一次函数和一次不等式应用题
- 格式:docx
- 大小:25.36 KB
- 文档页数:2
一次函数与不等式应用题【例题经典】例1 (2006年武汉市)某公司以每吨200元的价格购进某种矿石原料300吨,用于生产甲、乙两种产品,生产1吨甲产品或1 吨乙产品所需该矿石和煤原料的吨数如下表.甲乙矿石(吨)104煤(吨)48煤的价格为400元/吨,生产1吨甲产品除原料费用外,还需其他费用400元, 甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元, 乙产品每吨售价5500元,现将该矿石原料全部用完,设生产甲产品x 吨,乙产品m 吨,公司获得的总利润为y 元.(1)写出m 与x 之间的关系式;(2)写出y 与x 的函数表达式(不要求写自变量的范围);(3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大? 最大利润是多少?【点评】主要考查的是一次函数与不等式的实际应用.例2 (2006年黄冈市)我市英山县某茶厂种植“春蕊牌”绿茶,由历年来市场销售行情知道,从每年的3月25日起的180天内,绿花市场销售单价y (元) 与上市时间t (天)的关系可以近似地用如图(1)中的一条折线表示.绿茶的种植除了与气候、 种植技术有关外,某种植的成本单价z (元)与上市时间t (天)的关系可以近似地用如图(2)的抛物线表示.(1)直接写出图(1)中表示的市场销售单价y (元)与上市时间t (天)(t>0) 的函数关系式;(2)求出图(2)中表示的种植成本单价z (元)与上市时间t (天)(t>0) 的函数关系式;(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?(说明:市场销售单价和种植成本单价的单位:元/500克.)【点评】主要考查同学们从两个图像中获取信息的能力.【考点精练】1.(2006年广安市)某电信公司开设了甲、乙两种市内移动通信业务. 甲种使用者每月需缴15元月租费,然后每通话1分钟,再付话费0.3元;乙种使用者不缴月租费,每通话1分钟,付话费0.6元.若一个月内通话时间为x 分钟,甲、 乙两种的费用分别为y 1和y 2元.(1)试分别写出y 1、y 2与x 之间的函数关系式; (2)在同一坐标系中画出y 1,y 2的图像;(3)根据一个月通话时间,你认为选用哪种通信业务更优惠?2.为了鼓励小强勤做家务,培养他的劳动意识,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的. 若设小强每月的家务劳动时间为x 小时,该月可得(即下月他可获得)的总费为y 元,则y (元)和x (小时)之间的函数图像如图所示.(1)根据图像,请你写出小强每月的基本生活费为多少元; 父母是如何奖励小强家务劳动的?(2)写出当0≤x≤20时,相对应的y 与x 之间的函数关系式;(3)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?3.(2006年泸州市)“五一黄金周”的某一天,小刚全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩,该小汽车离家的距离S (千米)与时间t (时)的关系可以用下图的折线表示,根据图像提供的有关信息,解答下列问题: (1)小刚全家在旅游景点游玩了多少小时?(2)求出返程途中S (千米)与时间t (时)的函数关系式,并求出自变量t 的取值范围.4.随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购A 、B 两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店) 销售.预计每种水果的盈利情况如下表:A 种水果/箱B 种水果/箱甲店 11元 17元乙店 9元 13元有两种配货方案(整箱配货):方案一:甲、乙两店各配货10箱,其中A 种水果两店各5箱,B 种水果两店各5箱.方案二: 按照甲、 乙两店盈利相同配货, 其中A 种水果甲店______ 箱, 乙店______箱,B 种水果甲店_______,乙店_______箱.(1)如果按照方案一配货,请你计算出经销商盈利多少元; (2)请你将方案二填写完整(只填写一种情况即可),并根据你填写的方案二与方案一作比哪种方案盈利较多?(3)在甲、乙两店各配货10箱,且保证乙店盈利不小于100元的条件下,请你设计出经销商盈利最大的配货方案,并求出最大盈利为多少?5.(2006年芜湖市)某种内燃动力机车在青藏铁路试验运行前, 测得该种机械效率η和海拔高度h(0≤h≤6.5,单位km)的函数关系式如图所示.(1)请你根据图象写出机车的机械效率η和海拔高度h(km)的函数关系;(2)求在海拔3km的高度运行时,该机车的机械效率为多少?6.(2006年遂宁市)有一种笔记本原售价为每本8元,甲市场用如下办法促销, 每次购买1~8本打九折,9~16本打八五折,17~25本打八折,超过25本打七五折.乙商场用如下办法促销:购买本数(本)1~56~1011~15超过15每本价格(元)7.607.20 6.40 6.00(1)请仿照乙商场的促销列表,列出甲商场促销笔记本的购买本数与每本价格的对照表.