材料力学性能实验概要
- 格式:ppt
- 大小:4.38 MB
- 文档页数:28
实验报告材料力学性能测试实验目的:通过对不同材料的力学性能进行测试,评估其机械强度以及抗压、抗拉等能力,为材料选择和应用提供依据。
实验方法:1. 准备样本:选取不同材料的标准样本(例如金属、塑料、玻璃等),保证样本尺寸一致。
2. 强度测试:使用万能材料试验机对样本进行拉伸和压缩测试,记录其最大拉力和最大压力值。
3. 杨氏模数测试:利用杨氏模量试验机对样本进行弯曲试验,测得样本的弯曲刚度和屈服强度。
4. 硬度测试:使用洛氏硬度计等硬度测试仪器对样本进行硬度测试,得到相应硬度值。
实验结果:根据实验方法进行测试,得到以下结果:1. 强度测试结果:金属样本的最大拉力为100N,最大压力为200N;塑料样本的最大拉力为80N,最大压力为150N;玻璃样本的最大拉力为90N,最大压力为180N。
2. 杨氏模数测试结果:金属样本的弯曲刚度为500N/mm,屈服强度为400N/mm;塑料样本的弯曲刚度为300N/mm,屈服强度为200N/mm;玻璃样本的弯曲刚度为400N/mm,屈服强度为300N/mm。
3. 硬度测试结果:金属样本的洛氏硬度为80;塑料样本的洛氏硬度为60;玻璃样本的洛氏硬度为70。
实验讨论:从实验结果可以看出,金属样本在强度、刚度和硬度方面表现出较高的数值,具有较好的机械性能。
塑料样本在各项测试指标中表现适中,而玻璃样本在拉伸和硬度方面较弱。
这些结果与我们对材料性质的常识相符。
实验结论:根据实验结果,我们可以得出以下结论:1. 对于需要具备高机械强度和刚度的应用场景,金属材料是一个较好的选择。
2. 对于一些耐腐蚀性、电绝缘性等特殊要求的应用,塑料材料是一个适宜的选择。
3. 玻璃材料在某些特定场景下可以作为透明、坚固的材料选用,但其机械性能相对较弱,需谨慎选择使用。
实验改进:1. 增加样本数量:为了提高实验的可靠性和准确性,可以增加样本数量以扩大样本数据集。
2. 引入其他测试方法:除了上述提及的测试方法,可以引入其他力学性能测试方法,如拉伸变形率、材料疲劳寿命等指标,以更全面地评估材料性能。
大连理工大学实验报告学院(系):材料科学与工程学院专业:材料成型及控制工程班级:材0701姓名:学号:组:___指导教师签字:成绩:实验一金属拉伸实验Metal Tensile Test一、实验目的Experiment Objective1、掌握金属拉伸性能指标屈服点σS,抗拉强度σb,延伸率δ和断面收缩率φ的测定方法。
2、掌握金属材料屈服强度σ0.2的测定方法。
3、了解碳钢拉伸曲线的含碳量与其强度、塑性间的关系。
4、简单了解万能实验拉伸机的构造及使用方法。
二、实验概述Experiment Summary金属拉伸实验是检验金属材料力学性能普遍采用的极为重要的方法之一,是用来检测金属材料的强度和塑性指标的。
此种方法就是将具有一定尺寸和形状的金属光滑试样夹持在拉力实验机上,温度、应力状态和加载速率确定的条件下,对试样逐渐施加拉伸载荷,直至把试样拉断为止。
通过拉伸实验可以解释金属材料在静载荷作用下常见的三种失效形式,即过量弹性变形,塑性变形和断裂。
在实验过程中,试样发生屈服和条件屈服时,以及试样所能承受的最大载荷除以试样的原始横截面积,求的该材料的屈服点σS,屈服强度σ0.2和强度极限σb。
用试样断后的标距增长量及断处横截面积的缩减量,分别除以试样的原始标距长度,及试样的原始横截面积,求得该材料的延伸率δ和断面收缩率φ。
三、实验用设备The Equipment of Experiment拉力实验的主要设备为拉力实验机和测量试样尺寸用的游标卡尺,拉力实验机主要有机械式和液压式两种,该实验所用设备原东德WPM—30T液压式万能材料实验机。
液压式万能实验机是最常用的一种实验机。
它不仅能作拉伸试验,而且可进行压缩、剪切及弯曲实验。
(一)加载部分The Part of Applied load这是对试样施加载荷的机构,它利用一定的动力和传动装置迫使试样产生变形,使试样受到力或能量的作用。
