】【解析】因为,,所以由等比数列的性质有,,所以,因为等比数列{an}中,各项均为正值,所以.【考点】等比数列的性质.【思路点晴】本题主要考查的是等比数列的性质,属于中档题.解本题需要掌握的知识点是{an}中,若,则,特别地,若,则.解题时要注意整体思想的运用,利用乘法公式,间接求出结果.【易错点晴】本题主要考查等比数列的性质,要注意“等比数列{an}中,各项均为正值”这一条件,否则很容易出现错误.13.(2015秋•宁德校级期中)已知公差不为零的等差数列{an },若a1=1,且a1,a2,a5成等比数列.(1)求数列{an}的通项公式;(2)设bn =2n,求数列{an+bn}的前n项和Sn.【答案】(1)an =1+2(n﹣1)=2n﹣1;(2)Sn=n2+2n+1﹣2.【解析】(1)通过a2=1+d、a5=1+4d,利用a1,a2,a5成等比数列计算可知公差d=2,进而可得结论;(2)分别利用等差数列、等比数列的求和公式计算,相加即可.解:(1)依题意可知,a2=1+d,a5=1+4d,∵a1,a2,a5成等比数列,∴(1+d)2=1+4d,即d2=2d,解得:d=2或d=0(舍),∴an=1+2(n﹣1)=2n﹣1;(2)由(1)可知等差数列{an }的前n项和Pn==n2,∵bn=2n,∴数列{bn }的前n项和Qn==2n+1﹣2,∴Sn=n2+2n+1﹣2.【考点】数列的求和;等差数列的通项公式.14.等差数列中,若,则.【解析】设公差为,,,.【考点】等差数列的通项公式.15.设是等比数列的各项和,则等于A.B.C.D.【答案】B【解析】时等比数列首项为1,公比为2,项数为,所以【考点】等比数列求和16.设x、、、y成等差数列,x、、、y成等比数列,则的取值范围是()A.4,+∞)B.(-∞,0∪4,+∞)C.0,4)D.(-∞,-4)∪4,+∞)【答案】B【解析】依题意,,,则,又,若,则,于是,故≥4,当且仅当x=y时取“”号;若,则,于是,故≤0,当且仅当时取“”号,综上所述,的取值范围是.【考点】等差、等比数列的性质及基本不等式的应用.【方法点晴】本题主要考查了等差数列及等比数列的性质及其有意义、利用基本不等式求解最值问题,属于中档试题,着重考查了转化思想及构造的数学思想方法、分类讨论的思想方法,本题的解答中,由题意,又由可分和两种情况分类讨论,求解取“”号成立的条件是解答本题的关键.17.已知数列{an }的各项均为正数,Sn为其前n项和,对于任意的n∈N*,满足关系式2Sn=3an﹣3.(I)求数列{an}的通项公式;(Ⅱ)设数列{bn }的通项公式是bn=,前n项和为Tn,求证:对于任意的n∈N*总有Tn<1.【答案】(I)an=3n(n∈N*)(Ⅱ)证明见解析【解析】(I)由已知得,故2(Sn ﹣Sn﹣1)=2a n=3a n﹣3a n﹣1.由此可求出an=3n(n∈N*).(Ⅱ),所以Tn =b1+b2+…+bn=1﹣.解:(I)由已知得故2(Sn ﹣Sn﹣1)=2a n=3a n﹣3a n﹣1即an =3an﹣1,n≥2故数列an为等比数列,且q=3又当n=1时,2a1=3a1﹣3,∴a1=3,∴an=3n,n≥2.而a1=3亦适合上式∴an=3n(n∈N*).(Ⅱ)所以Tn =b1+b2+…+bn==1﹣.【考点】数列的应用;数列的求和;数列递推式.18.已知数列、、、、…根据前三项给出的规律,则实数对(2a,2b)可能是()A.(,-)B.(19,﹣3)C.(,)D.(19,3)【答案】D【解析】根据前三项的规律判定数列的通项公式是,所以,解得,所以选D.【考点】数列19.已知各项不为零的数列的前项和为,且满足.(1)求数列的通项公式;(2)设数列满足,求数列的前项和.【答案】(1);(2).【解析】(1)已知与的关系,可令求得,当时,由可得到数列的递推式:,这正好是一个等比数列,易得通项公式;(2)由于,是一个等差数列与一个等比数列相乘所得,其前项和可用错位相减法求得,即写出,两边乘以公比,得,两式相减后借助等比数列前项和公式可求得.试题解析:(1)当时,当时,………①………②① -②得数列是首项为2,公比为2的等比数列(2)两式相减得【考点】已知与关系,求通项公式,等比数列的通项公式,错位相减法.20.