(2)某学校有A、B两个班都需要买这种笔记本,A班需要8本,B班需要15本, 问他们到哪家商场购买花钱较少?(3)设某班需要购买这种笔记本本数为x且9≤x≤40,总花费为y元, 从最省钱的角度出发,写出y与x的函数关系式.7.某校部分住校生,放学后到学校锅炉房打水,每人接水2升,他们先同时打开两个放水笼头,后来因故障关闭一个放水笼头.假设前后两人接水间隔时间忽略不计, 且不发生泼洒,锅炉内的余水量y (升)与接水时间x (分)的函数图象如图. 请结合图像,回答下列问题:(1)根据图中信息,请你写出一个结论; (2)问前15位同学接水结束共需要几分钟?(3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3分钟.”你说可能吗?请说明理由.8.(2006年泉州市)为实现泉州市森林城市建设的目标, 在今年春季的绿化工作中,绿化办计划为某住宅小区购买并种植400株树苗.某树苗公司提供如下信息:信息一:可供选择的树苗有杨树,丁香树,柳树三种,并且要求购买杨树, 丁香树的数量相等.信息二:如下表:树 苗每株树亩批发价格(元)两年后每株树苗对空气的净化指数杨 树 3 0.4丁香树 2 0.1柳 树 P 0.2设购买杨树,柳树分别为x 株,y 株.(1)写出y 与x 之间的函数关系式(不要求写出自变量的取值范围);(2)当每株柳树的批发价P 等于3元时,要使这400 株树苗两年后对该住宅小区的空气净化指数不低于90,应怎样安排这三种树苗的购买数量,才能使购买树苗的总费用最低?最低的总费用是多少元;(3)当每株柳树批发价格P (元)与购买数量y (株)之间存在关系.P=3-0.005y 时, 求购买树苗的总费用W (元)与购买杨树数量x (株)之间的函数关系式( 不要求写出自变量的取值范围).答案:例题经典例1:解:(1)m=300104x-(2)生产1吨甲产品获利:4600-10 ×200-4×400-400=600;生产1吨乙产品获利:5500-4×200-8×400-500=1000,∴y与x 的函数表示式为:y=600x+1000×300104x-=-1900x+75000;(3)∵4x+8×300104x-≤200,∴30≥x≥25,∴当生产甲产品25吨时,公司获得的总利润最大,y最大=-1900×25+75000=27500(元).例2:解:(1)依题意,可建立的函数关系式为:y=2160(0120), 380(120150),220(150180). 5t ttt t⎧-+<<⎪⎪≤<⎨⎪⎪+≤≤⎩(2)由题目已知条件可设z=a(t-110)2+20,∵图像过点(60,853),∴853=a(60-110)2+20,∴a=1300,∴z=1300(t-110)2+20(t>0).(3)设纯收益单价为W元,则W=销售单价-成本单价.故W=22221160(100)20(0120), 3300180(110)20(120150),3002120(110)20(150180). 5300t t tt tt t t⎧-+---<<⎪⎪⎪---≤<⎨⎪⎪+---≤≤⎪⎩化简得W=2221(10)100(0120),3001(110)60(120150), 3001(170)56(150180).300t tt tt t⎧--+<<⎪⎪⎪--+≤<⎨⎪⎪--+≤≤⎪⎩,①当W=-1300(t-10)2+100(0<t<120)时,有t=10时,W最大,最大值为100;②当W=-1300(t-110)2+60(120≤t<150)时, 由图象知, 有t=120时,W最大,最大值为5923;③当W=-1300(t-170)2+56(150≤t≤180)时,有t=170时,W最大,最大值为56.综上所述,在t=10时,纯收益单价有最大值,最大值为100元.考点精练:1.分析:在解决问题(3)时,因一个月通话时间没有确定, 而两种通信业务的费用都与通话时间有关,因此需要进行讨论,可观察图象得出结论,也可按①y1>y2,②y1=y2,③y1<y2进行求解.解:(1)y1=15+0.3x(x≥0),y2=0.6x(x≥0)(2)如图(3) 由图知:当一个月通话时间为50分钟时,两种业务一样优惠;当一个月通话时间少于50分钟时,乙种业务更优惠;当一个月通话时间大于50分钟时,甲种业务更优惠.2.(1)小强每月生活费为150元,当家务劳动时间每月不超过20小时/月时,每小时有2.5元的报酬,即y=2.5x+150(0≤x≤20),当家务劳动时间超过20小时/月时,超过部分每小时4元报酬,即y=4x+120(x≥20)(2)y=2.5x+150(0≤x≤20)(3)250>200, ∴y=4x+120,250=4x+120,x=32.5,即小强4月份做家务32.5小时.3.(1)游玩了4 个小时(2)S=-60t+1020(14≤t≤17)4.(1)按照方案一配货,经销商盈利:5×11+5×9+ 5×17+5×13=250(元)(2)只要求填写一种情况:第一种情况:2,8,6,4;第二种情况:5,5,4,6;第三种情况:8,2,2,8.按第一种情况盈利:(2×11+17×6)×2=248(元);按第二种情况盈利:(5×11+4×17)×2=246(元);按第三种情况盈利:(8×11+2×17)×2=244(元);方案一比方案二盈利多(3)设甲店配A种水果x箱,则甲店配B 种水果(10-x )箱,乙店配A 种水果(10-x )箱,乙店配B 种水果10-(10-x )=x 箱,∵9×(10- x) +13x≥100,∴x≥212.