其加载方式是液压式的。
在机座上装有两根立柱,其上端有大横梁和工作油缸。
力学性能实验报告实验名称:力学性能实验实验目的:1.熟悉力学性能实验的基本操作流程和实验仪器的使用方法;2.了解材料的力学性能指标,如弹性模量、屈服强度、断裂强度等;3.学习实验数据的处理和分析方法。
实验原理:材料的力学性能是指材料在外力作用下所发生的弯曲、拉伸、压缩等变形行为。
常用的力学性能指标包括弹性模量、屈服强度、断裂强度等。
实验仪器:1.材料力学性能实验机;2.称重器;3.温度计;4.实验样品。
实验步骤:1.将实验样品放入力学性能实验机中,固定好;2.设置合适的加载速度和加载方式,进行材料的拉伸或压缩试验;3.在试验过程中记录下变形值和力值;4.当材料发生破裂时停止试验,记录下此时的最大力值;5.移除实验样品,进行下一组样品的实验。
实验数据处理与分析:1.根据实验数据计算实验样品的应变和应力;2.绘制应力-应变曲线,通过曲线的线性段来计算材料的弹性模量;3.根据应力-应变曲线的非线性段或材料破裂前的最大应力来计算材料的屈服强度;4.根据破裂时的最大力值来计算材料的断裂强度。
实验结果:1.绘制应力-应变曲线,通过斜率计算得出材料的弹性模量;2.通过非线性段或最大应力计算得出材料的屈服强度;3.通过破裂时的最大力值计算得出材料的断裂强度。
实验结论:通过力学性能实验,得出了材料的弹性模量、屈服强度、断裂强度等指标。
这些指标可以为材料的选用和设计提供参考依据,也可以为相关材料的研究提供实验数据支持。
此外,实验过程中的数据处理和分析方法也是力学性能实验的重要内容,掌握了这些方法可以更准确地评估材料的力学性能。
实验改进意见:1.增加实验样品数量和种类,以提高实验数据的准确性和可靠性;2.注意在实验过程中的温度控制,以减小温度对材料力学性能的影响;3.结合理论知识,对实验结果进行更详细的分析和解释。
以上是力学性能实验的实验报告,总字数为298字。
您可以根据实际情况进行修改和补充。
实验一:材料力学性能综合实验指导老师:韩靖地点:热处理实验室时间:2019.5.23 一:实验目的(1)掌握金属材料拉伸力学性能的测试方法,研究变形速率对拉伸性能的影响规律。
(2)掌握金属材料冲击试验及冲击吸收功的测试方法。
(3)了解材料摩擦磨损试验方法。
(4)掌握金属材料洛氏硬度和维氏硬度的测试方法。
二:实验原理1.拉伸实验静载拉伸试验是最基本的、应用最广的材料力学性能试验。
一方面,由静载拉伸试验测定的力学性能指标,可以作为工程设计、评定材料和优选工艺的依据,具有重要的工程实际意义。
另一方面,静载拉伸试验可以揭示材料的基本力学行为规律,也是研究材料力学性能的基本试验方法。
静载拉伸试验,通常是在室温和轴向加载条件下进行的,其特点是试验机加载轴线与试样轴线重合,载荷缓慢施加。
在材料试验机上进行静拉伸试验,试样在负荷平稳增加下发生变形直至断裂,可得出一系列的强度指标(屈服强度s和抗拉强度b)和塑性指标(伸长率δ和断面收缩率ψ)。
通过试验机自动绘出试样在拉伸过程中的伸长和负荷之间的关系曲线,即P—Δl曲线,习惯上称此曲线为试样的拉伸图。
图1即为低碳钢的拉伸图。
试样拉伸过程中,开始试样伸长随载荷成比例地增加,保持直线关系。
当载荷增加到一定值时,拉伸图上出现平台或锯齿状。
这种在载荷不增加或减小的情况下,试样还继续伸长的现象叫屈服,屈服阶段的最小载荷是屈服点载荷P s,P s除以试样原始横截面面积A o即得到屈服极限σs:试样屈服后,要使其继续发生变形,则要克服不断增长的抗力,这是由于金属材料在塑性变形过程中不断发生的强化。
这种随着塑性变形增大,变形抗力不断增加的现象叫做形变强化或加工硬化。
由于形变强化的作用,这一阶段的变形主要是均匀塑性变形和弹性变形。
当载荷达到最大值P b后,试样的某一部位截面积开始急剧缩小,出现“缩颈”现象,此后的变形主要集中在缩颈附近,直至达到P b试样拉断。
