曝气原理与设备共41页文档
- 格式:ppt
- 大小:3.54 MB
- 文档页数:41
曝气原理及装置
曝气是指将空气通过气体液体接触面上方进入液体中,使氧气以分子扩散和气泡扩散等方式溶解到液体中,以增加液体中的溶解氧含量的过程。
曝气装置通常由以下几个部分组成:
1. 曝气器:曝气器是曝气装置的核心部分,其主要作用是将空气进一步细分为小气泡,增加气泡与液体接触面积,以促进氧气的溶解。
常见的曝气器有喷射曝气器、旋流曝气器等。
2. 气源:气源是提供曝气器所需气体的设备,常见的气源包括压缩空气机、空气泵等。
3. 气液分配系统:气液分配系统用于将气体均匀地分配到曝气器上。
常见的气液分配系统包括气体分配管、气体调节阀等。
4. 气体输送管道:气体输送管道用于将气体从气源输送到曝气器。
通常包括气体输送管、接头等。
5. 控制系统:控制系统用于控制曝气装置的运行,常见的控制系统包括气体压力控制器、液位控制器等。
曝气装置的工作原理是通过曝气器将气体细分成小气泡,通过气泡的扩散和液体的搅拌作用,增加氧气与液体的接触面积,从而促进氧气的溶解。
这样可以提高液体中的溶解氧含量,满足生物处理等过程中的氧气需求。
曝气原理和曝气设备曝气是水处理中常用的一种方法,通过将空气通入水体中,促进气体和液体之间的传质及气体溶解,从而提高水质。
本文将介绍曝气的原理和曝气设备。
曝气的原理曝气是一种通过通入空气来提供氧气的方法,以促进水中溶解氧(DO)的增加。
曝气将空气通过曝气设备在水体中进行通气,使空气中的氧气溶解在水中,从而提高水中的溶氧量。
曝气的过程中,由于气泡的形成和运动,气液界面的扩散面积增加,氧气能够更快地传递到水体中,从而提高水体的溶氧量。
曝气设备曝气设备是实现曝气的关键设备,根据不同的工作原理和应用场景,有多种不同类型的曝气设备。
1.气水混合曝气器:气水混合曝气器是一种常见的曝气设备,它通过将水和气体同时进入曝气装置,通过高速旋转进气装置产生水气混合物,在气液界面形成气泡并向上浮升,从而将溶解氧带入水中。
2.压力式曝气装置:压力式曝气装置是一种通过压力差促使氧气溶解到水中的曝气设备。
它通常由压缩空气系统和带有多孔板或喷嘴的曝气装置组成。
压缩空气通过装置产生气泡,气泡进一步分散为微小气泡,提高气液界面的扩散面积。
3.曝气槽:曝气槽是一种通过水位差和重力作用来实现曝气的设备。
水从曝气槽的上层流入下层,通过与气体的接触,气体溶解到水中。
曝气槽通常由多个层次的装置组成,以增加气液接触的时间和表面积。
曝气设备的选择应根据具体的应用场景和水质要求进行选择。
例如,在废水处理中,选择适当的曝气设备可以提高废水的生物处理效率和COD (化学需氧量)的去除率。
而在饮用水处理中,曝气可以通过增加溶解氧量来提高水体的口感和品质。
总结曝气是一种重要的水处理方法,通过将空气通入水体中,促进气体和液体之间的传质及气体溶解,从而提高水质。
曝气设备是实现曝气的关键设备,根据不同的工作原理和应用场景可以选择不同类型的曝气设备。
选择合适的曝气设备能够提高水体的溶氧量,提高水质。
在实际应用中,需要根据具体的需求和条件进行合理选择和运行。
《环保设备》曝气原理与设备环保设备是指用于减少或消除工业、建筑或其他活动产生的污染物的设备。
其中,曝气设备是一种常见的环保设备,其原理是通过将空气注入废水中,使废水中的污染物与氧气发生反应,从而有效地降解污染物。
曝气设备一般由曝气器、气源设备、气液分离器以及相关管道和控制系统组成。
曝气原理的核心是供氧,即将空气中的氧气导入废水中。
氧气是维持生物活性的关键因素之一,可以促进废水中的微生物进行氧化分解过程。
废水中的有机物通过氧化作用转化为无机物,从而减少有机物的含量,达到净化水质的目的。
曝气设备中的曝气器通过气泡或喷射气体的方式将氧气导入废水中。
气泡曝气器通过在水中产生微小气泡,使气泡与废水充分接触,促进氧气的溶解。