经销商盈利y=11x+17×(10-x )+9×(10-x )+13x=-2x+260.当x= 3时,y 值最大.方案:甲店配A 种水果3箱,B 种水果7箱.乙店配A 种水果7箱,B 种水果3箱时盈利最大,最大盈利为-2×3+260=254(元)5.解:(1)由图象可知,η与h 的函数关系为一次函数,设η=kh+b(k≠0),∵一次函数图象过(0,40%),(5,20%)两点,∴40%,20%5.b k b =⎧⎨=+⎩解得:k=-0.04,b=0.4,∴η=-0.04h+0.4(0≤h≤6.5)(2)当h=3km 时,代入η=-0.04h+0.4,解得η=0.28.∴当机车运行在海拔高度为3km 的时候,其机车的运行效率为28%. 6.(1) 甲购买本数(本)1-89-1617-25超过25本每本价格(元)7.2 6.8 6.4 6(2)A 两商场一样 B 到乙商场花钱较少(3)甲商场:y= 6.8(916),7.2(916),6.4(1725),: 6.4(1115),6(2540).6(1640).x x x x x x y x x x x x x ≤≤≤≤⎧⎧⎪⎪≤≤=≤≤⎨⎨⎪⎪<≤≤≤⎩⎩乙乙乙7.解:(1) 锅炉内原有水96升,接水2分钟后,锅炉内的余水量为80升,接水4分钟,锅炉内的余水量为72升;2分钟前的水流量为每分钟8升等.(2)当0≤x≤2时, 设函数解析式为y=k 1x+b 1,把x=0,y=96和x=2,y=80代入得:1111196,8,280,96.b k k b b ==-⎧⎧⎨⎨+==⎩⎩乙乙,∴y=-8x+96(0≤x≤2),当x>2时,设函数解析式为y=k 2x+b 2,把x=2,y=80和x=4,y=72代入得:222222802,4,724,88.k b k k b b =+=-⎧⎧⎨⎨=+=⎩⎩乙乙,∴y=-4x+88(x>2).∵前15位同学接完水时余水量为96-15×2=66(升),∴66=-4x+88,x=5.5.答:前15 位同学接完水需5.5分钟.(3)①若小敏他们是一开始接水的,则接水时间为8×2÷8=2(分),即8位同学接完水,只需要2分钟,与接水时间恰好3分钟不符.②若小敏他们是在若干位同学接完水后开始接水的,设8位同学从t分钟开始接水,挡0<t≤2时,则8(2-t)+4[3-(2-t)]=8×2,16-8t+4+4t=16,∴t=1(分),∴(2-t)+[3-(2-t)]=3(分),符合.当t>2时,则8×2÷4=4(W发),即8位同学接完水,需7分钟,与接水时间恰好3分钟不符.所以小敏说法是可能的.即从1分钟开始8位同学连续接完水恰好用了3分钟8.( 1)y=400-2x(2)当购买200株杨树,200株丁香树,不购买柳树苗时,能使购买费用最低,最低总费用为1000元(3)W=3x+2x+p·y,即W=-0.02x2+7x+400.。
一次函数与不等式练习题1. 已知一次函数的表达式为 $y = 2x + 3$,求当 $y > 0$ 时,$x$ 的取值范围。
2. 给定一次函数 $y = 3x - 4$,找出所有使得 $y \leq 2$ 的$x$ 值。
3. 函数 $y = -x + 5$ 与 $x$ 轴交于点 $(a, 0)$,求 $a$ 的值。
4. 确定函数 $y = 4x - 1$ 与 $y = -2x + 6$ 的交点坐标。
5. 已知 $y = mx + b$ 通过点 $(1, 2)$ 和 $(3, 0)$,求 $m$ 和$b$ 的值。
6. 函数 $y = 2x + 1$ 在 $x = 2$ 时的函数值是多少?7. 一次函数 $y = -3x + 7$ 与 $y$ 轴交于点 $(0, b)$,求 $b$ 的值。
8. 给定一次函数 $y = 5x - 2$,求当 $y < -1$ 时,$x$ 的取值范围。
9. 函数 $y = 3x + 4$ 与 $x$ 轴交于点 $(a, 0)$,求 $a$ 的值。
10. 确定函数 $y = 2x - 5$ 与 $y = -x + 3$ 的交点坐标。
11. 已知 $y = mx + b$ 通过点 $(-2, 3)$ 和 $(4, -1)$,求$m$ 和 $b$ 的值。
12. 函数 $y = -x + 2$ 在 $x = -3$ 时的函数值是多少?13. 一次函数 $y = 4x - 8$ 与 $y$ 轴交于点 $(0, b)$,求 $b$ 的值。
14. 给定一次函数 $y = -2x + 5$,求当 $y \geq 3$ 时,$x$ 的取值范围。
15. 函数 $y = x - 6$ 与 $x$ 轴交于点 $(a, 0)$,求 $a$ 的值。
16. 确定函数 $y = 3x + 2$ 与 $y = -\frac{1}{2}x + 4$ 的交点坐标。
17. 已知 $y = mx + b$ 通过点 $(0, 1)$ 和 $(2, 5)$,求 $m$ 和$b$ 的值。