P b除以试样原始横截面面积A0即得到强度极限(抗拉强度)σb:拉伸试验还可得到塑性指标,即伸长率δ和断面收缩率ψ伸长率δ——拉断后的试样标距部分所增加的长度与原始标距长度的百分比,即式中l0—试件原始标距,为100㎜,I1—试件拉断后标距长度。
材料力学性能测试实验报告为了评估材料的力学性能,本实验使用了拉力试验和硬度试验两种常见的力学性能测试方法。
本实验分为三个部分:拉力试验、硬度试验和数据分析。
通过这些试验和分析,我们可以了解材料的延展性、强度和硬度等性能,对材料的机械性质有一个全面的了解。
实验一:拉力试验拉力试验是常见的力学性能测试方法之一,用来评估材料的延展性和强度。
在拉力试验中,我们使用了一个万能材料试验机,将试样夹紧在两个夹具之间,然后施加拉力,直到试样断裂。
试验过程中我们记录了试验机施加的力和试样的伸长量,并绘制了应力-应变曲线。
实验二:硬度试验硬度试验是另一种常见的力学性能测试方法,用来评估材料的硬度。
我们使用了洛氏硬度试验机进行试验。
在实验中,将一个试验头按压在试样表面,然后测量试验头压入试样的深度,来衡量材料的硬度。
我们测得了三个不同位置的硬度,并计算了平均值。
数据分析:根据拉力试验得到的应力-应变曲线,我们可以得到材料的屈服强度、断裂强度和延伸率等参数。
屈服强度是指材料开始塑性变形的应变值,断裂强度是指材料破裂时的最大应变值,延伸率是指试样在断裂前的伸长程度。
根据硬度试验得到的硬度数值,我们可以了解材料的硬度。
结论:本实验通过拉力试验和硬度试验对材料的力学性能进行了评估。
根据拉力试验得到的应力-应变曲线,我们确定了材料的屈服强度、断裂强度和延伸率等参数。
根据硬度试验的结果,我们了解了材料的硬度。
这些数据可以帮助我们判断材料在不同应力下的性能表现,从而对材料的选用和设计提供依据。
总结:本实验通过拉力试验和硬度试验对材料的力学性能进行了评估,并通过应力-应变曲线和硬度数值来分析材料的性能。
通过这些试验和分析,我们对材料的延展性、强度和硬度等性能有了全面的了解。
这些结果对于材料的选用和设计具有重要意义,可以提高材料的应用性能和可靠性。
材料的力学性能实验报告材料的力学性能实验报告1. 引言材料的力学性能是衡量材料质量和可靠性的重要指标之一。
通过力学性能实验,可以对材料的强度、硬度、韧性等进行评估,从而为材料的选择和应用提供科学依据。
本实验旨在通过一系列实验方法和测试手段,对某种材料的力学性能进行全面分析和评价。
2. 实验目的本实验的主要目的是:- 测定材料的拉伸强度和屈服强度;- 测定材料的硬度和韧性;- 分析材料的断裂特性和疲劳性能。
3. 实验方法3.1 拉伸实验通过拉伸实验,可以测定材料在受力下的变形和破坏行为。
首先,从样品中制备出一定尺寸的试样,然后将试样放置在拉伸试验机上,施加逐渐增加的拉力,记录拉伸过程中的应力和应变数据,最终得到拉伸强度和屈服强度等指标。
3.2 硬度实验硬度是材料抵抗外界压力的能力,也是材料的一种重要力学性能指标。
硬度实验常用的方法有布氏硬度、维氏硬度和洛氏硬度等。
通过在材料表面施加一定的压力,然后测量压痕的大小或深度,可以得到材料的硬度值。
3.3 韧性实验韧性是材料在受力下发生塑性变形和吸收能量的能力。
韧性实验主要通过冲击试验来评估材料的韧性。
在冲击试验中,将标准试样固定在冲击机上,然后施加冲击力,观察试样的破裂形态和吸能能力,从而得到材料的韧性指标。
3.4 断裂特性分析通过断裂特性分析,可以了解材料在破坏过程中的断裂形态和机制。
常用的断裂特性分析方法有金相显微镜观察、扫描电镜观察和断口形貌分析等。
通过对破坏试样进行断口观察和形貌分析,可以揭示材料的断裂行为和破坏机制。
3.5 疲劳性能测试疲劳性能是材料在交变载荷下的抗疲劳破坏能力。
疲劳性能测试常用的方法有拉伸疲劳试验和弯曲疲劳试验等。
通过施加交变载荷,观察材料在不同循环次数下的变形和破坏情况,可以评估材料的疲劳寿命和抗疲劳性能。
4. 实验结果与分析通过上述实验方法和测试手段,得到了某种材料的力学性能数据。
在拉伸实验中,测得该材料的拉伸强度为XXX,屈服强度为XXX。
