2一:空间几何体
- 格式:doc
- 大小:628.85 KB
- 文档页数:8
章末知识整合专题一图形的画法本章重点学习了立体几何图形的两种画法:一是三视图画法,二是斜二测画法.1.三视图画法:它包括正视图、侧视图、俯视图三种.画图时要遵循“高平齐、长对正、宽相等”的原则,同时还要注意被挡住的轮廓线画成虚线,尺寸线用细实线标出;D表示直径,R表示半径;单位不注明的按mm计.2.斜二测画法:主要用于水平放置的平面图画法或立体图形的画法.它的主要步骤:①画轴;②画平行于x,y,z轴的线段分别为平行于x′,y′,z′轴的线段;③截线段,平行于x,z轴的线段的长度不变,平行于y轴的线段的长度变为原来的一半.例1在下图中,图乙是图甲中实物的正视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出它的侧视图.解析:图甲是由两个长方体组合而成的,正视图正确,俯视图错误,俯视图应该画出不可见轮廓线(用虚线表示),侧视图轮廓是一个矩形,有一条可视的交线(用实线表示).正确画法如下图所示.例2已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为()A.34a2B.38a2C.68a2D.616a2解析:先根据题意,画出直观图,然后根据直观图△A′B′C′的边长及夹角求解.图(1)、(2)所示为实际图形和直观图.由(2)可知,A′B′=AB=a,O′C′=12OC=34a,在图(2)中作C′D′⊥A′B′于D′,则C′D′=22O′C′=6 8a.∴S△A′B′C′=12A′B′·C′D′=12×a×68a=616a2.答案:D►跟踪训练1.某几何体的三视图如图所示,则该几何体的体积是________.答案:16π-16专题二有关空间几何体的体积与表面积的计算1.直接考查表面积与体积公式.2.组合体的表面积与体积,分割转化成柱、锥、台、球的表面积与体积.解决这类问题,要充分利用平面几何知识,把空间图形转化为平面图形,特别注意应用柱、锥、台体的侧面展开图.例3 正六棱锥PABCDEF 中,G 为PB 的中点,则三棱锥DGAC 与三棱锥PGAC 的体积之比为( )A .1∶1B .1∶2C .2∶1D .3∶2解析:如图设棱锥的高为h ,V DGAC =V GDAC =13S △ADC ·12h , V PGAC =12V PABC =V GABC =13S △ABC ·h 2. 又S △ADC ∶S △ABC =2∶1,故V DGAC ∶V PGAC =2∶1.答案:C例4 右图是古希腊数学家阿基米德的基碑文,基碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟大发现:圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为( )A .32,1B .23,1 C .32,32 D .23,32解析:设球的半径为R ,则圆柱的底面半径为R ,高为2R ,∴V 圆柱=πR 2×2R =2πR 3,V 球=43πR 3,∴V 圆柱V 球=2πR 343πR 3=32, S 圆柱=2πR ×2R +2×πR 2=6πR 2,S 球=4πR 2,∴S 圆柱S 球=6πR 24πR 2=32,故选C . 答案:C►跟踪训练2.如图所示,在上、下底面对应边的比为1∶2的三棱台中,过上底面一边作一个平行于对棱的平面A 1B 1EF ,这个平面分三棱台成两部分的体积之比为(C )A .1∶2B .2∶3C .3∶4D .4∶5解析:设棱台的高为h ,上底面面积为S ,则下底面面积为4S ,∴V 台=13h(S +S ×4S +4S)=73Sh.V 柱A 1B 1C 1FEC =Sh ,∴V 柱V 台-V 柱=Sh 73Sh -Sh =34,故选C . 3.如图,在三棱柱A 1B 1C 1ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥FADE 的体积V 1,三棱柱A 1B 1C 1ABC 的体积为V 2,则V 1∶V 2=________.答案:1∶24专题三 思想方法——转化思想与函数方程思想转化思想的核心在于把生疏和复杂的问题转化、归结为较为熟悉、简单的问题解决,在本章中体现在通过展开图求其表面积、利用截面图将立体几何问题转化成平面几何问题等.