一、一次函数与一元一次方程综合1.已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( )A .2-B .2C .1-D .02.已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______.3.已知一次函数y kx b =+的图象经过点()20,,()13,,则不求k b ,的值,可直接得到方程3kx b +=的解是x =______.二、一次函数与一元一次不等式综合1.已知一次函数25y x =-+.(1)画出它的图象;(2)求出当32x =时,y 的值;(3)求出当3y =-时,x 的值;(4)观察图象,求出当x 为何值时,0y >,0y =,0y <2.当自变量x 满足什么条件时,函数41y x =-+的图象在:(1)x 轴上方; (2)y 轴左侧; (3)第一象限. 3.已知15y x =-,221y x =+.当12y y >时,x 的取值范围是( ) A .5x > B .12x < C .6x <- D .6x >- 4.已知一次函数23y x =-+(1)当x 取何值时,函数y 的值在1-与2之间变化? (2)当x 从2-到3变化时,函数y 的最小值和最大值各是多少?5.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为______.6.若解方程232x x +=-得2x =,则当x _____时直线2y x =+上的点在直线32y x =-上相应点的上方. 已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求:(1)当2x =时,y 的值;(2)x 为何值时,0y <?三、一次函数与二元一次方程(组)综合1.已知直线3y x =-与22y x =+的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________. 2.已知方程组y ax c y kx b -=⎧⎨-=⎩(a b c k ,,,为常数,0ak ≠)的解为23x y =-⎧⎨=⎩,则直线y ax c =+和直线y kx b =+的交点坐标为________.3.已知24x y =⎧⎨=⎩,是方程组73228x y x y -=⎧⎨+=⎩的解,那么一次函数y =________和y =________的交点是________. 4.一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )A .0B .1C .2D .35.已知一次函数y 6kx b =++与一次函数2y kx b =-++的图象的交点坐 标为A (2,0),求这两个一次函数的解析式及两直线与y 轴围成的 三角形的面积.。
例1 从2014年起,中国的鞋号已“变脸”,新的国家标准要求鞋号用毫米数标注.据了解大多数市民还不了解此新标准,小明对新旧鞋号的标注变化进行了对比研究,发现新标准鞋子毫米数y与旧鞋号x之间存在着一次函数关系,并得到相关数据如下:旧鞋号 x 36 38 40新标准毫米数y230 240 250(1)请你帮助小明根据上述数据归纳出新标准毫米数与旧鞋号标注之间的换算关系式,并用一句简明的数学语言来表示;(2)如果小明的爸爸穿的一双42号凉鞋坏了,准备买一双同样尺寸的新凉鞋,那么应买一双多少毫米数的新凉鞋?例2 某种拖拉机的油箱可储油40L,加满油并开始工作后,•油箱中的余油量y(L)与工作时间x(h)之间为一次函数关系,如图所示.(1)求y与x的函数解析式.(2)一箱油可供拖位机工作几小时?知识点2 图像法解决实际问题注:读图时一定要明确横纵坐标表示的量所代表的意义。
例3 某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求yl 与y2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案.二、典型例题题型1 运用一次函数的关系解决生活中的实际问题例 1 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数表达式;(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度;(3)若桌面上有若干个饭碗,整齐叠放成一摞,已测得它的高度为37.5cm,你能求出此时有多少个饭碗吗?题型2利用图表信息解决实际问题例2 某厂家生产两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产A种购物袋x个,每天共获利y元.(1)求y与x的函数关系式;(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?题型3 建立一次函数模型解决实际问题例3 某下岗职工购进一批苹果到农贸市场零售,已知买出的苹果数量x(kg)与收入y(元)的关系如下表:在平面直角坐标系中描点,观察点的分布情况,探求收入y(元)与买出数量x(kg)之间的函数关系式。
一次函数与一元一次不等式经典练习题祖π数学之高分速成新人教八年级下册题型3:一次函数图像与一元一次不等式1.如图,直线 $y=kx+b(k<0)$ 与 $x$ 轴交于点 $(3,0)$,关于 $x$ 的不等式 $kx+b<0$ 的解集是()。
A。
$x3$。
C。
$x\leq3$。
D。
