物理化学第二章02习题
- 格式:ppt
- 大小:487.50 KB
- 文档页数:26
第二章多相多组分系统热力学2007-4-24§2.1 均相多组分系统热力学 练习1 水溶液(1代表溶剂水,2代表溶质)的体积V 是质量摩尔浓度b 2的函数,若 V = A +B b 2+C (b 2)2(1)试列式表示V 1和V 2与b 的关系;答: b2: 1kg 溶剂中含溶质的物质的量, b 2=n 2, 112222,,,,2T P n T P n V V V B cb n b ⎛⎫⎛⎫∂∂===+ ⎪ ⎪∂∂⎝⎭⎝⎭ ∵ V=n 1V 1+n 2V 2( 偏摩尔量的集合公式)∴ V 1=(1/n 1)(V-n 2V 2)= (1/n 1)( V-b 2V 2)= (1/n 1)(A+Bb 2+c(b 2)2-Bb 2-2cb 2)= (1/n 1)[A-c(b 2)2] (2)说明A ,B , A/n 1 的物理意义;由V = A +B b 2+C (b 2)2 , V=A;A: b 2→0, 纯溶剂的体积,即1kg 溶剂的体积B; V 2=B+2cb 2, b 2→0, 无限稀释溶液中溶质的偏摩尔体积A/n 1:V 1= (1/n 1)[A-c(b 2)2],∵b 2→0,V = A +B b 2+C (b 2)2, 纯溶剂的体积为A, ∴A/n 1 为溶剂的摩尔体积。
(3)溶液浓度增大时V 1和V 2将如何变化?由V 1,V 2 的表达式可知, b 2 增大,V 2 也增加,V 1降低。
2哪个偏微商既是化学势又是偏摩尔量?哪些偏微商称为化学势但不是偏摩尔量? 答: 偏摩尔量定义为,,c B B T P n Z Z n ⎛⎫∂= ⎪∂⎝⎭所以,,c B B T P n G G n ