化工设备设计计算
- 格式:doc
- 大小:922.50 KB
- 文档页数:15
化工设备选型及设计计算1. 简介化工设备的选型及设计计算在化工工程设计中起着至关重要的作用。
合理的设备选型和设计计算可以提高生产效率、降低生产成本,同时保证设备的安全运行。
本文将介绍化工设备的选型和设计计算的基本原理和方法。
2. 化工设备选型2.1 设备选型的原则在进行设备选型时,需要考虑以下几个原则:1.工艺要求:设备的选型必须满足工艺流程的要求,包括温度、压力、流量、反应时间等方面。
2.材料的适应性:设备的材料必须能适应工艺介质的性质,包括酸碱性、腐蚀性、温度和压力等。
3.经济性:设备的选型应综合考虑设备的投资和运行成本。
2.2 设备选型的步骤设备选型的步骤一般包括以下几个方面:1.确定工艺流程:首先需要确定工艺流程,包括反应过程、分离过程等。
根据工艺流程确定所需的设备种类。
2.评估设备性能:评估设备的性能指标,包括设备的传热效率、传质效率、搅拌效果等。
3.比较不同设备类型:根据设备的性能指标,比较不同种类的设备,选择经济合理且能满足工艺流程要求的设备。
4.考虑设备的维护和运行成本:除了设备的投资成本外,还需要考虑设备的维护和运行成本,包括能耗、人力和维护费用等。
3. 化工设备设计计算3.1 设计计算的目的化工设备的设计计算是为了确定设备的主要参数和尺寸,包括设备的体积、负荷、结构等。
3.2 设计计算的基本原理设备的设计计算是根据工艺流程和设备的选型结果进行的。
根据工艺流程,可以确定设备的工艺参数,如温度、压力、流量等。
根据设备的选型结果,可以确定设备的尺寸和结构。
3.3 设计计算的步骤设计计算的步骤一般包括以下几个方面:1.确定工艺参数:根据工艺流程确定设备的工艺参数,如温度、压力、流量等。
2.确定设备的尺寸:根据工艺参数和设备选型结果,确定设备的尺寸,如设备的直径、高度等。
3.计算设备的负荷:根据工艺参数和设备的尺寸,计算设备的负荷,包括传热负荷、传质负荷等。
4.设计设备的结构:根据设备的尺寸和负荷,设计设备的结构,包括设备的支撑、连接等。
化工设备常用计算一、设备容积计算设备容积计算是化工设备设计中最基本的计算之一,它用于确定设备的体积,以满足设备的工艺要求。
常见的设备容积计算包括储罐容积计算、反应器容积计算、换热器容积计算等。
储罐容积计算通常是根据储罐的几何形状和尺寸来确定的,如圆柱形储罐的容积计算公式为V=πr²h,其中V为储罐容积,r为储罐底部半径,h为储罐的高度。
反应器容积计算通常是根据反应物的摩尔比以及反应物的摩尔质量来确定的。
反应物的摩尔比与反应的化学方程式相关,而反应物的摩尔质量可以通过元素的定量分析来确定。
换热器容积计算通常是根据换热器传热面积和换热器的传热系数来确定的。
换热器传热面积可以根据传热的热负荷来确定,而传热系数则是根据换热介质的性质和换热器的设计参数来确定。
二、塔板设计计算塔板设计计算是指在化工设备设计中确定塔板的数量和布置方式,以满足塔的分离要求。
塔板设计计算通常包括流量计算、液体下塔速度计算、塔板间液体压降计算等。
流量计算通常是根据塔的输入和输出流量来确定的,以满足塔的分离要求。
流量计算通常基于物质守恒方程和能量平衡方程,可以通过试验或者模拟计算得出。
液体下塔速度计算通常是根据液体在塔板上的停留时间和液体的流动面积来确定的。
液体下塔速度计算通常基于液体通过孔板的流速和孔板的面积,可以通过试验或者模拟计算得出。
塔板间液体压降计算通常是根据液体在塔板上的运动阻力和液体的流动速度来确定的。
塔板间液体压降计算通常基于液体流动的雷诺数和液体运动阻力系数,可以通过试验或者模拟计算得出。
三、塔径计算塔径计算是指在化工设备设计中确定塔的直径,以满足塔的分离要求。
塔径计算通常包括塔的进口流体速度计算、塔板的有效孔径计算、台板封堵高度计算等。
塔的进口流体速度计算通常是根据塔的输入流量和塔的进口面积来确定的。
塔的进口流体速度计算通常基于流体速度和通过面积的比例关系,可以通过试验或者模拟计算得出。
塔板的有效孔径计算通常是根据塔板孔板的孔径和塔板上的气体流速来确定的。
化工设备设计计算书编辑:二00四年+月+八日目录1、目录-----------------------------------------------22、筒体和封头设计的参数选择---------------------------3(一)、设计压力 P---------------------------------3 (二)、设计温度 T---------------------------------3 (三)、许用应力[σ]和安全系数 n-------------------4 (四)、焊接接头系数 ----------------------------6 (五)、壁厚附加量 C ------------------------------7 (六)、直径系列与钢板厚度-------------------------7 (七)、最小壁厚-----------------------------------8 3、筒体与封头的设计及计算-----------------------------9(一)、受内压薄壁园筒的计算公式-------------------9 (二)、半球形封头的计算公式(凹面受压)----------11 (三)、椭圆形封头的壁厚计算----------------------11 (四)、锥形封头的壁厚计算------------------------13 (五)、平板封头的壁厚计算------------------------13 4、化工计算公式及举例--------------------------------16(一)、热位移和热--------------------------------16 (二)、热应力产生的轴向推力----------------------16 (三)、流体管径的计算----------------------------17 (四)、流体管子壁厚计算--------------------------18 (五)、泵的功率和效率计算------------------------19 5、传热学的有关公式及举例----------------------------21(一)、热量衡算----------------------------------21 (二)、传热方程式--------------------------------26 (三)、传热温度差--------------------------------27 (四)、导热方程式和导热系数----------------------30 (五)、给热方程式和给热系数----------------------34 (六)、传热系数----------------------------------40 (七)、污垢热阻----------------------------------48 (八)、管路与设备的热损失和热绝缘----------------50 (九)、加热、冷却和冷凝--------------------------54 (+)、蒸发--------------------------------------64 6、有关参数------------------------------------------75一般化工设备计算公式及举例筒体和封头设计的参数选择一、设计压力 P设计压力是容器顶部的最高压力,与相应的设计温度一起作为设计载荷条件,其值不低于正常工作情况下容器顶部可能达到的最高压力。
化工工程设备设计方案一、设计背景随着全球化进程的加快和市场经济的不断发展,化工工程设备的需求量日益增加。
在化工生产中,设备的性能、安全性和稳定性至关重要。
因此,设计合理、性能优良的化工工程设备对于提高生产效率、降低生产成本具有重要意义。
本文通过对一种化工工程设备的设计方案进行详细分析和说明,从设备的功能、结构、材质、安全性等方面展开设计,以求达到最佳的设计方案。
二、设计项目概述设计项目为一套高效化工反应釜,用于进行有机合成反应,其主要功能包括反应、提取、分离等。
釜体材质为不锈钢,具有耐腐蚀、耐高温、耐压等优点。
整套设备包括反应釜、搅拌器、冷却系统、加热系统、分离系统等。
为了满足生产流程的需求,设备需要具有稳定的反应性能、高效的生产能力、安全的操作性和可靠的维护保养性能。
三、设备设计方案1. 反应釜设计(1)釜体结构:考虑到釜体需要承受高压和高温,设计选用316L不锈钢作为主要材质,同时采用耐腐蚀的内部涂层以提高其使用寿命。
(2)釜底设计:底部设计采用圆拱底结构,可充分保证反应物料的均匀受热,提高反应效率。
(3)加热系统:采用外装式加热方式,通过蒸汽或电加热,可快速、均匀地加热釜体,提高生产效率。
2. 搅拌器设计(1)搅拌器选用高效能搅拌器,可确保反应物料充分混合,反应均匀。
(2)搅拌器驱动系统采用变频调速,可根据不同反应需要调节搅拌速度和转矩。
3. 冷却系统设计(1)采用内置螺旋式冷却管道,通过冷却介质循环,可以快速降温至设定温度,保证反应处于稳定的温度条件。
(2)冷却介质采用对流热交换方式,可提高冷却效率,减少能耗。
4. 安全控制系统设计(1)设备配置有温度、压力、液位等多重安全监测系统,可监控设备运行状态并进行实时报警。
(2)设备顶部安装有紧急排气阀和紧急排液阀,可在紧急情况下迅速排放反应体积。
(3)设备采用防爆设计,以防止因反应体系异常导致的危险事故。
5. 控制系统设计(1)设备采用PLC控制系统,可对反应温度、压力、搅拌速度进行精密控制。
化工设备的选型和设计计算知识讲义1. 引言本文档旨在介绍化工设备的选型和设计计算知识。