喷射气体曝气器通过将气体喷射入水中,产生冲刷和搅拌作用,使气体更好地与废水混合。
这两种曝气方式都可以提供充足的氧气,满足废水中微生物的需氧要求。
气源设备是曝气设备中供气的重要组成部分。
一般使用的气源设备包括空气压缩机和氧气发生器。
空气压缩机通过压缩空气将氧气输送到曝气设备中。
氧气发生器则通过物理、化学或电化学的方式分离空气中的氧气,产生高纯度的氧气供曝气设备使用。
气液分离器是曝气设备中的一个重要组件,用于将水中的气体与废水分离。
这可以通过设计合理的分离器结构和使用适当的材料来实现。
曝气设备的控制系统主要用于控制曝气过程中氧气的供应量和曝气器的运行状态。
通过合理的控制,可以根据废水的质量和流量调整曝气设备的工作模式,以达到最佳的氧化效果。
总的来说,曝气设备是一种重要的环保设备,通过提供充足的氧气,促进废水中污染物的降解和净化。
随着环保意识的提高和环境要求的增加,曝气设备的研发和应用也在不断进步,为改善环境质量和节约资源发挥着重要的作用。
曝气的原理、方法与设备一、曝气的原理与理论基础在活性污泥法中,曝气的作用主要有:① 充氧:向活性污泥中的微生物提供溶解氧,满足其在生长和代谢过程中所需的氧量。
② 搅动混合:使活性污泥在曝气池内处于悬浮状态,与废水充分接触。
1、Fick 定律通过曝气,空气中的氧,从气相传递到混合液的液相中,这实际上是一个物质扩散过程,即气相中的氧通过气液界面扩散到液相主体中。
所以,它应该服从扩散过程的基本定律——Fick 定律。
Fick 定律认为:扩散过程的推动力是物质在界面两侧的浓度差,物质的分子会从浓度高的一侧向浓度低的一侧扩散、转移。
即dydCD v Ld-= (1)式中: d v ——物质的扩散速率,即在单位时间内单位断面上通过的物质数;L D ——扩散系数,表示物质在某种介质中的扩散能力,主要取决于扩散物质和介质的特性及温度;C ——物质浓度; y ——扩散过程的长度dy dC ——浓度梯度,即单位长度内的浓度变化值。
式(1)表明,物质的扩散速率与浓度梯度呈正比关系。
如果以M 表示在单位时间t 内通过界面扩散的物质数量,以A 表示界面面积,则有:A dtdM v d /)(= (2)代入(1)式,得:dy dCA D dt dM L -=)((3)2、双膜理论:对于气体分子通过气液界面的传递理论,在废水生物处理界被普遍接受的是Lewis & Whitman 于1923年建立的“双膜理论”。
双膜理论认为:1) 当气、液面相接触并作相对运动时,接触界面的两侧,存在着气体与液体的边界层,即气膜和液膜;2) 气膜和液膜内相对运动的速度属于层流,而在其外的两相体系中则均为紊流;3) 氧的转移是通过气、液膜进行的分子扩散和在膜外的对流扩散完成; 4) 对于难溶于水的氧来说,分子扩散的阻力大于对流扩散,传质的阻力主要集中在液膜上;5) 在气膜中存在着氧分压梯度,而液膜中同样也存在着氧的浓度梯度,由此形成了氧转移的推动力;6) 实际上,在气膜中,氧分子的传递动力很小,即气相主体与界面之间的氧分压差值i gP P -很低,一般可认为i g P P ≈。
第七讲曝气原理和曝气设备李春杰曝气原理曝气系统的计算方法曝气设备曝气池双膜理论浅层理论表面更新理论目前工程和理论上应用较多的为双膜理论。
目前气液传质理论氧转移的双膜理论边界层紊流紊流层流层流y g C LC i P i P g液膜气膜气相主体液相主体y l对流扩散对流扩散分子扩散P g ≈P i=Cs双膜理论的基点在气液界面存在着处于层流状态的气膜和液膜,在其外侧则分别为处于紊流状态的气相主体和液相主体。
气体分子以分子扩散方式从气相主体通过气膜和液膜传递到液相主体。
由于气液两相主体均处于紊流状态,其中物质浓度基本上是均匀的,不存在浓度差,也不存在传质阻力,气体分子从气相主体传递到液相主体,阻力仅存在于气、液层流膜中。