$x\geq3$2.如图,函数 $y=2x$ 和 $y=ax+4$ 的图象相交于$A(m,3)$,不等式 $2x<ax+4$ 的解集为()。
A。
$x3$。
C。
$x\leq2$。
D。
$x\geq2$3.如图,是两个一次函数 $y_1=3x+1$ 和 $y_2=x-1$ 的图象,完成下列问题:1)函数$y_1=3x+1$ 和$y_2=x-1$ 的交点坐标是$(2,7)$,则可得关于$y_1=3x+1$ 的二元一次方程组的解是$x=2,y=7$。
2)当 $y_1>y_2$ 时,$x>2$。
3)当 $y_1<y_2$ 时,$x<2$。
4.如图,是两个一次函数 $y_1=3x+1$ 和 $y_2=x-1$ 的图象。
1)函数$y_1=3x+1$ 和$y_2=x-1$ 的交点坐标是$(2,7)$,则可得关于$y_1=3x+1$ 的二元一次方程组的解是$x=2,y=7$。
2)当 $y_1>y_2$ 时,$x>2$。
3)当 $y_1<y_2$ 时,$x<2$。
5.已知 $y_1=x-5$,$y_2=2x+1$。
当 $y_1>y_2$ 时,$x$ 的取值范围是 $x<3$。
6.已知一次函数 $y=-2x+5$。
1)画出它的图象;2)求出当 $x=3$ 时,$y$ 的值;3)求出当 $y=-3$ 时,$x$ 的值;4)观察图象,求出当 $x$ 为何值时,$y>1$,$y=1$,$y<1$。
7.画出函数 $y=-4x+1$ 的图象,当自变量 $x$ 满足什么条件时的函数条件:1)$x$ 轴上方;2)$y$ 轴左侧;3)第一象限。
【单点训练】21一次函数与一元一次不等式一、选择题(共15小题)1.若函数y=ax+b(a≠0)的图象如图所示,不等式ax+b≥0的解集是()则不等式﹣kx﹣b<0的解集为()3.如图,直线L是函数y=x+3的图象.若点P(x,y)满足x<5,且y>x+3,则P点的坐标可能是()时,>6.观察下列图象,可以得出不等式组的解集是()<<().C D.)9.一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集是()10.)若函数y=kx+b(k,b为常数)的图象如图所示,那么当y>0时,x的取值范围是()11.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为()12.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解为()13.如图,一次函数y=kx+b的图象经过A、B两点,则kx+b>0解集是()14.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()15.已知一次函数y=kx+b的图象(如图),当x<0时,y的取值范围是()二、填空题(共15小题)(除非特别说明,请填准确值)16.若直线y=kx+b的图象如图所示,则不等式kx+b>0的解集是_________.17.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为_________.18.已知y1=﹣x+3,y2=3x﹣4,如果y1>y2,则x的取值范围是_________.19.对于一次函数y=﹣2x﹣3,当_________时,图象在x轴下方.20.一次函数y=kx+b的图象经过A(﹣3,0)和B(0,2)两点,则kx+b>0的解集是_________21.如图是关于x 的函数y=kx+b (k ≠0)的图象,则不等式kx+b ≤0的解集为 _________ .22.如图,一次函数y=kx+b 的图象经过A ,B 两点,则kx+b >0的解集是 _________ .23.一次函数y=ax+b (a ,b 都是常数)的图象过点P (﹣2,1),与x 轴相交于A (﹣3,0),则根据图象可得关于x 的不等式组0≤ax+b <﹣x 的解集为 ____.24.已知两个一次函数y 1=3x ﹣4,y 2=3﹣x ,若y 1<y 2,则x 的取值范围是: _________ .25.如图,直线y=kx+b 经过A (﹣2,﹣1)和B (﹣3,0)两点, 则不等式组x <kx+b <0的解集为 _________ .26.如图,一次函数y=ax+b 的图象经过A 、B 两点,则关于x 的不等式ax+b <0的解集是 _________ .27.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x+b >k 2x 的解集为 _________ .28.已知一次函数y=ax+b (a 、b 为常数),x 与y 的部分对应值如右表: 那么方程ax+b=0的解是 _________ ,不等式ax+b >0的解是 _________ .29.如图,直线y=kx+b 经过A (2,1),B (﹣1,﹣2)两点, 则不等式x >kx+b >﹣2的解集为 _________ .30.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x+b 的解集为 _________ .三、解答填空题(共1小题)(除非特别说明,请填准确值)31.若函数y=﹣x+a 和y=x+b 的图象交点坐标为(m ,8),则a+b=.