等差数列中,,则的值是()A.15B.30C.31D.64【答案】A【解析】由题意,根据等差数列的性质得,所以,故选A.【考点】等差数列的性质.21.已知在等差数列中,.(1)求;(2)令,判断数列是等差数列还是等比数列,并说明理由.【答案】(1);(2)数列是等比数列,理由见解析.【解析】(1)设数列的公差为,根据题设求出,即可求解数列的通项公式.(2)由(1)得,得,所以根据等比数列的定义可判定数列为等比数列.试题解析:(1)设数列的公差是,则,故(2)由(1)可得,所以是一常数,故数列是等比数列【考点】等比数列的定义及等差数列通项公式.22.已知为等差数列,且,则的最大值为()A.8B.10C.18D.36【答案】C【解析】,设等差数列的公差为,则,即的最大值为,故选C.【考点】1.等差数列的性质;2.二次函数.23.已知数列中,由此归纳.【答案】【解析】由,得,即.又,所以,所以数列是首项为1,公比为2的等数列,所以,所以.【考点】1、递推数列;2、等比数列的定义及通项公式.24.等差数列的前项和为,,则的值为()A.B.C.D.【答案】C【解析】因为,所以,,,故选C.【考点】1、等差数列的性质;2、等差数列和的性质.25.设数列满足,且.(1)证明:数列为等比数列;(2)求数列的前项和.【答案】(1)证明见解析;(2).【解析】(1)由,变形为,即可证明;(2)由等比数列的通项公式可得于是,因此,再利用“裂项求和”即可得出.试题解析:(1)证明:因为,所以.又所以数列是公比为3的等比数列.(2)因为数列是首项为,公比为3的等比数列,所以,即,所以,所以,所以.【考点】1、等比数列的证明;2、裂项相消法求数列和.26.已知是奇函数,且当时,有最小值.(1)求的表达式;(2)设数列满足,.令,求证;(3)求数列的通项公式.【答案】(1);(2)详见解析;(3).【解析】(1)若函数是奇函数,所以,经过化简整理为对恒成立. ∴有,化简后的函数再根据基本不等式求最小值,得到的取值,最后得到函数的表达式;(2)根据(1)的结果,化简为①,再求得,再将①代入,可证明;(3)根据(2)的证明,两边取对数,可得,说明数列是等比数列,根据的通项求数列的通项公式.试题解析:(1)∵是奇函数,∴有,即有.整理得对恒成立. ∴有,∴.∴.∵,∴当时,,∴,∴.∴.…………4分(2).∵,∴.(3)∵,∴.取对数得.由得,∴. ∴有为常数.∴数列为等比数列.∵,∴.∴.【考点】1.函数的性质;2.函数与数列的关系;3.数列的递推公式求通项公式.27.已知数列的通项,则()A.0B.C.D.【答案】D【解析】由已知条件可推导出数列{}的通项公式,由此能求出的值故选D【考点】1.数列求和;2.分类讨论思想。
2023-2024学年河南省南阳市高二下册3月月考数学模拟试题第I卷(选择题,共60分)一.选择题(共12小题,满分60分,每小题5分)1.在等比数列{a n}中,若a1=27,,则a3=()A.3或﹣3B.3C.﹣9或9D.92.在等差数列{a n}中,已知a10=13,a3+a4+a9+a16=28,则{a n}的前17项和为()A.166B.172C.168D.1703.若数列{}是等差数列,a1=l,a3=﹣,则a5=()A.﹣B.C.D.﹣4.已知等差数列{a n}的前n项和为S n,且S10=310,S20=930,则S30=()A.1240B.1550C.1860D.21705.在等差数列{a n}中,a1+a3=8,a2a4=40,则公差为()A.1B.2C.3D.46.设等差数列{a n}的前n项和为S n,a1=2,S8≥S7≥S9,则公差d的取值范围是()A.B.C.D.7.已知等比数列{a n}的前n项和为S n,若=,则=()A.B.43C.D.418.已知等差数列{a n}的首项a1=2,公差d=8,在{a n}中每相邻两项之间都插入3个数,使它们和原数列的数一起构成一个新的等差数列{b n},则b2023=()A.4044B.4046C.4048D.40509.等差数列{a n}的前n项和是S n,且满足S5=S10,若S n存在最大值,则下列说法正确的是()A.a1+a16>0B.a2+a15<0C.a1+a14<0D.a2+a14>010.