人教A版高中数学必修五正弦定理教案
- 格式:doc
- 大小:251.10 KB
- 文档页数:4
《正弦定理》教学设计一、教学目标分析1、知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理解决一些简单的三角形度量问题。
2、过程与方法:让学生从实际问题出发,结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;让学生在应用定理解决问题的过程中更深入地理解定理及其作用。
3、情感、态度与价值观:通过正弦定理的发现与证明过程体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。
二、教学重点、难点分析重点:通过对任意三角形边长和角度关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。
难点:正弦定理的发现并证明过程以及已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教学基本流程1、引出问题:在三角形中,已知两角以及一边,如何求出另外一边;2、结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;3、分析正弦定理的特征及利用正弦定理可解的三角形的类型;4、应用正弦定理解三角形。
五、教学反思1、新课标倡导积极主动、勇于探索的学习方式,使学生在自主探究的过程中提高数学思维能力。
本设计创设了一系列数学问题情境来引导学生质疑、思考,让学生在“疑问”、“好奇”、“解难”中探究学习,激发了学生的学习兴趣,调动了学生自主学习的积极性,从而有效地培养学生了的数学创新思维。
2、新课标强调数学教学要注重“过程”,要使学生学习数学的过程成为在教师的引导下∠进行“再创造”过程。
本设计展示了一个先从特殊的直角三角形中正弦的定义出发探索A ∠的正弦的关系从而发现正弦定理,再将一般的三角形与直角三角形联系起来的正弦与B(在一般的三角形中构造直角三角形)进而在一般的三角形发现正弦定理的过程,使学生不但体会到探索新知的方法而且体验到了发现的乐趣,起到了良好的教学效果。
1.1.1正弦定理(一)教学目标通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
(二)教学重、难点重点:正弦定理的探索和证明及其基本应用。
难点:已知两边和其中一边的对角解三角形时判断解的个数。
(三)学法:引导学生首先从直角三角形中揭示边角关系:sin sin sin abcABC==,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。
(四)教学过程[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c==, 则sin sin sin a b c c A B C=== 从而在直角三角形ABC 中,sin sin sin a b cA B C==(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
(证法二):过点A 作j AC ⊥u r u u u r,由向量的加法可得 AB AC CB =+u u ru u u r u u r则 ()j AB j AC CB ⋅=⋅+u r u u r u r u u u r u u r∴j AB j AC j CB ⋅=⋅+⋅u r u u r u r u u u r u r u u r()()00cos 900cos 90-=+-r u u u r r u u u r j AB A j CB C∴sin sin =c A a C ,即sin sin =a c A C同理,过点C 作⊥r u u u r j BC ,可得 sin sin =b cB C从而sin sin abAB=sin cC=类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立。
高中数学正弦定理教案5篇高中数学正弦定理教案篇1一、教材分析《正弦定理》是人教版教材必修五第一章《解三角形》的第一节内容,也是三角形理论中的一个重要内容,与初中学习的三角形的边和角的基本关系有密切的联系。
在此之前,学生已经学习过了正弦函数和余弦函数,知识储备已足够。
它是后续课程中解三角形的理论依据,也是解决实际生活中许多测量问题的工具。
因此熟练掌握正弦定理能为接下来学习解三角形打下坚实基础,并能在实际应用中灵活变通。
二、教学目标根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。
能力目标:探索正弦定理的证明过程,用归纳法得出结论,并能掌握多种证明方法。
情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。
三、教学重难点教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
四、教法分析依据本节课内容的特点,学生的认识规律,本节知识遵循以教师为主导,以学生为主体的指导思想,采用与学生共同探索的教学方法,命题教学的发生型模式,以问题实际为参照对象,激发学生学习数学的好奇心和求知欲,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化,并且运用例题和习题来强化内容的掌握,突破重难点。
即指导学生掌握“观察——猜想——证明——应用”这一思维方法。
学生采用自主式、合作式、探讨式的学习方法,这样能使学生积极参与数学学习活动,培养学生的合作意识和探究精神。
五、教学过程本节知识教学采用发生型模式:1、问题情境有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。
已知一座山A到山脚C的上面斜距离是1500米,在山脚测得两座山顶之间的夹角是450,在另一座山顶B测得山脚与A山顶之间的夹角是300。
正弦定理教案优秀5篇《正弦定理、余弦定理》教学设计篇一一、教学内容:本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证实,最后进行简单的应用。
二、教材分析:1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书。
数学必修5》(A 版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证实,感受“类比--猜想--证实”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。
2、教学重点和难点:重点是正弦定理的发现和证实;难点是三角形外接圆法证实。
三、教学目标:1、知识目标:把握正弦定理,理解证实过程。
2、能力目标:(1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。
(2)增强学生的协作能力和数学交流能力。
(3)发展学生的创新意识和创新能力。
3、情感态度与价值观:(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的爱好。
(2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。
四、教学设想:本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己→←所学知识应用于对任意三角形性质的深入探讨。
让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。
正弦定理一、教学内容的分析“正弦定理”是人教A版必修五第一章第一节的主要内容。
其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力.二、学生学习情况分析在初中学生已经学习过关于任意三角形中大边对大角、小边对小角的边角关系,本节内容是处理任意三角形中的边角关系,与初中学习的三角形的边与角的基本关系有着密切的联系;这里的一个重要问题是:是否能得到这个边、角关系准确量化的表示.也就是如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构.三、设计思想培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。
这就要求教师在教学中引导学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得知识。
所以本节课的教学将以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
四、三维目标1、知识与技能通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及证明方法,并能解决一些简单的三角形问题。
2、过程与方法通过对特殊三角形边长和角度关系的探索,发现正弦定理,初步学会用特殊到一般的思想方法发现数学规律。
3、情感态度与价值观通过生活实例的探究引出正弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值。
五、教学重难点重点:正弦定理的证明及其基本运用.难点:(1)正弦定理的探索和证明;(2)已知两边和其中一边的对角解三角形时,判断解的个a cb O B C A 数.六、教学过程设计(一)新课导入如图,河流两岸有A 、B 两村庄,有人说利用测角器与直尺,不过河也可以得到A 、B 两地的距离(假设现在的位置是A 点),请同学们讨论设计一个方案解决这个问题。
正弦定理姓名: 学校: 年级:【知识要点】1. 教学正弦定理的推导:①特殊情况:直角三角形中的正弦定理: sin A =c a sin B =c bsin C =1 即c =sin sin sin a b c A B C==. ② 能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有sin sin CD a B b A ==,则sin sin a b A B =. 同理,sin sin a c A C =(思考如何作高?),从而sin sin sin a b cA B C ==. ③*其它证法:证明一:(等积法)在任意斜△ABC 当中 S △ABC =111sin sin sin 222ab C ac B bc A ==. 两边同除以12abc 即得:sin a A =sin b B =sin cC .证明二:(外接圆法)如图所示,∠A =∠D ,∴2sin sin a aCD R A D===,同理sin b B =2R ,sin c C=2R . 证明三:(向量法)过A 作单位向量j 垂直于AC 由 AC +CB =AB两边同乘以单位向量j 得 j •(AC +CB )=j •AB 则j •AC +j •CB =j •AB∴|j |•|AC |cos90︒+|j |•|CB |cos(90︒-C)=| j |•|AB |cos(90︒-A)∴A c C a sin sin = ∴A a sin =Ccsin 同理,若过C 作j 垂直于CB 得:C c sin =B b sin ∴A a sin =B b sin =Ccsin 2.正弦定理的应用 从理论上正弦定理可解决两类问题: 1.两角和任意一边,求其它两边和一角;2.两边和其中一边对角,求另一边的对角,进而可求其它的边和角(见图示)已知a, b 和A, 用正弦定理求B 时的各种情况: ⑴若A 为锐角时:⎪⎪⎩⎪⎪⎨⎧≥<<=<)( b a ) ,( b a bsinA )( bsinA asin 锐角一解一钝一锐二解直角一解无解A b a a bcOB CADbabab a baa 已知边a,b 和∠A仅有一个解有两个解仅有一个解无解a ≥b CH=bsinA<a<b a=CH=bsinA a<CH=bsinAAC B ACB1ABACB2CHHH⑵若A 为直角或钝角时:⎩⎨⎧>≤)(b a 锐角一解无解b a【典型例题】例 1、在△ABC 中,a =2,A =30°,C =45°,则△ABC 的面积S △ABC 等于( ) A.2B .22C.3+1D.21(3+1) 例2、已知△ABC 中,A=300,B=450,a=10,求b ;(已知两角一边求另一边)例3、在△ABC 中,若a:b:c=2:4:5,求CBA sin sin sin 2-的值。
正弦定理教学设计
一教材分析
本节内容为《普通高中课程标准实验课教科书数学必修五》(人教A版)第一章,正弦定理第一课时,是在高一学生学习了三角函数知识之后,是对三角知识的应用,同时作为三角形中的一个定理,也是对初中解直角三角形内容的延伸,定理的应用十分广泛。
这部分内容分为四个层次。
第一层次教师通过引导学生大胆提出猜想;第二层次由猜想入手,带着疑问以及特殊三角形中边角的关系进行验证,通过“作高法”、“外接圆法”等多种方法证明正弦定理;第三层次对正弦定理进行分析——恒等变形;第四层通过简单的应用加强对正弦定理的理解。
通过学生通过任意三角形中正弦定理的探究,发现和证明,感受“观察——实验——猜想——证明——运用”这一思维方法,养成大胆猜想,善于思科的品质和勇于求真的精神。
二、学情分析
学生学习过有关直角三角形的一些知识:勾股定理;三角函数定义;
三、教学目标
1.知识与技能:通过对任意三角形的边长和角度的探索,掌握正弦定理的内容及其证明方法;与运用正弦定理解决简单的三角形的度量问题
2.过程与方法:让学生从实际问题出发,结合初中学习的直角三角形中的边角关系,引导学生不断的观察、比较、分析、猜想的方法去发现并证明正弦定理,让学生在应用定理的过程中深入的理解定理及其作用。
3.情感、态度与价值:通过对正弦定理的发现与证明的过程去体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲,并培养学生的坚忍不拔的意志,实事求是的科学态度和乐于探索、勇于创新的精神。
四、教学重难点
教学重点:正弦定理的发现与证明;正弦定理的简单应用。
教学难点:正弦定理的猜想与提出过程
五、教学过程设计。
高中数学必修5《1.1.1 正弦定理》教学设计1000字【教学设计】【教学目标】1. 理解正弦定理的概念,掌握求解三角形边长的方法。
2. 学会运用正弦定理求解实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
【教学内容】《数学必修5》第1章第1节,“正弦定理”(1.1.1)。
【教学过程】一、导入1. 引导学生思考:“三角形的边有什么特点?”2. 让学生回忆一下高中数学所学的定理,比如勾股定理和角平分线定理。
3. 引入正弦定理的概念,让学生对正弦定理有个初步的了解。
二、知识讲授1. 讲解正弦定理的概念及其公式。
2. 分别对三角形中的三角函数进行讲解,让学生对它们的定义有一个清晰的认识。
3. 通过图示让学生知道在不同情况下如何使用正弦定理解决问题。
4. 给学生提供几个具体例子,让他们练习运用正弦定理解决实际问题。
三、练习1. 让学生自主完成课本上的练习题,巩固所学知识。
2. 可以组织学生进行小组竞赛,比赛项目为用正弦定理解决实际问题,以此提高学生的兴趣和参与度。
四、复习与总结1. 以课堂小测验的形式检查学生对所学知识的掌握情况。
2. 对所学知识进行概括性总结,让学生对正弦定理的应用有更全面的了解。
【教学重点】1. 正确掌握正弦定理的概念和公式。
2. 熟练掌握正弦定理的运用方法。
【教学难点】1. 正弦定理的应用在实际问题中的具体运用。
2. 正确判断在不同情况下使用正弦定理的方法。
【教学方法】1. 讲解法:通过讲解,让学生明白正弦定理的概念和公式。
2. 案例法:通过实例让学生知道如何使用正弦定理解决问题。
3. 组织竞赛法:通过小组竞赛,让学生更加积极主动地参与课堂活动。
【学情分析】学生学习高中数学是从基础数学知识逐步深入的,正弦定理是高中数学重点内容之一,更为复杂的三角函数内容的基础。
学习正弦定理需要有良好的基础数学知识,同时也需要良好的逻辑思维能力,因此需要从基础知识入手,渐进进行教学。
【教学建议】1. 为了保证课堂效果,教师应该采用多样化的教学法,如讲解法、案例法、练习法等。
《正弦定理》一、教学内容分析:本节课是人教版高中新课标数学A 版必修(五)的第一章《解三角形》第一节《正弦定理和余弦定理》的第一课时的内容,它是初中解直角三角形在高中知识下的直接延拓,也是对高中坐标和圆等相关知识的综合运用,它是对三角形中边角关系的一个具体量化。
它与余弦定理都是解三角形的重要工具。
本节课的主要内容是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。
学生在教师的引导下发现并证明正弦定理,复习巩固旧知识,掌握新知识,而其还能够体会数学知识之间的相互联系,开阔自己的思路,进而构建自己的数学知识结构,实现自我升华。
二、学情分析:对于高中的学生,一方面已经学习了平面几何、解直角三角形与三角函数等知识,另一方面也具备了一定的观察分析和解决问题的能力;但是学生往往会在对新知识的理解应用以及与已学知识的联系上出现思维障碍,思维灵活性、深刻性受到制约。
根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、教学目标:1.知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
2. 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,由易到难,层层推进;引导学生通过观察,推导,比较,由特殊到一般,经过学生的自主探究,归纳出正弦定理,并进行定理基本应用的实践操作。
3.情感、态度与价值观:培养学生的自我探究与动手能力,培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思维能力。
四、教学重点与难点:1、 教学重点:正弦定理的探索与证明及其基本应用。
2、 教学难点:正弦定理的探索与证明。
3、 重难点突破方法:选择合适的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给于适当的提示和指导。
第一章解三角形 1.1.1 正弦定理(第一课时)【教学目标】:1.了解正弦定理的推导过程,掌握正弦定及其变形2.能初步用正弦定理解三角形,并能判断三角形的形状.(第一种类型)【新课导入】工程师为了测定河岸A点到对岸C点的距离,在岸边选定100米长的基线AB,并测得∠B=120o,∠A=45o,你可以求出A、C两点的距离吗?【预习收获】1.正弦定理定理:在一个三角形中,各边和它所对角的_____的比相等,即在△ABC中,asin A =b sin B=______.2.解三角形一般地,把三角形的三个角和它们的______叫做三角形的元素.已知三角形的几个元素求__________的过程叫做解三角形.【问题解决】对定理的证明,课本给出了锐角三角形的情况.对于钝角三角形,应如何证明?(引导学生证明钝角三角形的情况,并总结归纳正弦定理的适应范围)【几何意义】在Rt△ABC中,若C=90°,你能借助所学知识导出asin A的具体值吗?在锐角三角形中这个结论成立吗?钝角三角形中呢?【探究结论】设任意△ABC的外接圆的半径为R,都有a sin A =bsin B=csin C=2R.【定理变形】1.正弦定理(1)定理:在一个三角形中,各边和它所对角的_____的比相等,即在△ABC中,asin A=bsin B=______.(2)变形:设△ABC的外接圆的半径为R,则有a sin A =bsin B=csin C=_____.①a:b:c=sin A:_____:sin C .②ab=sin Asin B,ac=sin Asin C,bc=______.③asin A=bsin B=csin C=a+b+csin A+sin B+sin C.④a=2R sin A,b=2R sin B,c=________.【例题讲解】类型一已知两角及一边解三角形[例1] 在△ABC中,已知a=8,B=60°,C=75°,求A,b,c.【探究拓展】[例2] 在△ABC中,三个内角A,B,C的对边分别为a,b,c,已知A:B:C=1:2:3,则a:b:c=________.【智能训练】今天的概念你清楚了吗?1.有关正弦定理的叙述:①正弦定理只适用于锐角三角形;②正弦定理不适用于直角三角形;③在某一确定的三角形中,各边与它的对角的正弦的比是定值;④在△ABC中,sin A:sin B:sin C=a:b:c.其中正确的个数是( )A.1 B.2 C.3 D.4结合初中的概念,你的基础牢固吗?2.在△ABC中,sin A=sin C,则△ABC是( )A.直角三角形 B.等腰三角形C.锐角三角形 D.钝角三角形三角形中最重要的定理是什么?3.在△ABC中,sin2A+sin2B=sin2C,则C=________. 今天的知识你可以参加高考了吗?4.(2012·广东卷)在△ABC中,若A=60°,B=45°,BC=32,则AC=( )A.4 3 B.2 3C. 3D.3 2你知道如何判断最小边吗?5.在△ABC中,A=60°,B=45°,c=1,求此三角形的最小边.【探究发现】可以实际应用了吗?解决开头提出的问题:工程师为了测定河岸A点到对岸C点的距离,在岸边选定100米长的基线AB,并测得∠B=120o,∠A=45o,你可以求出A、C两点的距离吗?【课后作业】1.课本P4.1、(1)(2)2.课本 P10 1、(1)(2)3.配套课时作业1.1.1正选定理(一)精美句子1、善思则能“从无字句处读书”。
人教版高中数学必修⑤1.1.1《正弦定理》教学设计课题:必修⑤1.1.1正弦定理三维目标:1、知识与技能(1)通过对任意三角形边长和角度关系的合作探索,掌握正弦定理的内容及其证明方法;;(2)能运用正弦定理与三角形内角和定理及相关的三角知识解斜三角形的两类基本问题;(3)通过简单运用,初步理解公式的结构及其功能,为下一步学习打好基础。
2、过程与方法⑴引领学生从已有的几何、三角知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察、分析、实践、交流,由特殊到一般归纳出正弦定理,在体验由特殊到一般的推理过程及合作探究过程的同时,不断认识三角、向量知识的工具性作用及所带来的分类讨论思想、转化思想及数形结合思想;⑵通过用向量推导三角公式,体会向量的强大威力,锻炼自己的抽象思维能力和推理论证能力;⑶通过公式的推导与应用,进一步体会三角知识的本质联系以及数学工具应用的广泛性与重要性;⑷培养学生分析问题、解决问题的能力及钻研精神,培养学生的运算能力、严谨的思维习惯以及解题的规范性。
3、情态与价值观(1)培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
(2)通过三角知识的进一步拓展和运用,体会数学知识抽象性、概括性和广泛性,培养学生学习数学的兴趣,形成学数学、用数学的思维和意识,培养学好数学的信心,为远大的志向而不懈奋斗。
(3)通过对三角知识的进一步学习及探索,不断培养自主学习、主动探索、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,并提高参与意识和合作精神;教学重点:用向量法推导正弦定理及其基本应用教学难点:公式的探索、推导以及已知两边和其中一边的对角解三角形时判断解的个数。
教具:多媒体、实物投影仪教学方法:合作探究、分层推进教学法教学过程:一、双基回眸科学导入:同学们,前面我们已全面学习了三角的基本知识,通过初步运用,我们也初步感受到了三角知识的强大威力和无限魅力,同学们可以回顾一下相关的三角公式……在初中,我们也学习了一些基本的三角知识,比如:勾股定理——体现了直角三角形的性质:边、角的关系,对于非直角三角形,有没有关于边、角的性质呢?今天,我们一起探讨这个问题——二、创设情境合作探究:【创设情境】在初中,我们已学过如何解直角三角形,直角三角形中,有勾股定理来体现边的关系,有没有更深入的边与角的关系呢?如图1.1-1,固定∆ABC的边CB及∠B,使边AC绕着顶点C转动。
专题22正弦定理和余弦定理1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理内容a sin A =b sin B =csin C=2R a 2=b 2+c 22bc cos__A ;b 2=c 2+a 22ca cos__B ; c 2=a 2+b 2-2ab cos__C常见变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin_C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .高频考点一 利用正弦定理、余弦定理解三角形例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个D .无法确定(2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A ,B ,C 的度数依次是________.(3)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6×22=3,∴b sin A <a <b .解得b =1.【感悟提升】(1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断. ②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数. 【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <2 2D .2<x <2 3(2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1解析 (1)若三角形有两解,则必有a >b ,∴x >2,又由sin A =a b sin B =x 2×22<1,可得x <22,∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB cos A ,化简得x 2-2x +1=0, ∴x =1,即AB =1.高频考点二 利用正弦、余弦定理判定三角形的形状例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a2=12c 2. (1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2=12c 2及正弦定理得(2)由tan C =2,C ∈(0,π)得 sin C =255,cos C =55,因为sin B =sin(A +C )=sin ⎝ ⎛⎭⎪⎫π4+C ,所以sin B =31010,由正弦定理得c =223b ,又因为A =π4,12bc sin A =3,所以bc =62,故b =3. 【感悟提升】(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 【变式探究】四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (1)求C 和BD ;(2)求四边形ABCD 的面积.解 (1)由题设A 与C 互补及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,BD =7,因为C 为三角形内角,故C =60°. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C=⎝ ⎛⎭⎪⎫12×1×2+12×3×2sin60° =2 3.高频考点三 正弦、余弦定理的简单应用例3、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案 B【感悟提升】(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.【变式探究】(1)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin∠BAC =223,AB =32,AD =3,则BD 的长为______.答案 (1)D (2) 3∴△ABC 为等腰或直角三角形.(2)sin∠BAC =sin(π2+∠BAD )=cos∠BAD ,∴cos∠BAD =223.BD 2=AB 2+AD 2-2AB ·AD cos∠BAD=(32)2+32-2×32×3×223,即BD 2=3,BD = 3.高频考点三 和三角形面积有关的问题【例3】 (2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cosB +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B ·cos A )=sin C ,2cos C sin(A +B )=sinC ,故2sin C cos C =sin C . 由C ∈(0,π)知sin C ≠0, 可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C =7,故a 2+b 2=13, 从而(a +b )2=25.所以△ABC 的周长为5+7. 【方法规律】三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【变式探究】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2a -b )cos C -c cos B =0.(1)求角C 的值;(2)若三边a ,b ,c 满足a +b =13,c =7,求△ABC 的面积.1.【2016高考新课标3理数】在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( ) (A )310 (B )10 (C )10- (D )310-【答案】C【解析】设BC 边上的高为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD=.由余弦定理,知22222210cos 210225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C . 2.【2016高考新课标2理数】ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b = . 【答案】21133.【2016高考天津理数】在△ABC 中,若AB ,120C ∠=o ,则AC = ( ) (A )1(B )2(C )3(D )4【答案】A【解析】由余弦定理得213931AC AC AC =++⇒=,选A.4.【2016高考江苏卷】在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 ▲ . 【答案】8. 【解析】sin sin()2sin sin tan tan 2tan tan A B+C B C B C B C==⇒+=,又tan tan tan tan tan 1B+CA=B C -,因tan tan tan tan tan tan tan 2tan tan tan tan tan 8,A B C A B C A B C A B C =++=+≥≥即最小值为8.5.(2016·山东卷)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sinA ),则A =( )A.3π4 B.π3 C.π4 D.π6解析 在△ABC 中,由b =c ,得cos A =b 2+c 2-a 22bc =2b 2-a 22b 2,又a 2=2b 2(1-sin A ),所以cos A =sin A ,即tan A =1,又知A ∈(0,π),所以A =π4,故选C.答案 C【2015高考天津,理13】在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,12,cos ,4b c A -==- 则a 的值为 . 【答案】【解析】因为0A π<<,所以sin 4A ==,又1sin 242ABC S bc A bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.【2015高考北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】1【解析】222sin 22sin cos 2sin sin 2A A A a b c a C C c bc +-==⋅2425361616256⨯+-=⋅=⨯⨯【2015高考新课标1,理16】在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 【答案】(62-,6+2)AB 的取值范围为(62-,6+2).【2015江苏高考,15】(本小题满分14分) 在ABC ∆中,已知ο60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值 【答案】(17(243【2015高考湖南,理17】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,,tan a b A =,且B 为钝角. (1)证明:2B A π-=;(2)求sin sin A C +的取值范围. 【答案】(1)详见解析;(2)29,]28. 【解析】(1)由tan a b A =及正弦定理,得sin sin cos sin A a AA bB ==,∴sin cos B A =,即sin sin()2B A π=+,又B 为钝角,因此(,)22A πππ+∈,故2B A π=+,即2B A π-=; (2)由(1)知,()C A B π=-+(2)2022A A πππ-+=->,∴(0,)4A π∈,于是sin sin sin sin(2)2A C A A π+=+-2219sin cos 22sin sin 12(sin )48A A A A A =+=-++=--+,∵04A π<<,∴20sin A <<221992(sin )488A <--+≤,由此可知sin sin A C +的取值范围是29]28.(2014·湖北卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?即sin ⎝⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.(2014·江西卷)已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R,θ∈⎝ ⎛⎭⎪⎫-π2,π2.(1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,求a ,θ的值.【解析】(1)f (x )=sin ⎝ ⎛⎭⎪⎫x +π4+2cos ⎝⎛⎭⎪⎫x +π2=22(sin x +cos x )-2sin x =22cos x -22sin x =sin ⎝ ⎛⎭⎪⎫π4-x .因为x ∈[0,π],所以π4-x ∈⎣⎢⎡⎦⎥⎤-3π4,π4,故f (x )在区间[0,π]上的最大值为22,最小值为-1. (2)由⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=0,2a sin 2θ-sin θ-a =1. 又θ∈⎝ ⎛⎭⎪⎫-π2,π2,知cos θ≠0, 所以⎩⎪⎨⎪⎧1-2a sin θ=0,(2a sin θ-1)sin θ-a =1,解得⎩⎪⎨⎪⎧a =-1,θ=-π6.(2014·四川卷)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值.当sin α+cos α=0时,由α是第二象限角,得α=3π4+2k π,k ∈Z,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. (2013·北京卷)在△ABC 中,a =3,b =2 6,∠B=2∠A. (1)求cos A 的值; (2)求c 的值.【解析】(1)因为a =3,b =2 6,∠B=2∠A, 所以在△ABC 中,由正弦定理得3sin A =2 6sin 2A .所以2sin Acos A sin A =2 63.故cos A =63. (2)由(1)知cos A =63,所以sin A =1-cos 2A =33. 又因为∠B=2∠A,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =2 23.在△ABC 中,sin C =sin(A +B) =sin AcosB +cos Asin B =5 39. 所以c =a sin Csin A=5.(2013·全国卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c)(a -b +c)=ac. (1)求B ; (2)若sin Asin C =3-14,求C.=32, 故A -C =30°或A -C =-30°,因此C =15°或C =45°. (2013·浙江卷)已知α∈R,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34 D .-43 【答案】C【解析】由(sin α+2cos α)2=1022'得sin 2α+4sin αcos α+4cos 2α=104=52,4sin αcos α+1+3cos 2α=52,2sin 2α+1+3×1+cos 2α2=52,故2sin 2α=-3cos 2α2,所以tan2α=-34,选择C.(2013·重庆卷)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .2 2-1 【答案】C1.在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为32,则C =( ) A.30° B.45°C.60°D.75°解析 法一 ∵S △ABC =12·AB ·AC ·sin A =32,即12×3×1×sin A =32,∴sin A =1, 由A ∈(0°,180°),∴A =90°,∴C =60°.故选C. 法二 由正弦定理,得sin B AC =sin C AB ,即12=sin C 3,sin C =32,又C ∈(0°,180°),∴C =60°或C =120°. 当C =120°时,A =30°,S △ABC =34≠32(舍去).而当C =60°时,A =90°, S △ABC =32,符合条件,故C =60°.故选C. 答案 C2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =2π3,a =2,b =233,则B 等于( )A.π3B.5π6C.π6或5π6D.π6解析∵A=2π3,a=2,b=233,∴由正弦定理asin A=bsin B可得,sin B=basin A=2332×32=12.∵A=2π3,∴B=π6.答案 D3.在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为( ) A.等边三角形 B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形答案 B4.△ABC的内角A,B,C的对边分别为a,b,c,则“a>b”是“cos 2A<cos 2B”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析因为在△ABC中,a>b⇔sin A>sin B⇔sin2A>sin2B⇔2sin2A>2sin2B⇔1-2sin2A<1-2sin2B⇔cos 2A<cos 2B.所以“a>b”是“cos 2A<cos 2B”的充分必要条件.答案 C5.已知△ABC的内角A,B,C的对边分别为a,b,c,且c-bc-a=sin Asin C+sin B,则B等于( ) A.π6B.π4C.π3D.3π4答案 C解析 根据正弦定理a sin A =b sin B =csin C =2R ,得c -b c -a =sin A sin C +sin B =ac +b, 即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________. 答案π3或2π3解析 由余弦定理,得a 2+c 2-b 22ac=cos B ,结合已知等式得cos B ·tan B =32, ∴sin B =32,∴B =π3或2π3. 7.在△ABC 中,若b =5,B =π4,tan A =2,则a =______.答案 2108.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________. 答案3解析 由正弦定理,可得(2+b )(a -b )=(c -b )·c . ∵a =2,∴a 2-b 2=c 2-bc ,即b 2+c 2-a 2=bc .由余弦定理,得cos A =b 2+c 2-a 22bc =12.∴sin A =32. 由b 2+c 2-bc =4,得b 2+c 2=4+bc . ∵b 2+c 2≥2bc ,即4+bc ≥2bc ,∴bc ≤4. ∴S △ABC =12bc ·sin A ≤3,即(S △ABC )max = 3.9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B . (1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C=4+3310, 所以,△ABC 的面积为S =12ac sin B =83+1825.10.如图,在△ABC 中,B =π3,AB =8,点D 在BC 边上,且CD =2,cos∠ADC =17.(1)求sin∠BAD ; (2)求BD 、AC 的长.在△ABD 中,由正弦定理得 BD =AB ·sin∠BADsin∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+(2+3)2-2×8×5×12=49.所以AC =7.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2-(b -c )2=(2-3)bc ,sin A sin B =cos 2C2,BC 边上的中线AM 的长为7.(1)求角A 和角B 的大小; (2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-3)bc , 得a 2-b 2-c 2=-3bc ,∴cos A =b 2+c 2-a 22bc =32,(2)由(1)知,a =b ,由余弦定理得AM 2=b 2+(a2)2-2b ·a2·cos C =b 2+b 24+b 22=(7)2,解得b=2,故S △ABC =12ab sin C =12×2×2×32= 3.12.设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;精品文档. (2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.解 (1)由题意知f (x )=sin 2x 2-1+cos ⎝ ⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z, 可得-π4+k π≤x ≤π4+k π,k ∈Z ; 由π2+2k π≤2x ≤3π2+2k π,k ∈Z, 可得π4+k π≤x ≤3π4+k π,k ∈Z . 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z ); 单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ). (2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12, 由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A ,可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,且当b =c 时等号成立. 因此12bc sin A ≤2+34.所以△ABC 面积的最大值为2+34.。
《正弦定理》教学设计一、教学背景分析 1.教材地位分析《正弦定理》是普通高中课程标准实验教科书必修5中第一章《解三角形》的内容,比较系统地研究了解三角形这个课题。
《正弦定理》紧跟必修4(包括三角函数与平面向量)之后,可以启发学生联想所学知识,运用平面向量的数量积连同三角形、三角函数的其他知识作为工具,推导出正弦定理。
正弦定理是求解任意三角形的基础,又是学生了解向量的工具性和知识间的相互联系的开端,对进一步学习任意三角形的求解、体会事物是相互联系的辨证思想均起着举足轻重的作用。
通过本节课学习,培养学生“用数学”的意识和自主、合作、探究能力。
2.学生现实分析(1)学生在初中已学过有关直角三角形的一些知识:①勾股定理: ②三角函数式,如: (2)学生在初中已学过有关任意三角形的一些知识:① ②两边之和大于第三边,两边之差小于第三边 ③大边对大角,大角对大边(3)学生在高中已学过必修4(包括三角函数与平面向量)(4)学生已具备初步的数学建模能力,会从简单的实际问题中抽象出数学模型 3.教学目标分析 知识目标:(1)正弦定理的发现 (2)证明正弦定理的方法 (3)正弦定理的简单应用 能力目标:(1)培养学生观察、分析问题、应用所学知识解决实际问题的能力(2)通过向量把三角形的边长和三角函数建立起关系,在解决问题的过程中培养学生的联想能力、综合应用知识的能力 情感目标:(1)设置情景,培养学生的独立探究意识,激发学生学习兴趣 (2)鼓励学生探索规律、发现规律、解决实际问题(3)通过共同剖析、探讨问题,推进师生合作意识,加强相互评价与自我反思 二、教学展开分析1.教学重点与难点分析教学重点是发现正弦定理、用几何法和外接圆法证明正弦定理。
正弦定理是三角形边角关系中最常见、最重要的两个定理之一,它准确反映了三角形中各边与它所对角的正弦的关系,对于它的形式、内容、证明方法和应用必须引起足够的重视。
正弦定理要求学生综合运用正弦定理和内角和定理等众多基础知识解决几何问题和实际应用问题,这些知识的掌握,有助于培养分析问题和解决问题能力,所以一向为数学教育所重视。
《正弦定理》教学设计一.教材分析:三角形是最基本的几何图形,有着极其广泛的应用。
在实际问题中,经常遇到解任意三角形的问题,因此必须进一步学习任意三角形的边角关系和解任意三角形的一些基本方法。
重点:正弦定理的发现与证明,及利用定理解三角形。
难点:锐角三角形中正弦定理的证明;已知两边及其一边对解三角形的情况。
二.学情分析:本节课是在学生已经于初中学习了直角三角形的边角关系和解直角三角形的方法,在高中学习了三角函数与平面向量的基础上的深化拓展。
故在此引入正弦定理,使“解三角形”的学习变得合情合理,学生思想上易于接受。
三.教学目标:1.知识与能力目标①掌握正弦定理,能利用正弦定理解三角形,判断解的个数;②培养学生归纳、猜想、论证能力能力;③培养学生的创新意识与逻辑思维能力。
2.过程与方法目标①分析研究正弦定理的探索过程;②体验先猜想后证明,由特殊到一般,分类讨论的方法。
3.情感态度价值观目标通过学生之间、师生之间的交流、合作和评价,激发学生的求知欲望,给学生成功的体验,感受数学活动的探索与创造,数学的严谨性以及数学结论的确定性。
四.设计理念:建构主义认为:教师的角色是学生建构知识的帮助者、引导者和忠实支持者。
因此为了有效的突出重点,突破难点,达到三维教学目标,本节课采用支架式教学法。
教师引导学生质疑、探索、反思,以生活中的实际问题引入,以"正弦定理的发现"为基本内容,让学生由问题开始,从而得出猜想、证明猜想,并逐步得到深化。
学生以自主探究,合作交流为主要学习方式,结合“观察——归纳——猜想——证明——应用”的方法将直角三角形、三角函数的知识应用于对任意三角形边角关系的探究。
体现学生的主体地位,提升学生的数学思维能力。
五.教学过程设计及简要分析:(一)创设情境,引入课题;问题一:索马里海盗日益猖獗,为保护商船我国坚决予以出兵打击海盗。
某日我A舰队突然发现其正东处有一海盗舰艇B正以30节的速度朝正北方向追击商船,我方决定全速拦截海盗。
1.1 正弦定理和余弦定理1.1.1 正弦定理从容说课本章内容是处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系有密切的联系,与已知三角形的边和角相等判定三角形全等的知识也有着密切的联系.教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构.教学重点1.正弦定理的概念;2.正弦定理的证明及其基本应用.教学难点1.正弦定理的探索和证明;2.已知两边和其中一边的对角解三角形时判断解的个数.教具准备直角三角板一个三维目标一、知识与技能1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.二、过程与方法1.让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系;2.引导学生通过观察、推导、比较,由特殊到一般归纳出正弦定理;3.进行定理基本应用的实践操作.三、情感态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.培养学生探索数学规律的思维能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一.教学过程导入新课师如右图,固定△ABC的边CB及∠B,使边AC绕着顶点C转动.师思考:∠C的大小与它的对边AB的长度之间有怎样的数量关系?生显然,边AB的长度随着其对角∠C的大小的增大而增大.师能否用一个等式把这种关系精确地表示出来?师在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系.如右图,在Rt△ABC 中,设BC =A ,AC =B ,AB =C ,根据锐角三角函数中正弦函数的定义,有c a =sin A ,c b =sin B ,又sin C =1=c c ,则c simCc B b A a ===sin sin .从而在直角三角形ABC 中,simCcB b A a ==sin sin . 推进新课[合作探究]师那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析) 生可分为锐角三角形和钝角三角形两种情况:如右图,当△ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD =A sin B =B sin A ,则B b A a sin sin =,同理,可得B bC c sin sin =.从而CcB b A a sin sin sin ==.(当△ABC 是钝角三角形时,解法类似锐角三角形的情况,由学生自己完成)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即CcB b A a sin sin sin ==师是否可以用其他方法证明这一等式? 生可以作△ABC 的外接圆,在△ABC 中,令BC =A ,AC =B ,AB =C ,根据直径所对的圆周角是直角以及同弧所对的圆周角相等,来证明CcB b A a sin sin sin ==这一关系. 师很好!这位同学能充分利用我们以前学过的知识来解决此问题,我们一起来看下面的证法. 在△ABC 中,已知BC =A ,AC =B ,AB =C ,作△ABC 的外接圆,O 为圆心,连结BO 并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到 ∠BAB′=90°,∠C =∠B′,∴sin C =sin B′=Rc B C 2sin sin ='=∴RCc2sin = 同理,可得RB bR A a 2sin ,2sin ==∴R Cc B b A a 2sin sin sin ===这就是说,对于任意的三角形,上述关系式均成立,因此,我们得到等式CcB b A a sin sin sin ==点评:上述证法采用了初中所学的平面几何知识,将任意三角形通过外接圆性质转化为直角三角形进而求证,此证法在巩固平面几何知识的同时,易于被学生理解和接受,并且消除了学生所持的“向量方法证明正弦定理是唯一途径”这一误解.既拓宽了学生的解题思路,又为下一步用向量方法证明正弦定理作了铺垫 [知识拓展师接下来,我们可以考虑用前面所学的向量知识来证明正弦定理.