函数方程思想是用运动变化的观点研究具体问题中的数量关系,如表面积、体积及空间几何体表面上的距离等问题.已知一个圆锥的底面半径为R ,高为H ,在其中有一个高为x 的内接圆柱.(1)求圆柱的侧面积;(2)x 为何值时,圆柱的侧面积最大?解析:(1)设圆柱的底面半径为r ,则它的侧面积为S =2πrx ,r R =H -x H ,解得:r =R -R Hx , 所以S 圆柱=2πRx -2πR Hx 2. (2)由(1)知:S 圆柱=2πRx -2πR Hx 2,在此表达式中,S 为x 的二次函数,因此,当x =H 2时,圆柱的侧面积最大. ►跟踪训练4.在三棱锥ABCD 中,AB =CD =p ,AD =BC =q ,AC =BD =r ,则三棱锥ABCD 外接球的半径为多少?解析:以AB ,AC ,AD 为面对角线构造长方体,设长方体的三棱长分别为x ,y ,z.则⎩⎪⎨⎪⎧x 2+y 2=p 2,y 2+z 2=q 2,z 2+x 2=r 2,所以x 2+y 2+z 2=p 2+q 2+r 22.从而外接球的半径为R =x 2+y 2+z 22=2(p 2+q 2+r 2)4.。
高中几何知识点总结一、空间几何体(一)棱柱、棱锥、棱台1、棱柱:一般地,由一个沿某一方向形成的空间几何体叫做棱柱。
(1)棱柱的底面、侧面、侧棱、表示方法、分类以及侧棱的性质(2)直棱柱、正棱柱、平行六面体的概念2、棱锥:叫做棱锥。
(1)棱锥的底面、侧面、侧棱、表示方法、分类以及侧棱的性质(2)正三棱锥与正四面体的概念3、棱台:叫做棱台。
(1)棱台的上下底面、侧面、侧棱、表示方法、分类以及侧棱的性质(2)正棱台的概念(3)棱台的检验方法(侧棱延长交于一点,上下底面相似且平行)(二)圆柱、圆锥、圆台、球1、旋转面:一般地,一条绕旋转所形成的2、旋转体:叫做旋转体。
3、圆柱、圆锥、圆台:将、、分别绕它的、、、所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台。
(1)圆柱、圆锥、圆台的轴、底面、侧面、母线(2)利用“平移”、“缩”、“截”的方法定义棱柱、棱锥、棱台4、球面:叫做球面。
球体:叫做球体,简称球。
5、圆柱、圆锥、圆台、球的轴截面与旋转面的关系(三)直观图画法1、消点:2、直观图画法步骤:二、点、线、面之间的位置关系1、平面基本性质公理1 如果一条直线上的公理2 如果两个平面有一个公共点,那么他们还有其它公共点,这些公共点的集合是经过这个公共点的一条直线。
公理3 经过的三点,有且只有一个平面。
(2) 线面垂直:如果一条直线与一个平面内的任意一条直线都垂直,称为线面垂直,记作,垂线、垂面、垂足。
(3) 面面平行:如果两个平面没有公共点,那么就说这两个平面平行。
面面垂直:一般地,如果两个平面所成的二面角是直二面角,3、线线关系位置关系相交直线平行直线异面直线共面关系公共点个数4、线面关系位置关系公共点符号表示图形表示直线在平面内直线与平面相交直线与平面平行5、面面关系图形表示6、各类“平行”之间的转化条件线线平行结论如果∥b,b∥c,那么∥c如果∥b,,b,那么∥如果,b,面面平行∩b=P,cβ,如果,如果∥β,如果⊥ ,⊥β,如果∥ ,β,β∩=b,那么∥b 线面平行面面平行如果∥β,垂直关系线线平行∩γ=,β∩γ=b,那么∥b 如果∥β,,那么∥β 如果⊥ ,b⊥ ,那么∥b 线面平行———— b ,∩b=P,∥β,b∥β,那么∥β β∥γ,那么∥γ 那么∥βd β,c∩d=Q,∥c,b∥d,那么∥β7、各类“垂直”之间的转化条件线线垂直结论如果⊥ ,b,那么⊥b 如果三个平面两两垂直,那么它们交线两两垂直如果⊥β——那么⊥β如果⊥ ,β,那么β⊥ ——,如果∥b,⊥c,那么b⊥c 线面垂直面面垂直平行关系线线垂直——线面垂直如果⊥b,⊥c,b,c,b∩c=P,那么⊥ 定义(二面角等于90) 0α∩β=b,,⊥b,如果⊥ ,b∥ ,那么b⊥ 面面垂直——8、立体几何中的“角”(1) 异面直线所成的角:将两异面直线平移得到两相交直线,这两条香蕉直线所成的锐角或直角就是这两条异面直线所成的角。