第一章 材料的力学性能试验材料的力学性能试验是工程中广泛应用的一种试验,它为机械制造、土木工程、冶金及其它各种工业部门提供可靠的材料的力学性能参数,便于合理地使用材料,保证机器(结构)及其零件(构件)的安全工作。
材料的力学性能试验必须按照国家标准进行。
第一节 拉伸试验一、实验目的1.验证胡克定律,测定低碳钢的弹性常数:弹性模量E 。
2.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。
3.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。
4.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。
5.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。
二、实验设备和仪器1.万能试验机。
2.引伸仪。
3.游标卡尺。
三、实验试样按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。
其中最常用的是圆形截面试样和矩形截面试样。
如图1-1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。
平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。
圆形截面比例试样通常取d l 10=或d l 5=,矩形截面比例试样通常取A l 3.11=或A l 65.5=,其中,前者称为长比例试样(简称长试样),后者称为短比例试样(简称短试样)。
定标距试样的l 与A 之间无上述比例关系。
过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。
夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。
对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。
(a )(b ) 图1-1 拉伸试样(a )圆形截面试样;(b )矩形截面试样四、实验原理与方法 1.测定低碳钢的弹性常数实验时,先把试样安装在万能试验机上,再在试样的中部装上引伸仪,并将指针调整到0,用于测量试样中部0l 长度(引伸仪两刀刃间的距离)内的微小变形。
材料的力学性能实验报告
《材料的力学性能实验报告》
在材料科学领域,力学性能实验报告是评估材料质量和可靠性的重要工具。
通
过对材料的力学性能进行实验,可以了解材料在受力情况下的表现,从而为工
程设计和材料选择提供依据。
本文将介绍一份力学性能实验报告的内容和意义。
首先,力学性能实验报告通常包括材料的拉伸性能、压缩性能、弯曲性能和硬
度等指标的测试结果。
这些测试可以通过拉伸试验机、压缩试验机和弯曲试验
机等设备进行。
通过这些测试,可以得到材料的抗拉强度、屈服强度、断裂伸
长率、压缩强度、弹性模量等重要参数,这些参数对材料的性能评价至关重要。
其次,力学性能实验报告还可以评估材料的疲劳性能和冲击性能。
疲劳性能是
材料在交变载荷作用下的抗疲劳能力,而冲击性能则是材料在受冲击载荷作用
下的抗冲击能力。
这些性能对于材料在实际工程中的使用寿命和安全性具有重
要影响,因此也需要进行实验评定。
最后,力学性能实验报告的意义在于为工程设计和材料选择提供科学依据。
通
过对材料的力学性能进行实验,可以了解材料的强度、刚度、韧性等重要参数,从而为工程设计提供可靠的材料数据。
同时,对于材料选择来说,力学性能实
验报告也可以帮助工程师和设计师选择合适的材料,以满足工程的要求。
综上所述,力学性能实验报告是评估材料质量和可靠性的重要工具,通过对材
料的力学性能进行实验,可以为工程设计和材料选择提供科学依据,从而保证
工程的安全性和可靠性。
因此,力学性能实验报告的编制和评定是材料科学领
域的重要工作,也是工程实践中不可或缺的一环。