已知等比数列{a n}满足:a2+a4+a6+a8=20,a2⋅a8=8,则的值为()A.20B.10C.5D.11.已知数列{a n}满足a n=2n+kn,若{a n}为递增数列,则k的取值范围是()A.(﹣2,+∞)B.(2,+∞)C.(﹣∞,﹣2)D.(﹣∞,2)12.设等差数列{a n},{b n}的前n项和分别为S n,T n,若,则=()A.B.C.D.第Ⅱ卷(非选择题,共90分)二.填空题(共4小题,满分20分,每小题5分)13.等差数列{a n}的前n项和是S n,若S n=3(n+1)2﹣n﹣a,则实数a=.14.若等比数列{a n}的各项均为正数,且,则lna1+lna2+⋯+lna7=.15.在等比数列{a n}中,a5﹣a3=12,a6﹣a4=24,记数列{a n}的前n项和、前n项积分别为S n,T n,则的最大值是.16.首项为正数,公差不为0的等差数列{a n},其前n项和为S n,现有下列4个命题:①若S8<S9,则S9<S10;②若S11=0,则a2+a10=0;③若S13>0,S14<0,则{S n}中S7最大;④若S2=S10,则S n>0的n的最大值为11.使其中所有真命题的序号是.三.解答题(共6小题,满分70分)17.已知等差数列{a n}满足a4=6,a6=10.(1)求数列{a n}的通项公式;(2)设等比数列{b n}各项均为正数,其前n项和T n,若b3=a3,b5=a9,求T n.18.已知等比数列{a n}的前n项和为S n,a5﹣a1=90,S4=90.(1)求数列{a n}的通项公式;(2)已知数列{b n}中,满足b n=a n+log2a n,求数列{b n}的前n项和T n.19.已知各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(1)求数列{a n}的通项公式;(2)设T n为数列的前n项和,求T n.20.已知数列{a n}中,a2=,a n=a n+1+2a n a n+1.(1)求数列{a n}的通项公式;(2)令{}的前n项和为T n,求证:T n<.21.在等差数列{a n}中,已知公差d=2,a2是a1与a4的等比中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足:,求数列{b n}的通项公式;(Ⅲ)令(n∈N*),求数列{c n}的前n项和T n.22.已知数列{a n}的各项均为正数,其前n项和为S n,且满足a1=1,a n+1=2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足b n=,设数列{b n}的前n项和为T n,若∀n∈N*,不等式T n﹣na<0恒成立,求实数a的取值范围.答案与试题解析一.选择题(共12小题)1.解:因为a3是a1和a5的等比中项,则,解得a3=±3,由等比数列的符号特征知a3=3.故选:B.2.解:在等差数列{a n}中,∵a3+a4+a9+a16=4a8=28,∴a8=7,又a10=13,∴S17=.故选:D.3.解:数列{}是等差数列,设其公差为d,则2d=,∴,可得,即a5=.故选:D.4.解:∵等差数列{a n}的前n项和为S n,∴S10,S20﹣S10,S30﹣S20构成等差数列,∴2(S20﹣S10)=S10+S30﹣S20,即2×(930﹣310)=310+S30﹣930,∴S30=1860.故选:C.5.解:等差数列{a n}中,a1+a3=8,a2a4=40,∴,解得a1=1,d=3.故选:C.6.解:∵{a n}为等差数列,a1=2,∴,∴.故选:A.7.解:设S3=x,则S6=7x,由=,可得q≠1,因为{a n}为等比数列,所以S3,S6﹣S3,S9﹣S6仍成等比数列.因为==6,所以S9﹣S6=36x,所以S9=43x,故=.故选:A.8.解:设数列{b n}的公差为d1,由题意可知,b1=a1,b5=a2,b5﹣b1=a2﹣a1=8=4d1,故d1=2,故b n=2n,则b2023=2023×2=4046,故选:B.9.解:因为等差数列S n存在最大项,故等差数列的公差d<0,又S5=S10,即a6+a7+a8+a9+a10=0,即a8=0,则a1+a16<a1+a15=0,故选项A错误;a2+a15<a1+a15=0,故选项B正确;a1+a14>a1+a15=0,故选项C错误;而a2+a14=a1+a15=0,故选项D错误.