高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π=(二)空间几何体的体积1柱体的体积 h S V ⨯=底 2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上( 4球体的体积 334R V π=222r rl S ππ+=第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。
空间几何体知识点空间几何体是数学中一个重要的概念,它描述了我们所处的三维空间中的物体形状和结构。
在日常生活中,我们经常接触到各种不同的空间几何体,比如立方体、圆柱体、球体等等。
在本文中,我将为大家介绍一些常见的空间几何体的知识点,希望可以帮助大家更好地理解和应用这些概念。
一、点、线、面点、线、面是空间几何体的基本要素。
点是空间中的最简单的对象,它没有长度、宽度和高度,只有位置。
线是由无穷多个点组成的,它具有长度但没有宽度和高度。
面是由无穷多条线组成的,它具有长度和宽度但没有高度。
点、线、面是构成空间几何体的基础,它们是我们研究和描述空间中物体形状和结构的起点。
二、立方体立方体是一种常见的空间几何体,它具有六个面、八个顶点和十二条边。
每个面都是一个正方形,而且它们之间相互垂直。
立方体的特点是所有的面都是相等的,角度是直角。
立方体在日常生活中的应用非常广泛,比如盒子、冰箱等都是立方体的例子。
我们可以通过计算立方体的体积和表面积来研究它的特性和性质。
三、圆柱体圆柱体是由两个平行的圆底面和连结两个底面的曲面组成的。
它具有三个面、两个底面、一个侧面、两个顶点和一个轴线。
圆柱体的特点是顶面和底面都是圆形的,且相互平行。
圆柱体也是我们日常生活中常见的物体,比如水杯、筒形笔筒等。
通过计算圆柱体的体积和表面积,我们可以了解到它的容量和外部包裹面积。
四、球体球体是由无穷多个离一个固定点距离相等的点所组成的。
球体具有一个表面、一个中心以及无数个半径。
球体的特点是任意两点之间的距离都等于半径的长度,表面上任意一点与中心点的连线都与表面相切成直角。
在日常生活中,我们经常使用球体的概念来描述球、篮球、地球等物体。
球体的体积和表面积计算方法与其他几何体略有不同,但同样可以帮助我们了解球体的性质和特性。
通过以上的介绍,我们可以看到空间几何体在我们生活中的重要性和常见性。
它们不仅仅是数学中的概念和定义,更是我们日常生活中的实际对象和工具。
第一章 空间几何体知识点归纳1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
简单组合体的构成形式:⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
1、空间几何体的三视图和直观图投影:中心投影 平行投影(1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上)②建立斜坐标系'''x O y ∠,使'''x O y ∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面 ⑶圆台侧面积:()S r R l π=+侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体; ()13V h S S =+下台体上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。
第二章 点、直线、平面之间的位置关系及其论证1,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩ 公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。
空间几何体的结构____________________________________________________________________________________________________________________________________________________________________掌握棱柱、棱锥、棱台等多面体结构特征.掌握圆柱、圆锥、圆台、球等旋转体的结构特征.概括简单组合体的结构特征.1.几何体只考虑一个物体占有空间部分的形状和大小,而不考虑其他因素,则这个空间部分叫做一个几何体.2.