从定理内容可以看出,定理反映的是三角形的边角关系,而在向量知识中,哪一知识点体现边角关系呢生向量的数量积的定义式A ·B =|A ||B |C os θ,其中θ为两向量的夹角师回答得很好,但是向量数量积涉及的是余弦关系而非正弦关系,这两者之间能否转化呢生 可以通过三角函数的诱导公式sin θ=Co s(90°-θ)进行转化师这一转化产生了新角90°-θ,这就为辅助向量j 的添加提供了线索,为方便进一步的运算,辅助向量选取了单位向量j,而j 垂直于三角形一边,且与一边夹角出现了90°-θ这一形式,这是作辅助向量j 垂直于三角形一边的原因师在向量方法证明过程中,构造向量是基础,并由向量的加法原则可得AB CB AC =+而添加垂直于AC 的单位向量j 是关键,为了产生j 与AB、AC 、CB 的数量积,而在上面向量等式的两边同取与向量j 的数量积运算,也就在情理之中了师下面,大家再结合课本进一步体会向量法证明正弦定理的过程,并注意总结在证明过程中所用到的向量知识点点评: (1)在给予学生适当自学时间后,应强调学生注意两向量的夹角是以同起点为前提,以及两向量垂直的充要条件的运用(2)要求学生在巩固向量知识的同时,进一步体会向量知识的工具性作用 向量法证明过程(1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为-A ,j与CB 的夹角为90°-C由向量的加法原则可得ABCB AC =+为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j 的数量积运算,得到AB j CB AC j ∙=+∙)(由分配律可得ABj CB j ∙=∙+s(90°-C s(90°-A∴A sin C =C sin A ∴CcA a sin sin =另外,过点C 作与CB 垂直的单位向量j,则j 与AC 的夹角为90°+C ,j 与AB 的夹角为90°+B ,可得BbC c sin sin =(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j 与AC的夹角为90°-C ,j 与AB 的夹角为90°-B∴CcB b A a sin sin sin ==(2)△ABC 为钝角三角形,不妨设A >90°,过点A 作与AC 垂直的单位向量j,则j 与AB的夹角为A -90°,j 与CB 的夹角为90°-C由AB CB AC =+,得j·ACCB =j·AB即A ·Co s(90°-C )=C ·Co s(A -∴A sin C =C sin A∴CcA a sin sin =另外,过点C 作与CB 垂直的单位向量j,则j 与AC 的夹角为90°+C ,j 与AB 夹角为90°+B .同理,可得C cB b sin sin =∴Cc B b simA a sin sin ==(形式1)综上所述,正弦定理对于锐角三角形、直角三角形、钝角三角形均成立 师在证明了正弦定理之后,我们来进一步学习正弦定理的应用[教师精讲](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使A =ksin A ,B =ksin B ,C =ksin C ;(2)C cB b A a sin sin sin == 等价于CcA aB bC c B b A a sin sin ,sin sin ,sin sin === (形式我们通过观察正弦定理的形式2不难得到,利用正弦定理,可以解决以下两类有关三角形问题.①已知三角形的任意两角及其中一边可以求其他边,如BAb a sin sin =.这类问题由于两角已知,故第三角确定,三角形唯一,解唯一,相对容易,课本P 4的例1就属于此类问题②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如B baA sin sin =.此类问题变化较多,我们在解题时要分清题目所给的条件.一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形. 师接下来,我们通过例题评析来进一步体会与总结 [例题剖析]【例1】在△ABC 中,已知A =32.0°,B =81.8°,A =42.9 c m,解三角形分析:此题属于已知两角和其中一角所对边的问题,直接应用正弦定理可求出边B ,若求边C ,再利用正弦定理即可解:根据三角形内角和定理, C =180°-(A +B )=180°-根据正弦定理,b =o o A B a 0.32sin 8.81sin 9.42sin sin =≈80.1(c m)c =osin32.02.66sin 9.42sin sin o A C a =≈74.1(c[方法引导(1)此类问题结果为唯一解,学生较易掌握,如果已知两角和两角所夹的边,也是先利用内角和180°求出第三角,再利用正弦定理(2)对于解三角形中的复杂运算可使用计算器【例2】在△ABC 中,已知A =20c m ,B =28c m ,A =40°,解三角形(角度精确到1°,边长精确到1 c m ).分析:此例题属于B sin A <a <b 的情形,故有两解,这样在求解之后呢,无需作进一步的检验,使学生在运用正弦定理求边、角时,感到目的很明确,同时体会分析问题的重要性 解:根据正弦定理,sin B =2040sin 28sin oa Ab =因为0°<B <180°,所以B ≈64°或B(1)当B ≈64°时,C=180°-(A +B )=180°-(40°+64°)=76°,C =ooA C a 40sin 76sin 20sin sin =≈30(c(2)当B ≈116°时,C =180°-(A +B )=180°-(40°+116°)=24°,C =oo A C a 40sin 24sin 20sin sin =≈13(c[方法引导]通过此例题可使学生明确,利用正弦定理求角有两种可能,但是都不符合题意,可以通过分析获得,这就要求学生熟悉已知两边和其中一边的对角时解三角形的各种情形.当然对于不符合题意的解的取舍,也可通过三角形的有关性质来判断,对于这一点,我们通过下面的例题来体会变式一:在△ABC 中,已知A =60,B =50,A =38°,求B (精确到1°)和C (保留两个有效数字). 分析:此题属于A ≥B 这一类情形,有一解,也可根据三角形内大角对大边,小角对小边这一性质来排除B 为钝角的情形解:已知B <A ,所以B <A ,因此B 也是锐角∵sin B =6038sin 50sin oa Ab =∴B∴C =180°-(A +B )=180°-∴C =ooA C a 38sin 111sin 60sin sin =[方法引导同样是已知两边和一边对角,但可能出现不同结果,应强调学生注意解题的灵活性,对于本题,如果没有考虑角B 所受限制而求出角B 的两个解,进而求出边C 的两个解,也可利用三角形内两边之和大于第三边,两边之差小于第三边这一性质进而验证而达到排除不符合题意的解 变式二:在△ABC 中,已知A =28,B =20,A =120°,求B (精确到1°)和C (保留两个有效数字). 分析:此题属于A 为钝角且A >B 的情形,有一解,可应用正弦定理求解角B 后,利用三角形内角和为180°排除角B 为钝角的情形解:∵sin B =28120sin 20sin oa Ab =∴B ≈38°或B ≈142°(舍去∴C =180°-(A +B ) ∴ C =︒︒=120sin 22sin 28sin sin A C a ≈12. [方法引导]此题要求学生注意考虑问题的全面性,对于角B 为钝角的排除也可以结合三角形小角对小边性质而得到(2)综合上述例题要求学生自我总结正弦定理的适用范围,已知两角一边或两边与其中一边的对角解三角形(3)对于已知两边夹角解三角形这一类型,将通过下一节所学习的余弦定理来解 师为巩固本节我们所学内容,接下来进行课堂练习: 1.在△ABC 中(结果保留两个有效数字), (1)已知C =3,A =45°,B =60°,求B(2)已知B =12,A =30°,B =120°,求A解:(1)∵C =180°-(A +B )=180°-(45°+60°)=75°,CcB b sin sin =, ∴B =︒︒=75sin 60sin 3sin sin C B c(2)∵BbA a sin sin =, ∴A =︒︒=120sin 30sin 12sin sin B A b点评:此题为正弦定理的直接应用,意在使学生熟悉正弦定理的内容,可以让数学成绩较弱的学生进行在黑板上解答,以增强其自信心2.根据下列条件解三角形(角度精确到1°,边长精确到(1)B =11,A =20,B =30°;(2)A =28,B =20,A(3)C =54,B =39,C =115°;(4)A =20,B =28,A解: (1) ∵B bA a sin sin =∴sin A =1130sin 20sin ︒=b B a∴A 1≈65°,A 2当A 1≈65°时,C 1=180°-(B +A 1)=180°-(30°+65°)=85°, ∴C 1=︒︒=30sin 85sin 11sin sin sin 1B C b当A 2≈115°时,C 2=180°-(B +A 2)=180°-∴C 2=︒︒=30sin 35sin 11sin sin 2B C b(2)∵sin B =2845sin 20sin ︒=a A b∴B 1≈30°,B 2由于A +B2=45°+150°>180°,故B 2≈150°应舍去(或者由B <A 知B <A ,故B 应为锐角∴C =180°-(45°+30°)=105°∴C =︒︒=45sin 105sin 28sin sin A C a(3)∵CcB b sin sin =∴sin B =54115sin 39sin ︒=c C b∴B 1≈41°,B 2由于B <C ,故B <C ,∴B 2≈139°应舍去∴当B =41°时,A =180°-A =︒︒=115sin 24sin 54sin sin C A c(4) sin B =20120sin 28sin ︒=a Ab =1.212>∴本题无解点评:此练习目的是使学生进一步熟悉正弦定理,同时加强解三角形的能力,既要考虑到已知角的正弦值求角的两种可能,又要结合题目的具体情况进行正确取舍 课堂小结通过本节学习,我们一起研究了正弦定理的证明方法,同时了解了向量的工具性作用,并且明确了利用正弦定理所能解决的两类有关三角形问题:已知两角、一边解三角形;已知两边和其中一边的对角解三角形 布置作业(一)课本第10页习题1.1 第1、2题(二)预习内容:课本P 5~P 8余弦定理 [预习提纲(1)复习余弦定理证明中所涉及的有关向量知识 (2)余弦定理如何与向量产生联系(3)利用余弦定理能解决哪些有关三角形问题正弦定理1.正弦定理证明方法: 3.利用正弦定理,能够解决两类问题:CcB b A a sin sin sin == (1)平面几何法已知两角和一边(2)向量法 (2)已知两边和其中一边的对角。