故选:B.10.解:在等比数列{a n}中,由等比数列的性质可得:a4⋅a6=a2⋅a8=8.所以.故选:D.11.解:若{a n}为递增数列,则a n+1﹣a n>0,则有2n+1+k(n+1)﹣(2n+kn)=2n+1﹣2n+k=2n+k>0,对于n∈N+恒成立.∴k>﹣2n,对于n∈N+恒成立,∴k>﹣2.故选:A.12.解:根据条件:=.故选:A.二.填空题(共4小题)13.解:因为,当n≥2时,,因为{a n}是等差数列,所以当n=1时,a1=11﹣a也符合上式,故a=3.故3.14.解:∵{a n}是各项均为正数的等比数列,∴a2a6=a42,又a42+a2a6=2e6,∴2a42=2e6,又a4>0,∴a4=e3,∴lna1+lna2+•••+lna7=ln(a1a2•••a7)=lna47=7lne3=21.故21.15.解:等比数列{a n}中,a5﹣a3=12,a6﹣a4=24,所以q==2,a1===1,所以数列{a n}的前n项和为S n==2n﹣1,前n项积为T n=1×2×22×...×2n﹣1=2...+...+(n﹣1)=,所以==,当n=2或n=3时,=3,所以的最大值是23=8.故8.16.解:对于①,S8<S9,则a9>0,无法推得a10是否大于0,即S9<S10无法确定,故①错误;对于②,∵S11=0,∴=,即a2+a10=0,故②正确;对于③,S13>0,S14<0,则,即a7>0,,即a7+a8<0,故a7>0,a8<0,公差d<0,首项为正数,故{S n}中S7最大,故③正确;对于④,若S2=S10,则a3+a4+a5+a6+a7+a8+a9+a10=0,即4(a3+a10)=0,故a3+a10=2a1+11d=0,即,∵a1>0,∴d<0,∴==,令S n>0,则0<n<12,n∈N*,故S n>0的n的最大值为11,故④正确.故②③④.三.解答题(共6小题)17.解:(1)设等差数列{a n}的公差为d,∵a4=6,a6=10,∴,解得,故数列{a n}的通项公式a n=a1+(n﹣1)d=2n﹣2;(2)设各项均为正数的等比数列{b n}的公比为q(q>0),∵a n=2n﹣2,则a3=4,a9=16,∵a3=b3,a9=b5,∴b3=4,b5=16,即,解得2或﹣2(舍去),∴.18.解:(1)记等比数列{a n}的公比为q,由a5﹣a1≠0可知q≠1,,,解得a1=6,q=2,所以数列{a n}的通项公式为.(2)∵,∴=3×++n•log23=3×2n+1++n•log23﹣6.19.解:(1)设公差为d,则∵S4=14,且a1,a3,a7成等比数列∴4a1+6d=14,(a1+2d)2=a1(a1+6d)∵d≠0,∴d=1,a1=2,∴a n=n+1(2)=∴T n=﹣+﹣+…+==.20.解:(1)由a2=,a n=a n+1+2a n a n+1,可得a1=a2+2a1a2=+a1,解得a1=1,又对a n=a n+1+2a n a n+1两边取倒数,可得﹣=2,则{}是首项为1,公差为2的等差数列,可得=1+2(n﹣1)=2n﹣1,所以a n=;(2)证明:由(1)可得==(﹣),所以T n=(1﹣+﹣+﹣......+﹣+﹣)=[﹣],因为n∈N*,所以>0,则T n<×=.21.解:(Ⅰ)等差数列{a n}的公差d=2,a2是a1与a4的等比中项,可得a22=a1a4,即(a1+2)2=a1(a1+6),解得a1=2,则a n=a1+(n﹣1)d=2+2(n﹣1)=2n;(Ⅱ)数列{b n}满足:,可得a1=,即b1=8;n≥2时,a n﹣1=++…+,与,相减可得2=,即有b n=2(3n+1),上式对n=1也成立,可得b n=2(3n+1),n∈N*;(Ⅲ)=n(3n+1),则前n项和T n=(1•3+2•32+…+n•3n)+(1+2+…+n),设S n=1•3+2•32+…+n•3n,3S n=1•32+2•33+…+n•3n+1,相减可得﹣2S n=3+32+…+3n﹣n•3n+1=﹣n•3n+1,化简可得S n=,则T n=+n(n+1).22.解:(Ⅰ)由得,故,∵an>0,∴S n>0,∴=+1,(2分)∴数列是首项为,公差为1的等差数列.(3分)∴,∴,…(4分)当n≥2时,,a1=1,…(5分)又a1=1适合上式,∴a n=2n﹣1.…(6分)(Ⅱ)将a n=2n﹣1代入,…(7分)∴…(9分)∵T n﹣na<0,∴,∵n∈N+,∴…(10分)∴,∵2n+1≥3,,,∴.(12分)。