化工设备的选型和设计是化工工程中非常重要的步骤,直接关系到工程的效率和安全。
本文将从选型和设计计算两个方面进行介绍,并提供一些实际案例进行讲解。
2. 化工设备的选型2.1 设备选型的基本原则化工设备选型的基本原则包括设备的功能要求、工艺条件要求、经济性要求等。
本节将分别介绍这些原则。
2.1.1 设备的功能要求设备的功能要求是选型的首要考虑因素。
在选型时,需要明确设备的工作原理、工作能力、工作条件等。
例如,对于液态反应器,需要考虑反应温度、反应压力、反应物浓度等因素。
2.1.2 工艺条件要求工艺条件要求包括物料性质、物料流量、处理温度、压力等因素。
在选型时,需要根据工艺条件要求来选择合适的设备。
例如,在液态过滤工艺中,需要考虑过滤介质的孔径、工作压差等因素。
2.1.3 经济性要求经济性要求包括设备的价格、维护成本、能耗等因素。
在选型时,需要综合考虑这些经济性要求,并选择经济效益最佳的设备。
例如,在蒸馏塔的选型中,需要考虑设备的能耗和维护成本。
2.2 设备选型的方法设备选型的方法有多种。
本节将介绍几种常用的选型方法。
2.2.1 经验法经验法是一种根据过去的经验来选型的方法。
根据不同的工艺要求和设备类型,可以通过查阅相应的经验数据来进行选型。
经验法在工程实践中广泛应用,并能够快速得到合适的设备。
2.2.2 数值模拟法数值模拟法是一种利用计算机进行设备选型的方法。
通过建立相应的数学模型,并进行数值计算,可以得到最佳的设备。
数值模拟法在计算能力越来越强的今天,已经成为了一种非常常见的选型方法。
2.2.3 实验法实验法是一种通过实验来选型的方法。
通过实验可以得到准确的数据,并能够更好地了解设备的性能。
实验法在新领域或者特殊情况下常常被采用。
2.3 设备选型案例分析本节将通过一些实际案例来进行设备选型的分析和讲解,以帮助读者更好地理解设备选型的过程。
化工装置负荷计算公式负荷计算公式:有功功率:P30=Pe·Kd。
无功功率:Q30=P30·tanφ。
视在功率:S3O=P30/Cosφ。
计算电流:I30=S30/√3UN。
其中:Pe为设备容量,Kd为需要系数,即用电设备组的需要系数,为用电设备组的半小时最大负荷与其设备容量的比值。
cosφ为用电设备组的平均功率因数,Un为用电设备组的额定电压。
负荷计算的入门基础知识负荷计算是电气设计人员必须掌握的一必修课,选导体、设备还有保护开关的选择,电网系统分析,都离不开负荷计算的内容,为此特意总结9个负荷计算的入门基础知识,分享给大家,希望能在工作和学习中作为一份参考。
1 什么是负荷计算?计算负荷是将实际负荷转换成一种假想的持续负荷的计算方法。
实际负荷中有不间断工作的,也有随机变化的,利用负荷计算将它们进行归一化的处理。
2 负荷计算的目的是什么?负荷计算的目的是为供配电设计提供所需要的各项数据。
例如,在选变压器容量的时候,需要利用负荷计算的方法得到待选供电区域的负荷有功功率、无功功率和视在功率。
3 负荷计算的内容是什么?求取各种电气物理量,例如负荷有功功率、无功功率、视在功率、尖峰电流、电网损耗等等。
4 负荷计算的方法有哪些?主要的负荷计算方法有:(1)单位指标法;(2)需要系数法;(3)利用系数法;5 如何选用负荷计算的方法?1)单位指标法:适用于负荷功率不明确的各类项目,多用于在项目前期方案的初步估算;2)需要系数法:适用于各种负荷已知的项目,多用于初设阶段设计、照明负荷统计和高压系统,另外,5台以下设备不宜使用此方法;3)利用系数法:特别适用于工业企业电力负荷计算。
6 如何利用单位指标法求计算负荷?单位指标法包括三种方法,分别是负荷密度指标法、综合单位指标法和单位产品耗电量法。
负荷密度指标法计算公式:综合单位指标法:单位产品耗电量法:7 如何利用需要系数法求计算负荷?需要系数法三要素:1)需要系数;2)设备功率计算;3)同时系数选取;主要计算公式:8 如何使用利用系数法求计算负荷?利用系数法三要素:1)利用系数;2)设备有效台数;3)最大系数;主要计算公式:9 配电线路尖峰电流如何计算?尖峰电流主要是由于配电线路上电动机、变压器等带有冲击性负荷设备工作时产生的冲击电流。
第⼆章化⼯设备强度计算基础第⼆章化⼯设备强度计算基础第⼀节典型回转薄壳应⼒分析⼀、回转薄壳的形成及⼏何特性。
1、形成:任⼀平⾯曲线绕同平⾯内的⼀直成旋转⽽成的曲⾯称之为回转曲⾯。
其中:直成称为回转曲⾯的轴;侥轴旋转⽽成平⾯曲线称为母线。
对于回转壳体:壳体外径io D D —内径≤1.2时,称回转薄壁壳体(只讨论薄壳的应⼒分析)。
⼆、第⼀曲半径、第⼆曲率半径。
R1为第⼀半径。
R2为第⼆曲毕半径。
同⼀点的第⼀曲毕半径与第⼆曲毕半径都在该点的法线上。
通过图a 可得r=R2sin4i 当所⽰半径为R 的圆筒形壳体,经线条体直其上任⼀点M 处的第⼀曲毕半径R1=20,与径线垂直的平⾯切割中间⾯形成曲线也是⼀个平⾏圆,故第⼆曲毕半径与平⾏圆半径相等。
所以R2= r =R R1=∞,与径线垂直的平⾯切割中间⽽形成曲线也是⼀个平⾏圆,故第⼆曲毕半径与平⾏圆半径相等。
所以R2= r =R R1=∞ 圆筒形ii 当所⽰贺锥形壳体,径线为与旋转轴相交的直线,其第⼀曲毕半径R1=∞,R2的曲毕径如图求得:R2=x r cos =Ltacnxiii 当图⽰半径R 的圆球形壳体,其半径成为半圆曲线,与径线垂直的平⾯就是半径所在平⾯,所以:R1=R2=R三、承受⽓压回转薄壳的受⼒分析1、先根跟⼯程⼒学的基本⽅法对圆筒形壳体和球形壳体进⾏应⼒分析,再研究圆锥形壳体和隋圆形壳体。
假设壳体材料连续、均匀、名向同性;受⼒后的变形是强性⼩变形。
以圆筒形壳体为例分析受⼒对于薄壁圆筒形壳体是由圆筒和封头组成,有内压使⽤时其直径必增⼤,长度也会增加在远离圆筒封头的壳体中取⼀数圆弧进⾏分析,发现受压前后圆周⽅向的变形等弧疫和AB 弧疫和B A ''弧疫是不相等的,如下图,说明左圆周的切线⽅向有拉应⼒存在。
即环向应⼒2同时,由于内压作⽤于两端封头,使圆筒体交长沿轴向必存在拉应⼒;即轴向(径向)应⼒1表除了上述的应⼒之外,壳体沿壁厚⽅向还有径向应⼒r 和弯曲应⼒,组在薄壁壳体中忽略不计。
化工设备设计计算书一、引言二、设计基础1.设计要求:明确化工设备的设计要求,包括工艺参数、工作条件、设计寿命等。
2.材料选择:根据工作条件和工艺要求,选择适合的材料,包括密封材料、耐腐蚀材料等。
3.设计标准:根据国家或行业标准,确定设计的基本参数和规范。
三、设备计算1.设备尺寸计算:根据工艺要求和流体特性,计算设备的长度、直径等尺寸。
2.设备强度计算:根据设计要求和材料特性,计算设备的强度,包括壁厚、承载能力等。
3.传热计算:根据热平衡原理和传热特性,计算设备的传热情况,包括传热面积、换热系数等。
4.流体力学计算:根据流体力学原理,计算设备内流体的压力、速度、阻力等参数。
四、设备结构设计1.设备布局设计:确定设备的整体布局和安装位置,考虑流程连续性和设备之间的连接。
2.设备连接设计:设计设备之间的连接方式和密封形式,确保设备之间的流体不泄漏。
3.设备支撑设计:根据设备重量和工作条件,设计设备的支撑结构,确保设备牢固稳定。
五、设备图纸1.工艺流程图:绘制设备的工艺流程图,明确流体的流动路径和工艺参数。
2.设备总图:绘制设备的总体结构图,包括设备尺寸、连接方式和支撑结构等。
3.零部件图纸:绘制设备的各个零部件图纸,包括尺寸、工艺要求和材料等。
六、安全考虑在设备设计过程中,要考虑设备的安全性,并采取相应的安全措施,包括以下方面:1.材料的选择:选择耐腐蚀、耐高温等特殊材料,确保设备的安全性。
2.设备结构的设计:设计合理的支撑结构和连接方式,确保设备不产生漏气、漏液等安全隐患。
3.设备运行的安全性:考虑设备的工作条件、工艺参数等因素,防止设备因操作不当而引起的事故。
七、设备选型在考虑以上因素的基础上,结合实际情况和经济成本,选取合适的化工设备,包括设备类型、型号、规格等。
八、结论通过本文档中介绍的化工设备设计和计算过程,可以得出合理可靠的化工设备设计,满足工艺要求和安全要求,并具备经济效益。
总结以上,化工设备设计计算书是化工设备设计和计算过程中的重要文档,其内容要求完整且详细,包括设计基础、设备计算、设备结构设计、设备图纸、安全考虑和设备选型等。
罐体和夹套的设计夹套式反应釜是由罐体和夹套两大部分组成。
罐体在规定的操作温度和操作压力下,为物料完成其搅拌过程提供了一定的空间。
夹套传热是一种最普遍的外部传热方式。
它是一个套在罐体外面能形成密封空间的容器,既简单又方便。
罐体合夹套的设计主要包括其结构设计,各部件几何尺寸的确定和强度的计算与校核。
罐体和夹套的结构设计罐体一般是立式圆筒形容器,有顶盖,筒体和罐底,通过支座安装在基础或平台上。
顶盖在受压状态下操作选用椭圆形封头,(对于常压或操作压力不大而直径较大的设备,顶盖可采用薄钢板制造的平盖,在薄钢板上加设型钢制的横梁,用以支撑搅拌器及其传动装置。
顶盖与罐底分别与筒体相连。
罐底与筒体的连接采用焊接连接。
顶盖与筒体的连接形式为可拆连接。
夹套的型式与罐体相同。
罐体几何尺寸计算确定筒体内径工艺条件给定容积V、筒体内径估算D1:D1==1.058m=1058mm式中V——工艺条件给定容积,m3;i——长径比,i=将D1估算值圆整到公称直径1000mm确定封头尺寸椭圆封头选标准件内径与筒体内径相同曲边高度h1=250mm直边高度h2=25mm内径面积A=1.625m2封头容积V=0.1505m3封头厚度质量确定筒体高度式中圆整后的筒体高度为1500 则反应釜容积式中夹套几何尺寸计算夹套和筒体的连接常焊接成密封结构夹套的安装尺寸通常在。
夹套内径夹套下封头型式同罐体封头,其直径与夹套筒体封头相同为1100mm通常取夹套高式中夹套所包围的筒体表面积式中22——1米高内封头表面积查表为夹套反应釜的强度计算强度计算的原则及依据强度计算中各参数的选取及计算,均应符合GB 150—1988《钢制压力容器》的规定。
夹套反应釜设计计算举例几何尺寸圆整筒体内径釜体封头容积圆整釜体高度夹套筒体内径装料系数,或按圆整夹套筒体高度罐体封头表面积一米高筒体内表面积,强度计算(按内压计算厚度),,罐体及夹套焊接接头系数设计温度下材料需用应力罐体筒体计算厚度夹套筒体计算厚度罐体筒体名义厚度罐体封头名义厚度夹套封头名义厚度稳定性校核(按外压校核厚度)筒体计算长度系数系数许用外压力罐体筒体名义厚度筒体计算长度系数系数许用外压力罐体筒体名义厚度罐体封头名义厚度,,罐体封头名义厚度水压试验校核,,材料屈服点应力反应釜的搅拌装置推进式搅拌装置是调和低粘度均相液体混合的。
化工设备选型及设计计算化工设备的选型和设计计算是化工工程中非常重要的环节,它直接关系到化工生产过程中的效率和安全。
本文将围绕化工设备选型和设计计算展开阐述,包括设备选型的原则和方法、设备设计计算的主要内容等。
一、设备选型的原则和方法1.符合工艺要求:化工设备选型首先要满足工艺要求,即能够满足生产过程中所需的温度、压力、流量等基本参数。
选型时需要充分了解工艺过程中各参数的要求,并与设备选型参数进行比较。
2.经济可行:化工设备的选型还要考虑到经济因素,包括设备的价格、运行成本和维护费用等。
选型时需权衡设备价格与运行成本,选择性价比较高的设备。
3.安全可靠:化工设备的选型还要考虑其安全可靠性。
选型时需要充分考虑设备的材质、结构和技术参数等,确保设备能够稳定工作,不发生泄露、爆炸等安全事故。
4.环保节能:化工设备的选型还要考虑到环保和节能要求。
选型时应选择具有节能、减排和环保功能的设备,以减少对环境的影响。
化工设备的选型方法主要包括以下几种:1.参考经验数据:可以参考相似工艺过程中已经使用的设备型号和参数,根据经验选择合适的设备。
2.询价比较:可以向多家设备供应商询价,比较不同设备的价格、性能和技术指标,选择最合适的设备。
3.模拟计算:可以通过模拟计算的方法,根据工艺参数和设备特性进行计算,得出最佳选型方案。
二、设备设计计算的主要内容化工设备的设计计算主要包括以下几个方面:1.设备尺寸计算:根据工艺要求和设备性能参数,进行设备尺寸的计算。
如容器的体积计算、管道的直径计算等。
2.材料选择:根据工艺要求和设备使用环境,选择合适的材料。
要考虑到材料的耐腐蚀性、耐高温性、强度等因素。
3.压力容器计算:对于压力容器,需要进行强度计算和稳定性分析,确保容器能够安全承受工作压力。
4.传热计算:对于传热设备,需要进行传热计算,包括传热面积的计算、传热系数的计算等,以确保传热效果满足工艺要求。
5.流体流动计算:对于流体输送设备,需要进行流体流动计算,包括管道的阻力计算、流量的计算等,以确保流体能够正常运行。
化工设备的计算化工设备是化工过程中必不可少的一部分,负责实现化工物质的混合、反应、分离、蒸馏等过程。
化工设备的计算是化工设计和生产过程中非常重要的一环。
本文将介绍化工设备的计算方法、计算原则以及常见的计算问题。
一、化工设备的计算方法1. 容积计算容积计算是计算化工设备容积大小的方法。
在化工设备中,容积大小对于反应速率、反应效果等都有着非常大的影响。
容积计算需要考虑多种因素,如反应物的量、反应速率、反应温度、反应时间等等。
通常采用数值计算或试验测定的方式来实现。
2. 柱塔计算柱塔计算是计算化工分离设备中塔的大小、填料数量、塔板数量等的方法。
柱塔计算需要考虑到物质流量、温度、压力等因素,以及填料类型、塔板类型等因素。
通常采用经验计算、数值计算等多种方法来进行。
3. 熱傳計算熱傳計算是计算化工设备中的传热过程的方法。
在化工过程中,往往需要将热量传递给反应或分离设备,或者从这些设备中取出热能。
熱傳計算需要考虑到多种因素,如传热系数、传热面积、传热介质等等。
通常采用数值计算、经验计算等方法来进行。
二、化工设备的计算原则1. 安全性原则化工设备的计算一定要确保其安全性。
化工设备通常以高温、高压、易燃、易爆等特点而著称,因此在计算时必须考虑到一系列的安全措施,如防爆措施、操作规程等等。
2. 经济性原则化工设备的计算一定要充分考虑到经济方面。
在化工生产环节中,设备是生产过程中的一个重要环节,然而设备也是生产成本的主要来源。
因此,在设计和计算化工设备时,需要充分考虑到经济性原则,减少成本,提高效益。
3. 环保性原则化工设备的计算一定要充分考虑到环保方面。
化工生产通常会产生很多有害物质,如果不进行合理的处理,将对环境造成不良影响。
因此,在设计和计算化工设备时,需要充分考虑到环保性原则,减少对环境的不良影响。
三、化工设备计算存在的问题1. 计算不精确化工设备的计算通常是基于理论模型或经验公式进行的,因此存在一定的误差。
华东理工大学第一届化工设备计算机辅助概念设计比赛说明书设计者:高一聪(过程012)杜鼎(机设015)孙英策(机设011)2003年11月6日目录一.设计要求 (3)二.设计思路概述 (3)三.设计尺寸 (4)四.设计建模过程 (4)塔体 (4)裙座 (4)接管 (6)法兰 (6)人孔 (6)吊柱 (7)操作平台 (7)梯子 (8)五.椭圆形封头钣金展开 (9)六.心得体会 (13)七.参考书目 (14)一.设计要求1 塔设备三维造型2设计平台、扶梯、并与塔组装。
a除了图中已注尺寸,其余部分形状大小由设计而定。
b塔筒体内零件忽略不作,只作塔设备外形。
c接管、人孔、支座等方位由设计而定。
d平台与扶手形状、大小自行设计。
e 支座数量为4个。
f 支座与法兰大小应由有关系列标准而定。
3 画出塔设备椭圆封头的展开图。
展开方法合理,所用材料最省。
二.设计思路概述塔设备是化工,炼油生产中最重要的设备之一。
它主要分为板式塔和填料塔两大类。
我们设计的塔设备就是以板式塔为模板的。
我们通过查看实物图片,查阅相关塔设备资料和设计标准手册研究除了一套较合理的方案。
我们的设计主要分为以下几部分:1、塔体:塔设备的外壳。
它由等直径、等厚度的圆筒和作为头盖和低盖的椭圆形封头组成。
2、塔体支座:塔体安放在基础上的连接部分。
它用以确定塔体的位置。
本题中塔设备采用的是最常用的支座形式——裙座。
3、除沫器:用于捕集夹带在气流中的液滴。
对于回收物料,减少污染非常重要。
4、接管:用以连接工艺管道,把塔设备与其他设备连成系统。
安用途可分为进液管、除液管、进气管、出气管等。
5、人孔:为安装、检修、检查的需要而设置的。
6、平台:为安装、检修、检查的需要而设置的。
一般设在经常需要检修、拆装的地方。
7、扶梯:为方便工人上下塔体检修、填料而设。
三.设计尺寸设计要求尺寸:全塔高:34525mm基础环板直径:2600mm裙座直径:2200mm塔体上半部直径:1800mm设计尺寸列表(详见附录设计图纸)四.设计建模过程一)塔体:本设计以浮阀塔为蓝本。
二)裙座:因为其它是塔体常用的支撑形式。
考虑到实际制造方便,又因为(塔高)H/(塔直径)Dg≈16<30,其结构主要分为一下几个部分:1.础环外径已知2600mm,内径2000mm,厚32mm2.筋板高h =220mm,宽b=159mm,厚δ=16mm3.压紧环δ=32mm4.人孔裙座上必须设有人孔以方便检修.人孔的结构尺寸及开设个数见下表(mm),开设两个人孔D=450,M=200,H=9005.排气孔其作用是排出塔运行中溢出的气体,以免可燃或腐蚀性气体损伤设备、危害检修人员安全。
排气管结构尺寸及数量见下表。
(mm)层厚度ts+50mm。
由于裙座直径大于1800小于3600,所以选取的三组数据。
6.引出管通道当塔釜内物料易堵或塔体与塔釜管内有防腐衬里时,考虑到检修方便和更换裙座引出管的需要,塔釜须用法兰连接。
7.防火层与保温层一般操作条件下,塔体的保温延伸到裙座与塔体的连接焊缝以下四倍保温层厚度的距离为止。
裙座的其余部分不需保温。
防火层可起到防止裙座因温度升高而丧失强度,以致倒塌。
通常裙座直径<1500mm时仅外测设防火层;直径≥1500mm时,两侧均须敷设厚度50mm的石棉水泥层。
8、裙座与封头的连接裙座直接焊在塔釜封头上,可采用用对接。
即裙座的外周与塔体外侧平齐。
我们的设计中裙座的壁厚与封头壁厚相等,则封头切线到裙座顶端的距离h参考下表选取∵D=2200;th=ts我们选取20mm;∴查表得h=111mm9、地脚螺栓及螺栓数(略)三)接管本设计中所设计到的接管有直管进料管与弯管进料管。
四)法兰法兰的设计参照《化工容器及设备简明设计手册》P517(法兰密封手册)所规定的参数设计。
五)人孔的设置和选用人孔的设置应便于人员进入任何一级塔板,但由于设置人孔处的塔板间距要增大,且人孔设置过多会使制造时塔体的弯曲度难以达到要求,所以一般板式塔每隔10~20层塔板或5~10m塔段才设一个人孔。
我们设计的板式塔,塔高h为Amm。
所以们设置了6个人孔。
在设人孔处,塔板间距至少应比人孔尺寸大150mm,且不许小于600mm在设置平台操作的地方,人孔中心高度一般比操作平台高0.8~1m,不易超过1.5m。
所以我们选择了1.2m。
我们根据JB标准将人孔选为RFⅡ450-1.6。
六)吊柱在塔顶设置吊柱,对补充和更换填料,安装和拆卸内件,是既方便又经济的一项措施。
在高度15m以上的塔都设有吊柱。
七)操作平台1.操作平台的设计及尺寸2.操作平台应设置在人孔、吊柱、液面计等需要经常检修和操作的地方。
我们设计的平台是圆形和矩形的组合体。
园直径D=Amm,矩形A*B。
3.由于平台下的地面往往是通道,所以底层平台的净空高度我们选取了2.0m。
各层平台之间距离不得小于2.0m,所以我们取了1.8m 。