《正弦定理》教案教学目标1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.3.让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作.4.培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一.教学重点难点1.重点:正弦定理的内容,正弦定理的证明及基本应用;2.难点:已知两边和其中一边的对角解三角形时判断解的个数.教法与学法1.教法选择:探究式学习方式——“设置问题情境,学生独立探索,合作交流,归纳总结,延伸拓展”;2.学法指导:类比、联想,产生知识迁移;观察、实验,体验知识的形成过程;猜想、求证,达到知识的延展.教学过程一、设置情境,激发学生探索的兴趣CB ,AB j AC j CB ⋅=⋅+⋅. ()0cos 900cos j AB A j CB -=+∴,即a csin cC.三、思维拓展,课堂交流四、归纳小结,课堂延展1.教材地位分析《正弦定理》是求解任意三角形的基础,又是学生了解三角形中存在边与角的定量关系的一个开端,对进一步学习任意三角形的求解、体会事物是相互联系的辨证思想均起着举足轻重的作用.同时,通过本节课的学习为后面学习《余弦定理》提供了方法上的模式;为将来解决测量、工业、几何等方面的实际问题提供了理论基础,使学生进一步感受、了解到数学在实际中的应用.2.学生现实状况分析学生在初中已经能熟练掌握三角形全等和相似的判定,并对三角形中“大角对大边”这一边角关系的定性描述有一定得了解.学生已经熟悉高中阶段的三角函数知识,能用向量知识研究简单的长度和夹角问题.3. 教学价值分析作为三角形中的一个定理,而定理本身的应用又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证明,感受“类比—猜想—证明”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神.。
1.1.1正弦定理
(一)教学目标
通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
(二)教学重、难点
重点:正弦定理的探索和证明及其基本应用。
难点:已知两边和其中一边的对角解三角形时判断解的个数。
(三)学法:
引导学生首先从直角三角形中揭示边角关系:
sin sin sin a
b
c
A
B
C
=
=
,接着就一般斜三角形进行
探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。
(四)教学过程
[探索研究] (图1.1-1)
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,
有
sin a A c =,sin b B c =,又sin 1c
C c
==, 则sin sin sin a b c c A B C
=== 从而在直角三角形ABC 中,sin sin sin a b c
A B C
==
(图1.1-2)
思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)
可分为锐角三角形和钝角三角形两种情况:
如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a
b
A
B
=
, C
同理可得sin sin c
b
C B =
, b a
从而
sin sin a
b
A
B
=
sin c
C
=
A c B
(图1.1-3)
思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
(证法二):过点A 作j AC ⊥, 由向量的加法可得 AB AC CB =+
则 ()j AB j AC CB ⋅=⋅+
∴j AB j AC j CB ⋅=⋅+⋅
()()00cos 900cos 90-=+-j AB A j CB C
∴sin sin =c A a C ,即
sin sin =a c A C
同理,过点C 作⊥j BC ,可得 sin sin =b c B C
从而
sin sin a
b
A
B
=
sin c
C
=
类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立。
(由学生课后自己推导)
从上面的研探过程,可得以下定理
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
sin sin a
b
A
B
=
sin c
C
=
[理解定理]
(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)
sin sin a
b
A
B
=
sin c
C
=
等价于
sin sin a
b
A
B
=
,
sin sin c
b
C
B
=
,
sin a
A
=
sin c
C
从而知正弦定理的基本作用为:
①已知三角形的任意两角及其一边可以求其他边,如sin sin b A
a B
=
; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b
=。
一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
[例题分析]
例1.在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形。
解:根据三角形内角和定理,
0180()=-+C A B
000180(32.081.8)=-+
066.2=; 根据正弦定理,
00
sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ;
根据正弦定理,
00
sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A
评述:对于解三角形中的复杂运算可使用计算器。
例2.在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
解:根据正弦定理,
sin 28sin40sin 0.8999.20
==≈b A B a
因为00<B <0180,所以064≈B ,或0116.≈B ⑴ 当064≈B 时,
00000180()180(4064)76=-+≈-+=C A B ,
00
sin 20sin7630().sin sin40==≈a C c cm A
⑵ 当0116≈B 时,
00000180()180(40116)24=-+≈-+=C A B ,
00
sin 20sin2413().sin sin40==≈a C c cm A
评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。
[随堂练习]第5页练习第1(1)、2(1)题。
例3.已知∆ABC 中,∠A 060=,a =求
sin sin sin a b c
A B C
++++
分析:可通过设一参数k(k>0)使sin sin a b A B =sin c
k C
==,
证明出sin sin a b A B =sin c C ==
sin sin sin a b c
A B C
++++ 解:设sin sin a b A B =(>o)sin c
k k C
==
则有sin a k A =,sin b k B =,sin c k C =
从而sin sin sin a b c A B C ++++=sin sin sin sin sin sin k A k B k C
A B C
++++=k
又sin a A =2k ==,所以sin sin sin a b c
A B C
++++=2 评述:在∆ABC 中,等式sin sin a b A B =sin c C ==()0sin sin sin a b c
k k A B C
++=>++
恒成立。
[补充练习]已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c
(答案:1:2:3)
[课堂小结](由学生归纳总结) (1)定理的表示形式:
sin sin a
b
A B =
sin c
C
=
=
()0sin sin sin a b c
k k A B C
++=>++;
或sin a k A =,sin b k B =,sin c k C =(0)k >
(2)正弦定理的应用范围:
①已知两角和任一边,求其它两边及一角;
②已知两边和其中一边对角,求另一边的对角。