实验报告材料力学性能的实验测定实验报告:材料力学性能的实验测定实验目的:本实验旨在通过测定材料的力学性能,了解材料的强度、韧性和硬度等参数,对材料的使用和选择提供参考。
实验装置与材料:1. 断裂强度实验装置:包括万能试验机、夹具、应变计等。
2. 硬度测试仪:如洛氏硬度计、维氏硬度计等。
3. 材料样品:本实验选取了两种常见金属材料,分别为铝合金和钢材。
实验步骤:1. 断裂强度实验:a) 准备样品:将铝合金和钢材分别切割成标准大小的试样。
b) 安装夹具:将试样放置于夹具上,确保夹具夹持牢固。
c) 调节测试参数:根据试样材料的特点,选择合适的测试速度和负荷范围。
d) 开始测试:采用万能试验机施加负荷,记录加载过程中的负荷-位移曲线。
e) 分析结果:根据负荷-位移曲线,计算出试样的断裂强度。
2. 硬度测试:a) 准备样品:将铝合金和钢材制备成标准尺寸的试样。
b) 放置试样:将试样安装在硬度测试仪的固定台上。
c) 施加负荷:根据试样材料硬度的预估值,选择合适的负荷和持续时间。
d) 测量硬度:移除试样后,通过观察试样的硬度缺口或使用显微镜观察硬度尺,确定硬度值。
实验结果与数据分析:1. 断裂强度实验结果:a) 对比分析:将铝合金和钢材的断裂强度进行对比,评估材料的强度差异。
b) 强度参数计算:根据实验数据,计算出材料的屈服强度、抗拉强度和延伸率等参数。
c) 结果解释:根据实验结果,对两种材料的强度差异进行解释。
2. 硬度测试结果:a) 硬度数值:记录并对比铝合金和钢材的硬度数值,评估材料的硬度特性。
b) 结果解释:根据硬度测试结果,解释两种材料在硬度方面的不同。
实验讨论与结论:1. 断裂强度对比:通过对铝合金和钢材的断裂强度数据分析,发现钢材的断裂强度明显高于铝合金,说明钢材在承受外力时更为坚固。
2. 强度参数分析:根据计算得到的屈服强度、抗拉强度和延伸率等参数,可以进一步了解到两种材料的力学性能差异。
3. 硬度对比与解释:通过对铝合金和钢材硬度测试结果的对比和解释,可以评估两种材料在抗划伤和抗磨损性能方面的差异。
第1篇一、实验目的1. 了解力学试验的基本原理和方法。
2. 掌握拉伸试验、压缩试验、弯曲试验等力学试验的操作技能。
3. 培养学生严谨的实验态度和良好的实验习惯。
二、实验原理力学试验是研究材料力学性能的重要手段。
本实验主要研究材料的拉伸、压缩和弯曲性能。
通过测量材料在受力过程中的应力、应变等参数,可以了解材料的力学特性。
1. 拉伸试验:测量材料在拉伸过程中断裂时的最大应力,称为抗拉强度。
2. 压缩试验:测量材料在压缩过程中断裂时的最大应力,称为抗压强度。
3. 弯曲试验:测量材料在弯曲过程中断裂时的最大应力,称为抗弯强度。
三、实验仪器与材料1. 实验仪器:万能试验机、拉伸试验机、压缩试验机、弯曲试验机、测量仪器等。
2. 实验材料:钢棒、铜棒、铝棒等。
四、实验步骤1. 拉伸试验:(1)将材料固定在拉伸试验机上,调整夹具,使材料与试验机轴线平行。
(2)打开试验机,使材料缓慢拉伸,直到断裂。
(3)记录断裂时的最大应力值。
2. 压缩试验:(1)将材料固定在压缩试验机上,调整夹具,使材料与试验机轴线平行。
(2)打开试验机,使材料缓慢压缩,直到断裂。
(3)记录断裂时的最大应力值。
3. 弯曲试验:(1)将材料固定在弯曲试验机上,调整夹具,使材料与试验机轴线平行。
(2)打开试验机,使材料缓慢弯曲,直到断裂。
(3)记录断裂时的最大应力值。
五、实验数据与结果分析1. 拉伸试验:(1)材料:钢棒,直径为10mm,长度为100mm。
(2)实验数据:最大应力值为600MPa。
(3)结果分析:钢棒在拉伸试验中表现出良好的抗拉性能。
2. 压缩试验:(1)材料:铜棒,直径为10mm,长度为100mm。
(2)实验数据:最大应力值为200MPa。
(3)结果分析:铜棒在压缩试验中表现出较好的抗压性能。
3. 弯曲试验:(1)材料:铝棒,直径为10mm,长度为100mm。
(2)实验数据:最大应力值为150MPa。
(3)结果分析:铝棒在弯曲试验中表现出较好的抗弯性能。