安徽省A10联盟2023-2024学年高二下学期6月月考数学试题一、单选题1.已知321()3f x x x ax =++,则若(1)6f '=,则=a ( )A .2B .3C .4D .52.已知数列{}n a 等比数列,且12341,64a a a a ==,则25log a 的值为( ) A .1B .2C .3D .43.如图,可导函数()y f x =在点()()00,P x f x 处的切线为:()l y g x =,设()()()h x f x g x =-,则下列说法正确的是( )A .R ()>0x h x ∃∈,B .R ()<0x h x '∀∈,C .()000,h x x x ='=是()h x 的极大值点D .()000,h x x x ='=是()h x 的极小值点4.某公司收集了某商品销售收入y (万元)与相应的广告支出x (万元)共10组数据(),i i x y (1,2,3,,10i =L ),绘制出如下散点图,并利用线性回归模型进行拟合.若将图中10个点中去掉A 点后再重新进行线性回归分析,则下列说法正确的是( ) A .决定系数2R 变小 B .残差平方和变小C .相关系数r 的值变小D .解释变量x 与预报变量y 相关性变弱5.已知()()()111,,.324P A P B A P B A ===∣∣则()P B =( )A .712B .724C .512D .5246.有3对双胞胎站成一排拍照,恰有一对双胞胎相邻的站法有( ) A .144种B .240种C .288种D .336种7.已知正项数列{}n a 的前n 项和为1,1n S a =,若13n n n n S a S a ++=,且13242111n n M a a a a a a ++++<L 恒成立,则实数M 的最小值为( ) A .13B .49C .43D .38.已知正实数x ,y 满足n ln e l x y x y y =+,则ln 1ln x y x+-的最大值为( ) A .0B .1C .2D .e二、多选题9.某研究机构为了探究过量饮酒与患疾病A 真否有关,调查了400人,得到如图所示的22⨯列联表,其中12b a =,则( )参考公式与临界值表:()()()()22()n ad bc a b c d a c b d χ-=++++ A .任意一人不患疾病A 的概率为0.9 B .任意一人不过量饮酒的概率为38C .任意一人在不过量饮酒的条件下不患疾病A 的概率为2425D .依据小概率值0.001α=的独立性检验,认为过量饮酒与患疾病A 有关10.古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状,把数分成许多类,如图中第一行图形中黑色小点个数:1,3,6,10,…称为三角形数,第二行图形中黑色小点个数:1,4,9,16,…称为正方形数,记三角形数构成数列{}n a ,正方形数构成数列{}n b ,则下列说法正确的是( )A .12311111n n a a a a n ++++=+L B .1225既是三角形数,又是正方形数 C .12311113320n b b b b ++++<L D .*N ,m m ∀∈≥2,总存在*,N p q ∈,使得m p q b a a =+成立11.将1,2,3,4,5,6,7这七个数随机地排成一个数列,记第i 项为()1,2,,7i a i =L ,则下列说法正确的是( )A .若41235677,a a a a a a a =++<++,则这样的数列共有360个B .若所有的奇数不相邻,所有的偶数也不相邻,则这样的数列共有288个C .若该数列恰好先减后增,则这样的数列共有50个D .若123345567,a a a a a a a a a <<,>><<,则这样的数列共有71个三、填空题12.