【单点训练】一次函数与一元一次不等式参考答案与试题解析一、选择题(共15小题)1.若函数y=ax+b(a≠0)的图象如图所示,不等式ax+b≥0的解集是()2.(2010•山西)如图,直线y=kx+b交坐标轴于A(﹣3,0)、B(0,5)两点,则不等式﹣kx﹣b<0的解集为()3.(2006•济南)如图,直线L是函数y=x+3的图象.若点P(x,y)满足x<5,且y>x+3,则P点的坐标可能是()时,时,<时,﹣6.观察下列图象,可以得出不等式组的解集是()<>﹣不等式组的解集是﹣7.(2007•山西)如图是关于x的函数y=kx+b(k≠0)的图象,则不等式kx+b≤0的解集在数轴上可表示为().C D.8.(2003•滨州)函数y=kx+b(k、b为常数)的图象如图所示,则关于x的不等式kx+b>0的解集是()9.(2008•乌鲁木齐)一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集是()10.(2005•内江)若函数y=kx+b(k,b为常数)的图象如图所示,那么当y>0时,x的取值范围是()11.(2009•江汉区)直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为()12.(2007•临沂)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解为()13.(2006•河南)如图,一次函数y=kx+b的图象经过A、B两点,则kx+b>0解集是()14.(2009•烟台)如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()15.(2004•贵阳)已知一次函数y=kx+b的图象(如图),当x<0时,y的取值范围是()二、填空题(共15小题)(除非特别说明,请填准确值)16.若直线y=kx+b的图象如图所示,则不等式kx+b>0的解集是x<1.17.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为﹣2<x<﹣1.<19.对于一次函数y=﹣2x﹣3,当x>﹣时,图象在x轴下方..>﹣时,一次函数的图象在20.一次函数y=kx+b的图象经过A(﹣3,0)和B(0,2)两点,则kx+b>0的解集是x>﹣321.如图是关于x的函数y=kx+b(k≠0)的图象,则不等式kx+b≤0的解集为x≤2.22.如图,一次函数y=kx+b的图象经过A,B两点,则kx+b>0的解集是x>﹣3.23.一次函数y=ax+b(a,b都是常数)的图象过点P(﹣2,1),与x轴相交于A(﹣3,0),则根据图象可得关于x的不等式组0≤ax+b<﹣x的解集为﹣3≤x<﹣2.,;x<﹣x24.已知两个一次函数y1=3x﹣4,y2=3﹣x,若y1<y2,则x的取值范围是:x<.<<<25.(2008•武汉)如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式组x<kx+b<0的解集为﹣3<x<﹣2.x时,不等式组26.(2007•孝感)如图,一次函数y=ax+b的图象经过A、B两点,则关于x的不等式ax+b<0的解集是x<2.27.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x 的解集为x<﹣1.y=ax+b(a、b为常数),x与y的部分对应值如右表:的解是x=1,不等式ax+b>0的解是x<1.29.(2009•武汉)如图,直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式x>kx+b>﹣2的解集为﹣1<x<2.的值,即可得到不等式,.x即,30.(2008•咸宁)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为x<﹣1.三、解答填空题(共1小题)(除非特别说明,请填准确值)31.若函数y=﹣x+a和y=x+b的图象交点坐标为(m,8),则a+b=16.。
(一) 利用一次函数增减性和不等式解应用题1、 某社区购甲乙两种树苗共600棵,甲乙两种树苗单价及成活率见下表:(1)假设购买树苗资金不超过44000元,那么最多可购买乙树苗多少棵? 解:设购买乙树苗X 棵,甲树苗(600 - X )棵,费用W ,W =80X + 60•(600–X )≤44000X ≤400答:买乙树苗400棵。
(2)假设希望这批树苗成活率不低于90%,并使购买树苗费用最低,应如何选购树苗,购买树苗的最低费用为多少?解:设购买乙树苗X 棵,甲树苗(600 – X )棵,费用W ,W =80X + 60•(600–X )=20 X+3600∵20为正数∴W 随X 增大而增大∴W=150时费用最低二、为了更好治理南门湖水质,爱惜环境,市治污公司决定购10台活水处置设备,现有A 、B 两种型号的设备,购买一台A 型设备比一台B 型设备多2万元,96%X+528–88% X ≥ 540 X ≥ 15096%X+88%(600–X ) 600 ≥90%购买2台A型设备比3台B设备少6万元。
(1)求a、b的值解:由题可知,a=(b+2)万元2(b+2)=3 b–6b=10a=12万元答:a为12,b为10(2)市治污公司购买污水处置设备的资金不超过105万元,你以为该公司有哪几种方案。