在气膜中存在氧的分压梯度,在液膜中存在氧的浓度梯度,它们是氧转移的推动力。
氧难溶于水,因此氧转移的决定性阻力又集中在液膜上,因此氧分子通过液膜是氧转移过程的控制步骤。
氧转移过程中的传质推动力就可以认为主要是界面上的饱和溶解氧浓度值(Cs)与液相主体中的溶解氧浓度值(C L)之差。
Cs:与气相主体中氧分压相当的饱和溶解氧浓度;CL:液相主体中所要求的溶解氧浓度Fick 定律Fick定律认为:扩散过程的推动力是物质在界面两侧的浓度差,物质的分子会从浓度高的一侧向浓度低的一侧扩散、转移。
式中:V d ——物质的扩散速率,单位时间、单位断面上通过的物质数量D L ——扩散系数dXdC D v L d −=dXdC 为浓度梯度,即单位长度内浓度的变化值。
双膜理论和氧总转移系数以M表示在单位时间t内,通过界面扩散的物质数量;以A表示界面面积,则A dt dM v d /=因此A dt dM dX dC D L =−dX dC A D dt dM L ⋅−=设液膜厚度为Xf(该值极低),则在液膜溶解氧浓度梯度为fs X C C dX dC −=−代入得fs L X C C A D dt dM −⋅=()C C V A K V X C C A D dt dC V dt dM s L f s L −⋅=⋅−⋅==/进一步可得L K 为液膜中氧分子传质系数,m/h则前式可改写成()C C V A K dtdC s L −=由于A值难测,通常VA K L 项用La K 因此()C C K dtdC s La −=总的传质系数(h -1)讨论(1)提高K:加强液相主体紊流,加速气液界面更新,增大气液接触面积、降低液膜厚度;:提高气相中氧分压,如纯氧曝气、(2)提高C深井曝气。
河道曝气技术原理及设备选型目录1河道曝气技术简介 (3)2河道曝气原理 (4)3需氧量的计算 (5)3.1组合推流式反应器模型 (5)3.2箱式模型 (6)3.3好氧特性曲线法 (7)4.4曝气设备的选择 (7)4.1曝气设备充氧量的计算 (7)4.2曝气设备的选型 (8)4.2.1固定式充氧站 (8)4.2.2移动式充氧平台 (9)河道曝气技术原理及设备选型1河道曝气技术简介溶解氧在河水自净过程中起着非常重要的作用,水体的自净能力直接与复氧能力有关。
河水中的溶解氧主要来源于大气复氧和水生植物的光合作用,水体溶解氧主要消耗在有机物的好氧生化降解、氨氮的硝化、底泥的耗氧、还原物质的氧化、水生生物和植物生长等化学、生化及生物合成等过程中。
污染河道就是由于溶解氧的总消耗量大于复氧量,水体的溶解氧大幅下降,甚至被消耗殆尽,河流水体处于无氧状态,有机物的分解就从好氧分解转为厌氧分解,水体生态系统遭到严重破坏,导致污染水体黑臭。
河道曝气技术就是根据河流受到污染后缺氧的特点,人工向水体中充入空气或氧气,加速水体复氧过程,以提高水体的溶解氧水平,恢复和增强水体中好氧微生物的活力,使水体中的污染物质得以净化,从而改善河流的水质。
曝气复氧对消除水体黑臭的良好效果已被实验室试验与河流曝气所证实。
其机理是进入水体的溶解氧与黑臭物质(如H2S,FeS等还原性物质)之间发生了氧化还原反应。
相关研究结果表明即使严重黑臭的水体,在有氧条件下20h后臭味基本消除,水体颜色明显改观,COD、BOD5都有大幅度(30%~50%)降低。
通过复氧,可以使天然水体逐步恢复自然的生态功能,达到最终消除黑臭污染的目的。
河道曝气复氧技术作为一种投资少、见效快的河流污染治理技术已经在很多国家得到应用。
20世纪五六十年代起,英、德、美等发达国家就开始利用河道曝气技术治理河道污染。
英国的Thames,德国的Ruhr、Enshcer与Saar河,澳大利亚的Swan河、Canning河和美国的Homewood等河流就先后利用河道曝气技术明显改善了河流水质.河道曝气技术在国外应用已非常成熟。