4.平台宽度应根据检修需要而定,一般为0.8~1.2m,最小不得小于0.6m当平台设有人孔时,净款不小于0.9。
5、平台边缘与塔壁之间应留一定间隙。
八)梯子梯子的设计采用斜梯为45度,护栏高度为1.2m,笼梯之间的间隔为0.15m。
详细图纸如下:五.“椭圆形封头”展开法化工塔设备的顶部封头为椭圆形,为保证其强度及密封性能,所以加工时常采用整块钢板冲压而成,为节约材料需要精确的计算冲压时所需要的钢板面积,以下就是“椭圆形封头”的几何展开法,以及其计算机程序实现。
如图a为一椭圆封头(其正面投影半个椭圆用三段圆弧代替,各段弧见图中所作),它是不可展曲面,其近似展开的步骤为:1.顶部的展开。
一般取12 5 DD ,展开后为一圆,其直径d=2a’o’,见图b,落料后经模压成封头的顶部。
2.本体的展开b 顶部展开图c 一块本体得展开图a 封头投影图d 数学模型参考图将本体N 等份,现作出其中一块的展开图,见图c 。
将o ’e ’展开成一直线OA=o ’a ’,AB=a ’b ’…DE=d ’e ’等,再分别以o 为中心,OA,OB …OE 为半径画圆弧,取在俯视图上相应的圆弧长度,然后光滑连接各点,即得一块展开图。
3.复制N 块完成封头展开图。
数学模型的建立1.求两圆弧1R ,2R 以圆心1C ,2C由图d 可知I 点是AC 上连线上自C 点起减去长、短半轴之差后的中点,其表达式为: a c 11x x x +=+λλ a c1z z z 1+=+λλ式中:AI =IC λ,IC AI =。
由此得:λ式中a 、b 为椭圆长、短半轴,AC 方程为:b z x b a =-+ 1C I 方程为:11a a z x+z x b b=-由1C I 方程得:1C 、2C 圆心坐标:当x =0时,1c x =0,1c 11a z z x b=-;z =0是:211c a (x z )bb x a-=,2c z =0。
并可得两圆弧半径:1111a R C C b (z x )b ==+-,2211a b R C A a-(x z )b a==- 2.求展开图中得ρ,φ值由图c 可知,当1l 1x 0sin R ⎛⎫ ⎪⎝⎭-1≤β≤时,111R sin R R ⎧=⎪⎨⎪=⎩βαφβρβ 当1l 1x sin R ⎛⎫ ⎪⎝⎭-1β≤时,21111c 2l 1l l 21l l 2ll 1l (x R cos )R ()R ()R 0x sin 2R R -+⎧=⎪+-⎪⎪+-⎪⎨<<⎪⎪⎛⎫⎪=- ⎪⎪⎝⎭⎩ααφβααρ=βααααπα 上面的两式中的β,α的值均与两圆弧连接点l1的坐标xl1有关,此值可由2222c 2l l (x x )z R a a z x z x b b ⎧-+=⎪⎨=+-⎪⎩求得111122l l l l lc 22c 22c l l 222x E a a z x +z x b b a (x )b E a 1b a x (z x )R b F a 1b ⎧=-⎪⎪=-⎪⎪⎪-⎪⎪=⎨+⎪⎪⎪+--⎪=⎪⎪+⎪⎩3.展开曲线方程为L L x cos y sin =⎧⎨=⎩ρφρφAutolisp 语言的实现(defun c:zhankai() ;椭圆钣金开(setq p0(getpoint "\n 输入起始点pO:"))(setq R (getreal "输入a:"))(setq H (getreal "输入c:"))(setq N (getreal "输入N:"))(setq Nmax (getreal "输入Nmax:"))(setq X0 (car p0))(setq Z0(cadr p0))(setq RAD 0.0174532)(setq XA a)(setq ZA 0)(setq XC 0)(setq ZC c)(setq LAMD (/ (- (sqrt (+ (* a a) (* c c))) (- a c)) (+ (sqrt (+ (* a a) (* c c))) (- a c))))(setq XI (/ (+ XA (* LAMD XC)) (+ 1 LAMD)))(setq ZI (/ (+ ZA (* LAMD ZC)) (+ 1 LAMD)))(setq XC2 (/ (* (- (* a (/ XI c)) ZI) c) a))(setq R2 (- a XC2))(setq R1 (+ c abs(- ZI (* a (/ XI c)))))(setq ALF (* 2 (/ PI N)))(setq AFLFI atan(/ a c))(setq BETD (- (/ pi 2) asin(* 0.4 (/ a R1)))) ;asin函数未义(setq U (* a (/ ALF (* 2 (+ (* R1 (- (/ pi 2) ALFI)) (* R2 ALFI))))))(setq LE (+ (* R1 (- (/ pi 2) ALFI)) (* R2 ALFI)))(setq D (* 2 (* LE sin(U))))(setq BET ALFI)(setq P1 (list XI ZI))(setq N 0)(while (<= N Nmax)(while (<= BET BETD)(setq PHI1 (/ (* ALF sin(- (/ pi 2) BET)) (* 2 (- (/ pi 2) BET))))(setq LO1 (* R1 (- (/ pi 2) BET)))(setq XL (+ (+ 50 (* LO1 sin(PHI1))) (* N D)))(setq YL (+ 200 (* LO1 cos(PHI1))))(setq P2(list XL YL))(if (= BET ALFI)(setq P1 (list XL YL)))(command "line" p1 p2 "")(setq P1 (list XL YL))(setq BET (+ BET RAD)))(setq N (+ N 1)))(setq N 0)(while (<= N Nmax)(setq PUSE 0)(while (<= PUSE ALFI)(setq PHI2 (/ (+ (* R2 cos(PUSE)) XC2) (* 2 (+ (* R1 (- (/ pi 2) ALFI)) (* R2 (- ALFI PUSE)))))) (setq LO2 (+ (* R1 (- (/ pi 2) ALFI)) (* R2 (- ALFI PUSE))))(setq XL(+ (+ 50 (* LO2 sin(PHI2))) (* N D)))(setq YL(+ 200 (* LO2 cos(PHI2))))(if (= PUSE 0)(setq PL(list XL YL)))(command "line" p1 p2 "")(setq p1(list XL YL))(setq PUSE (+ PUSE RAD)))(setq N (+ N 1)))(setq N 0)(while (<= N Nmax)(setq BET ALFI)(while (<= BET BETD)(setq PHI1 (/ (* ALF sin(- (/ PI 2) BET)) (* 2 (- (/ PI 2) BET))))(setq LO1 (* R1 (- (/ PI 2) BET)))(setq XL (+ (- 50 (* LO1 SIN(PHI1))) (* N D)))(setq YL (+ 200 (* LO1 SIN(PHI1))))(if (= BET ALFI)(setq PL(list XL YL)))(command "line" p1 p2 "")(setq p1(list XL YL))(setq BET (+ BET (* 0.1 RAD))))(setq N (+ N 1)))(setq N 0)(while (<= N Nmax)(setq PUSE 0)(while (<= PUSE ALFI)(setq PHI2 (/ (+ (* R2 cos(PUSE)) XC2) (* 2 (+ (* R1 (- (/ pi 2) ALFI)) (* R2 (- ALFI PUSE))))))(setq LO2 (+ (* R1 (- (/ pi 2) ALFI)) (* R2 (- ALFI PUSE))))(setq XL (+ (- 50 (* LO2 sin(PHI2))) (* N D)))(setq YL (+ 200 (* LO2 cos(PHI2))))(if (= PUSE 0)(setq PL(list XL YL)))(command "line" p1 p2 "")(setq p1(list XL YL))(setq PUSE (+ PUSE RAD)))(setq N (+ N 1)))(setq PHI2 (/ (* (+ R2 XC2) ALF) (+ (* R1 (- (/ PI 2) ALFI) (* R2 ALFI)))))(setq LE (+ (* R1 (- (/ PI 2) ALFI)) (* R2 ALFI)))(setq STANG (* -90 (+ 1 (/ PHI2 PI))))(setq ETANG (* -90 (- 1 (/ PHI2 PI))))(setq N 0)(while (<= N Nmax))(setq arc(50+N*D,200,SANG,EANG,LS)) ;(setq R(* R1 asin(* 0.4 (/ a R1))))(setq circle(200,100,R)) ;))六.心得体会中华民族曾经在人类历史上创造过灿烂的文明,有力地显示了中华民族优秀的智慧和卓越的创新才能。