构成空间几何体的基本元素(1)构成空间几何体的基本元素:点、线、面是构成空间几何体的基本元素.(2)平面及其表示方法:①平面的概念:平面是处处平直的面,它是向四面八方无限延展的.②平面的表示方法:图形表示:在立体几何中,通常画平行四边形表示一个平面并把它想象成无限延展的符号表示:平面一般用希腊字母α,β,γ…来命名,还可以用表示它的平行四边形对角顶点的字母来命名.深刻理解平面的概念,搞清平面与平面图形的区别与联系是解决相关问题的关键.平面与平面图形的区别与联系为:平面是没有厚度、绝对平展且无边界的,也就是说平面是无限延展的,无厚薄,无大小的一种理想的图形.平面可以用三角形、梯形、圆等平面图形来表示.但平面图形如三角形、正方形、梯形等,它们是有大小之分的,不能说三角形、正方形、梯形是平面,只能说平面可以用平面图形来表示.(3)用运动的观点理解空间基本图形之间的关系:①点动成线:运动方向始终不变得到直线或线段;运动方向时刻变化得到的是曲线或者曲线的一段.②线动成面:直线平行移动可以得到平面或者曲面;固定射线的端点,让其绕一个圆弧转动,可以形成锥面.③面动成体:面运动的轨迹(经过的空间部分)可以形成一个几何体. 3.棱柱 (1)棱柱的定义一般地,由一个平面多边形(凸多边形)沿某一方向平移形成的空间几何体叫做棱柱。
空间几何体知识点总结一、点、线和面的概念在空间几何中,点、线和面是最基本的几何对象。
点是没有长度、宽度和高度的,只有位置的概念;线是由无穷多个点组成的,具有长度但没有宽度和高度;面是由无穷多条线组成的,具有长度和宽度但没有高度。
二、立体几何体的分类立体几何体是由面围成的空间几何体,根据其表面的性质和特点,可以分为以下几类:1. 平面图形的立体几何体:由平面图形在空间中沿着一定方向运动而形成。
例如,正方形拉伸成长方体,圆形拉伸成圆柱体等。
2. 柱体:具有两个平行的底面和一个连接两个底面的侧面。
根据底面的形状,柱体可以分为圆柱体、矩形柱体等。
3. 锥体:具有一个底面和一个连接底面和顶点的侧面。
根据底面的形状,锥体可以分为圆锥体、三角锥体等。
4. 球体:表面上的所有点到球心的距离都相等。
球体没有棱和面,只有一个面。
5. 圆环体:由两个或多个同心圆所构成的空间几何体。
圆环体没有顶面和底面,只有侧面。
6. 多面体:具有多个面、棱和顶点的立体几何体。
根据面的形状和数量,多面体可以分为正多面体和非正多面体。
正多面体的面都是相等的正多边形,例如正方体、正六面体等;非正多面体的面可以是不相等的多边形,例如四面体、五面体等。
三、立体几何体的特性和性质立体几何体具有以下几个重要的特性和性质:1. 体积:立体几何体的体积是指该几何体所占的空间大小。
不同几何体的体积计算公式各不相同,例如长方体的体积是底面积乘以高度,球体的体积是4/3乘以π乘以半径的立方。
2. 表面积:立体几何体的表面积是指该几何体所有面的总面积。
不同几何体的表面积计算公式各不相同,例如长方体的表面积是各个面的面积之和,球体的表面积是4乘以π乘以半径的平方。
3. 对称性:立体几何体可能具有不同类型的对称性,例如平面对称、轴对称等。
对称性可以帮助我们判断几何体的性质和解决一些几何问题。
4. 刚体性:立体几何体是刚体,即形状和大小固定不变。
在空间中进行平移、旋转和翻转等操作时,立体几何体的性质不变。
空间几何体高考真题:
(2013.5) 某四棱台的三视图如图1所示,则该四棱台的体积是( )
A.4
B.314
C.3
16 D.6
(2013.18) 如图5,在等腰直角三角形ABC 中,︒=∠90A ,BC =6,D 、E 分别是AC 、AB
上的点,CD =BE =2,O 为BC 的中点。
将ADE ∆沿DE 折起,得到如图6所示的四棱锥BCDE A -',其中3='O A 。
(1)证明:⊥'O A 平面BCDE ;
(2)求二面角B CD A --'的平面角的余弦值。
图6
图5
C D
E
A'
O
B
O
A E
D
C
B
图1俯视图侧视图
正视图
1112
2
(2012.6) 某几何体的三视图如图1所示,它的体积为 ( ) A .12π B .45π C .57π D .81π
(2012.18) 如图5所示,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,
点E 在线段PC 上,PC ⊥平面BDE .