12X+10(10–X)≤105X≤∵台数为正整数∴X为0,1,2答:A型O台,B型10台A型1台,B型9台A型2台,B型8台(3)在(2)的条件下,每一个月要求处置南门湖污水量不低于2040吨为了节约资金,请你设计“一个最省钱”的购买方案。
解设A型买X台2040X+200(600 – X )≥204012X+10(10–X )≤1051≤ x ≤设总金额为yy=12x+10(10 –x)=2x+100依照一次函数增减性y 随x 增大而增大在1≤ x ≤ x 是整数∴X 取1即A 型1台,B 型9台3、 某市为进一步改善居民生活环境,决定对城区部份路段实施改造,现需要A 、B 两种花砖50万块,该厂现有甲种原料180千克,乙种原料145万千克,已知生产1万块A 砖,用甲种原料万千克,用乙种原料万千克,造价万元,生产1万块B 砖,用甲种原料2万千克,乙种原料5万千克,造价万元。
一元一次不等式与一次函数1.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x <ax+4的解集为(的解集为( )(5) A . x <B . x <3 C . x >D . x >3 2.已知一次函数y=ax+b 的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式a (x ﹣1)﹣b >0的解集为(的解集为( )A . x <﹣1 B . x >﹣1 C . x >1 D . x <1 3.如图,直线y 1=k 1x+a 与y 2=k 2x+b 的交点坐标为(1,2),则使y 1<y 2的x 的取值范围为(的取值范围为()A . x >1 B . x >2 C . x <1 D . x <2 4.直线l 1:y=k 1x+b 与直线l 2:y=k 2x+c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x+b <k 2x+c 的解集为(的解集为( )A . x >1 B . x <1 C . x >﹣2 D . x <﹣2 5.如图,一次函数y=kx+b 的图象经过A 、B 两点,则kx+b >0解集是(解集是( )A . x >0 B . x >﹣3 C . x >2 D . ﹣3<x <2 6.如图,函数y=kx 和y=﹣x+3的图象相交于(a ,2),则不等式kx <﹣x+3的解集为(的解集为( )A .x <B . x >C . x >2 D . x <2 7.(如图,直线l 是函数y=x+3的图象.若点P (x ,y )满足x <5,且y >,则P 点的坐标可能是(点的坐标可能是( )A.(4,7)B.(3,﹣5)C.(3,4)D.(﹣2,1)A.x<5 B.x>5 C.x<﹣4 D.x>﹣4 (10) (11) A.x<2 B.x>2 C.x<3 D.x>3 A.0B.1C.2D.3的解集为 _________.的解集为利(收入>成本)时,销售量必须 .利(收入>成本)时,销售量必须(13) 的解集为 _________.的解集为的解集为 _________.的解集为的解集是 _________.的解集是16.如图,已知函数y=x+b和y=ax+3的图象相交于点P,则关于x的不等式x+b<ax+3的解集为的解集为 _________.(17) (18) 17.如图,直线y=kx+b经过点A(﹣1,1)和点B(﹣4,0),则不等式0<kx+b<﹣x的解集为的解集为 _________.18.如图,直线y=kx+b交坐标轴于A(﹣3,0)、B(0,5)两点,则不等式﹣kx﹣b<0的解集是的解集是 _________.三.解答题19.在平面直角坐标系中,直线y=kx﹣15经过点(4,﹣3),求不等式kx﹣15≥0的解.的解.20.如图,直线l1与l2相交于点P,点P横坐标为﹣1,l1的解析表达式为y=x+3,且l1与y轴交于点A,l2与y轴对称.轴交于点B,点A与点B恰好关于x轴对称.的坐标;(1)求点B的坐标;的解析表达式;(2)求直线l2的解析表达式;(3)若点M为直线l2上一动点,直接写出使△MAB的面积是△P AB的面积的的点M的坐标;的坐标;(4)当x为何值时,l1,l2表示的两个函数的函数值都大于0?21.已知:直线l1的解析式为y1=x+1,直线l2的解析式为y2=ax+b(a≠0);两条直线如图所示,这两个图象的交点在y轴上,直线l2与x轴的交点B的坐标为(2,0)的值;(1)求a,b的值;的取值范围;(2)求使得y1、y2的值都大于0的取值范围;的面积是多少?(3)求这两条直线与x轴所围成的△ABC的面积是多少?的坐标. (4)在直线AC上是否存在异于点C的另一点P,使得△ABC与△ABP的面积相等?请直接写出点P的坐标.22.如图,直线y=kx+b经过点A(0,5),B(1,4).的解析式;(1)求直线AB的解析式;的坐标;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;的解集.(3)根据图象,写出关于x的不等式2x﹣4≥kx+b的解集.AACBBAAAAD >﹣ ﹣2<x<﹣1.大于4.x<.x>﹣1.x>1.x<1.﹣4<x<﹣1.x>﹣19 x≥5.20. 