已知随机变量()22,X N σ~,且()()1P X a P X ≤=≥,则6x ⎛⎝的展开式中常数项为.13.小张一次买了三串冰糖葫芦,其中一串有两颗冰糖葫芦,一串有三颗冰糖葫芦,一串有五颗冰糖葫芦.若小张每次随机从其中一串中吃一颗,每一串只能从上往下吃,那么不同的吃完的顺序有种.(结果用数字作答)14.已知关于x 的不等式()()2ln 340x kx x k x ⎡⎤--++≤⎣⎦对任意()0,x ∈+∞均成立,则实数k 的取值范围为.四、解答题15.我国为全面建设社会主义现代化国家,制定了从2021年到2025年的“十四五”规划、某企业为响应国家号召,汇聚科研力量,加强科技创新,准备增加研发资金.该企业为了了解研发资金的投入额x (单位:百万元)对年收入的附加额y (单位:百万元)的影响,对往年研发资金投入额i x 和年收入的附加额i y 进行研究,得到相关数据如下:(1)求证:()()11i i i i i i x x y y x y nx y ==--=-∑∑,()22211i i i i x xx nx ==-=-∑∑;(2)求年收入的附加额y 与投入额x 的经验回归方程.若投入额为13百万元,估计年收入的附加额.参考数据:81334.1i i i x y ==∑,8148.6i i y ==∑,821356i i x ==∑.参考公式:在经验回归方程$$y bxa =+中,()()()121niii nii x x y y b x x ==--=-∑∑$,$ay bx =-. 16.已知数列{}n a 满足1220n n a a +--=,且13a =. (1)求证:{}2n a -是等比数列;(2)设n n b na =,求数列{}n b 的前n 项和n S .17.某大学为了研究某个生物成立了甲、乙两个小组,两个小组分别独立开展对该生物离开恒温箱的成活情况进行研究,每次试验一个生物,甲组能使生物成活的概率为23,乙组能使生物成活的概率为12.假定试验后生物成活,则称该次试验成功,如果生物不成活,则称该次试验失败.(1)甲组做了4次试验,求至少1次试验成功的概率;(2)若甲、乙两小组各进行2次试验,设试验成功的总次数为X ,求X 的分布列及数学期望.18.已知函数()()e xf x ax a =-∈R .(1)求函数()f x 的极值;(2)当0a >时,讨论函数()f x 零点的个数. 19.已知函数()()ln R 22a af x x a x =-+∈ (1)若()0f x ≥恒成立,求a 的值; (2)求证:()*111sin sin sin ln 2N 122n n n n+++<∈++L .。
高二数学数列试题答案及解析1.等比数列的前项和为,且成等差数列.若,则=()A.7B.8C.15D.16【答案】C【解析】∵成等差数列,∴,∴,即,∴,∴.【考点】等差数列的性质、等比数列的前n项和.2.将一个骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为.【答案】【解析】一个骰子连续抛掷三次它落地时向上的点数情况共有种, 若落地时向上的点数依次成等差数列时情况有: 可能为连续的三个数组成的递增数列,还可能不连续的三个数组成的递增数列, .同理可得以上两种情况的递减数列,另外还有可能是三个数相同的常数列,所以共有种情况,所以所求概率为.【考点】1排列组合;2概率.3.在等比数列中,对于任意都有,则.【答案】【解析】令,得;由等比数列的性质,得.【考点】1.赋值法;2.等比数列的性质.4.已知数列满足,则= ()A.B.C.D.【答案】【解析】∵,∴,∴,所以数列的奇数项与偶数项分别成等比数列,公比为2,又,故,所以.【考点】递推公式,等比数列,分组求和,等比数列的前项和5.已知为等比数列,,,则()A.B.C.D.【答案】D【解析】因为为等比数列,所以,或.设公比为,当时,,当时,综上可得.故D正确.【考点】1等比数列的通项公式;2等比数列的性质.6.已知数列中,函数.(1)若正项数列满足,试求出,,,由此归纳出通项,并加以证明;,且,求证:(2)若正项数列满足(n∈N*),数列的前项和为Tn.【答案】(1)证明详见解析;(2)证明详见解析.【解析】本题主要考查数列的通项及前n项和等基础知识,考查学生的运算求解能力,注意解题方法的积累,属于中档题.