(1)证明:BD ⊥平面PAC ;
(2)若1PA =,2AD =,求二面角B PC A --的正切值.
(2011.7) 如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为( )
A .63
B .93
C .123
D .183
(2011.18) 如图5,在锥体P-ABCD 中,ABCD 是边长为1的菱形,且60DAB ∠=,
2PA PD ==,PB=2,E ,F 分别是BC ,PC 的中点.
(1) 证明:AD ⊥平面DEF ;
(2) 求二面角P-AD-B 的余弦值.
(2010.6) 如图1,△ ABC 为三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且
AA '=3
2BB '=CC ' =AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )
A
B C D
(2010.18) 如图5,圆弧ABC是半径为a的半圆,AC为直径,点E为弧AC的中点,点B和点C为线段AD的三等分点。
平面AEC外一点F满足FB=FD=5a,FE=6
a
(1)证明:EB⊥FD;
(2)已知点Q,R分别为线段FE,FB上的点,使得BQ=2
3FE,FR=
2
3FB,求平面BED与平面RQD所
成二面角的正弦值。
(2009.18) 如图6,已知正方体1111ABCD A B C D -的棱长为2,点E是正方形11BCC B 的中心,点F、G分别是棱111,C D AA 的中点.设点11,E G 分别是点E、G在平面11DCC D 内的正投影.
(1)求以E为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积; (2)证明:直线11FG FEE ⊥平面; (3)求异面直线11E G EA 与所成角的正统值
(2008.5) 将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )
E F D
I
A H G
B
C E
F D A
B C
侧视 图1
图2 B
E
A .
B
E
B . B
E
C .
B
E
D .
(2008.20) 如图5所示,四棱锥P ABCD -的底面ABCD 是半径为R 的圆的内接四边形,其中BD 是圆的直径,60ABD ∠=,45BDC ∠=,PD 垂直底面ABCD ,22PD R =,
E F ,分别是PB CD ,上的点,且
PE DF
EB FC
=,过点E 作BC 的平行线交PC 于G . (1)求BD 与平面ABP 所成角θ的正弦值; (2)证明:EFG △是直角三角形;
(3)当
1
2
PE EB =时,求EFG △的面积.
(2007.19) 如图6所示,等腰ABC △的底边66AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积. (1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值? (3)当()V x 取得最大值时,求异面直线AC 与PF 所成角的余弦值.
F
C
P
G
E
A
B
图5
D 图6
F
P
A
C
B
E
D
(2006.12)棱长为3的正方体的顶点都在同一球面上,则该球的表面积为____ __.
(2006.17) 如图5所示,AF 、DE 分别世O 、1O 的直径,AD 与两圆所在的平面均垂直,8AD =.BC 是O 的直径,6AB AC ==,//OE AD .
(I)求二面角B AD F --的大小; (II)求直线BD 与EF 所成的角.
(2005.4) 已知高为3的直棱柱ABC —A ′B ′C ′的底面是边长为1的正三 角形(如图1所示),则三棱锥B ′—ABC 的体积为( )
A .
4
1
B .
2
1 C .
6
3 D .
4
3
(2005.16) 如图3所示,在四面体P —ABC 中,已知PA=BC=6,PC=AB=10,AC=8,PB=342.F 是线段PB 上一点,3417
15
=
CF ,点E 在线段AB 上,且EF ⊥PB. (Ⅰ)证明:PB ⊥平面CEF ; (Ⅱ)求二面角B —CE —F 的大小.
图 5
A
B
C
F
D
E
O
1O
B'
A'
A
C
B
C'
如图1
如图3
P
A
C
B F E
(2004.1) 在棱长为1的正方体上,分别过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是
A .
23
B .
6
7
C .
4
5
D .
56
(2004.18) 如右下图,在长方体1111ABCD A B C D -中,已知14,3,2AB AD AA ===,,E F 分别是线段,AB BC 上的点,且1EB FB == (I)求二面角1C ED C --的正切值 (II)求直线1EC 与1FD 所成角的余弦值。