解:(1)当x=0时,x+3=0+3=3,∴点A的坐标是(0,3),轴对称,∵点A与点B恰好关于x轴对称,∴B点坐标为(0,﹣3);(2)∵点P横坐标为﹣1,∴(﹣1)+3=,∴点P的坐标是(﹣1,),设直线l2的解析式为y=kx+b,则,解得,∴直线l2的解析式为y=﹣x﹣3;(3)∵点P横坐标是﹣1,△MAB的面积是△P AB的面积的,∴点M的横坐标的长度是,①当横坐标是﹣时,y=(﹣)×(﹣)﹣3=﹣3=﹣,②当横坐标是时,y=(﹣)×﹣3=﹣﹣3=﹣,∴M点的坐标是(﹣,﹣)或(,﹣);(4)l1:y=x+3,当y=0时,x+3=0,解得x=﹣6,l2:y=﹣x﹣3,当y=0时,﹣x﹣3=0,解得x=﹣,∴当﹣6<x<﹣时,l1、l2表示的两个函数的函数值都大于0.21 解:(1)由直线l1的解析式为y1=x+1,可求得C(0,1);解得:.(2)由(1)知,直线l2:y=﹣x+1;∵y1=x+1>0,∴x>﹣1;∵;∴﹣1<x<2.(3)由题意知A(﹣1,0),则AB=3,且OC=1;∴S△ABC=AB•OC=.可求得: (4)由于△ABC、△ABP同底,若面积相等,则P点纵坐标为﹣1,代入直线l1可求得:P的坐标为(﹣2,﹣1).22. 解:(1)∵直线y=﹣kx+b经过点A(5,0)、B(1,4),∴,解方程组得,∴直线AB的解析式为y=﹣x+5;(2)∵直线y=2x﹣4与直线AB相交于点C,∴解方程组,解得,∴点C的坐标为(3,2);(3)由图可知,x≥3时,2x﹣4≥kx+b.。
《一次函数和一次不等式》综合题
1.若在一次函数y=ax+b,中,当-1≤x≤4时,4≤y≤9,则一次函数的表达式为。
二.解答题
1、某公司为了开发新产品,用A、B两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:
(1)设生产甲种产品x件,根据题意列出不等式组,求出x的取值范围;
(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y元,写出成本总额y(元)与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产
品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.
2、为迎接国庆六十五周年,某校团委组织了“歌唱祖国”有奖征文活动,并设立了一、二、三等奖.学校计划派人根据设奖情况买50件奖品,其中二等奖件数比一等奖件数的2倍还少10件,三等奖所花钱数不超过二等奖所花钱数的1.5倍.各种奖品的单价如下表所示.如果计划一等奖买x件,买50件奖
(2)请你计算一下,如果购买这三种奖品所花的总钱数最少?最少是多少元?
3、为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见
已知可供建造沼气池的占地面积不超过365m,该村农户共有492户.
(1)满足条件的方案共有几种?写出解答过程;
(2)通过计算判断,哪种建造方案最省钱?
4、某学校计划租用6辆客车送一批师生参加一年一度的哈尔滨冰雕节,感受冰雕艺术的魅力.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车x辆,租车总费用为y元.
(1)求出y(元)与x(辆)之间的函数关系式,指出自变量的取值范围;
(2)若该校共有240名师生前往参加,领队老师从学校预支租车费用1650元,试问预支的租车费用是否可以结余?若有结余,最多可结余多少元?
5、为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.
(1)求这批赈灾物资运往D、E两县的数量各是多少?
(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D 县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;
为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?
6.某工厂有甲种原料130kg,乙种原料144kg.现用这两种原料生产出A,B两种产品共30件.已知生产每件A产品需甲种原料5kg,乙种原料4kg,且每件A产品可获利700元;生产每件B产品需甲种原料3kg,乙种原料6kg,且每件B产品可获利900元.设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:
(1)生产A,B两种产品的方案有哪几种;
(2)设生产这30件产品可获利y元,写出y关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.
7.如图,请根据图象所提供的信息解答下列问题:
(1)当x时,kx+b ≥mx﹣n;
(2)不等式kx+b<0的解集是;
(3)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x
轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.
8.若在一次函数y=ax+b,中,当1≤x≤4时,-4≤y≤9,求一次函数的表达式。