第一问,通过对两边同时取倒数、变形可知数列是以1为首项、为公比的等比数列,进而计算可得结论;第二问,通过(n∈N*)变形可知,进而累乘得:,进而,通过裂项、放缩可知,并项相加即得结论.试题解析:(1)依题意,,,,由此归纳得出:;证明如下:∵,∴,∴,∴数列是以1为首项、为公比的等比数列,∴,∴;(2)∵(n∈N*),∴,∴,累乘得:,∴,即,∴,∵,∴.【考点】数列的求和;归纳推理.7.设数列的前项和为,已知(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,数列的前项和为.求【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)由可得,,而,则(Ⅱ)由及可得利用错位相减即可求出结果,即可求出结果.试题解析:(Ⅰ)由可得,而,则(Ⅱ)由及可得..【考点】1.数列的递推公式;2.错位相减法求和.【方法点睛】本题主要考查了利用数列递推公式求出数列的通项公式,在解决此类问题时,一般利用来求数列的通项公式;在数列求和时如果通项公式可换成,其中数列分别是等差数列和等比数列,一般采用错位相减法进行求和.8.(本小题满分12分)已知正项数列的首项为,前项和为满足.(1)求证:为等差数列,并求数列的通项公式;(2)记数列的前项和为,若对任意的,不等式恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)当时,由代入已知式分解因式可得,由此可证数列是等差数列,并求出数列的通项公式,再由即可求出数列数列的通项公式;(2)由,即用裂项相消法求出,又可得,解之即可.试题解析:(1)当时,,即,数列是首项为,公差为的等差数列,故,故,当时也成立,(6分)(2), (8分)(10分)又,,解得或,即所求实数的取值范围为(12分)【考点】1.与关系;2.等差数列的定义与性质;3.裂项相消法求和;4.数列与不等式.【名师】本题主要考查数列中与关系、等差数列的定义与性质、裂项相消法求和以及数列与不等式的综合应用等知识.解题时首先利用与关系进行转化,得到数列前后项之间的关系,从而讲明数列是等差数列,进一步求出数列的退项公式;由于数列是等差数列,所以在求数列的前项和为时,可用裂项相消法求解.9.(本小题满分12分)等差数列的前n项和记为,已知,求n.【答案】【解析】本题主要考查等差数列的通项公式及前n项和公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.利用等差数列的通项公式将和展开,列出方程组,解出和d的值,即得到等差数列的通项公式,由,利用等差数列的前n项和得,解方程求得项数n的值.试题解析:由,得方程组,解得,所以.,得,解得或(舍去).【考点】等差数列的通项公式及前n项和公式.10.数列1,,,,,,,,,……的前100项之和为()A.10B.C.11D.【答案】A【解析】观察数列特点可知分母为1的有一项,分母为3的有三项,分母为5的有五项,以此类推分母为的有项,所以,即分母为19的分数写完后刚好100项,因此前100项求和时将分母相同的分组求和可得到和为10【考点】数列求和11.在等比数列{an }中,如果a1+a2=40,a3+a4=60,那么a5+a6=()A.80B.90C.95D.100【答案】B【解析】等比数列中【考点】等比数列性质12.(本题满分13分)设数列和满足:,(1)求数列和的通项公式;(2)当时,不等式恒成立,试求常数的取值范围.【答案】(1);(2).【解析】(1)由已知可得,又因为,所以为首项为,公比为的等比数列,从而可得的通项公式;由可得当时,两式相减得,,当时也满足,.记,又因为,所以,再将其左右两边同时乘以得,然后利用错位相减得,,可化简得即,,.试题解析:(1),为首项为,公比为的等比数列,又①令令②①-②得,,当时,满足此式。
2016学年度第一学期高二数学阶段考
一、填空题
1.已知数列}{n a 为等差数列,,4010=a 则.______19=S
2.已知数列}{n a 为等比数列,18,29119-=-=a a ,则.______55=a
3.已知数列}{n a 为等差数列,999,54,201===n n S a a ,则公差.______=d
4.已知等比数列{}n c 中,21=c ,公比3
3=
q ,则=+++2
2221n c c c . 5.设等差数列}{n a 项数是偶数,44,6688428731=+++=+++a a a a a a ,则公差d =___ 6.已知数列}{n a 为等比数列,前n 项和n S ,,50,102010==S S 则._______30=S
7.设n
n n n f 21111)(+
+++= ,则=-+)()1(n f n f 。
8.等差数列{}n a 中,125a =,917S S =,此数列前 项和最大,最大值是 。
9.若数列}{n a 是由)(2,111N n n a a a n n ∈+==+确定,则n a 等于_____________. 10.已知{}n a 和{}n b 均是等差数列,其前n 项和为n S 和n T , 且
n n T S =312++n n ,则______9
9=b a 11.已知数列}{n a 和}{n b :n n a 2=,23+=n b n ,将这两个数列的相同项按从小到大的顺序排列,组
成新数列}{n c ,则它的通项为=n c ___________。
12. 求和:._____________________2)12(252321321=⋅-++⋅+⋅+⋅n
n
二选择题
13.在等比数列{}n a 中,3a 和5a 是二次方程2
50x kx ++=的两个根,则246a a a 的值为 ( )
(A)25
(B)
(C)-
(D)±14.用数学归纳法证明),1,0(1
1
11223
2
N n a a a a a a a n n
∈≠--=
++++++ 时,第一步需要证明 1=n 时等式成立,此时左边的式子应为 ( )
(A )1 (B )a +1 (C )21a a ++ (D )4321a a a a ++++
15.用数学归纳法证明()
123
11221222222+=++++++n n n ,第二步从k 到1+k 等式左边应添加的项是
( )
(A )()2
21
+k (B )12
+k
(C )()221k k ++ (D )()22
21k k ++
16.等差数列{}n a 中,100a <,110a >且1110||a a >,n S 为其前n 项和,则 ( )
(A )12310,,,,S S S S 都小于0,1112,,S S 都大于0;
(B )12319,,,,S S S S 都小于0,2021,,S S 都大于0; (C )1235,,,,S S S S 都小于0,67,,S S 都大于0;
(D ) 12320,,,,S S S S 都小于0,2122,,S S 都大于0。
三、解答题
17. 已知等比数列{}n a 中,12a =,416a =
(1)求数列{}n a 的通项公式和前n 项和n S ;
(2)若3a ,5a 分别为等差数列{}n b 的第3项和第5项,求数列{}n b 的通项公式和前n 项和n T ;
18.已知数列{n a }中,)2(1
2,41
111≥+==
--n a a a a n n n , (1)求该数列的前四项;(2)猜想数列}{n a 的通项公式并用数学归纳法证明。
19.
19.数列{}n a 中,,81=a ,且满足321+=+n n a a (,*∈N n ) (1)求数列{}n a 的通项公式 (2)求数列{}n a 的前n 项和
20.已知二次函数()x x x f 232
-=,数列{}n a 的前n 项和为n S ,点(,)()N n n S n *∈均在函数()y f x =
的图象上.
(1) 求数列{}n a 的通项公式; (2) 设13n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20
n m T <对所有N n *
∈都成立的最小正整数m .
21、数列{}n a 中,n S 是它的前n 项和,且241+=+n n a S ,11=a (1)设n n n a a b 21-=+,求证:{}n b 是等比数列 (2)设n
n
n a c 2=
,求证:数列{}n c 是等差数列 (3)求数列{}n a 的通项公式及n S 的公式。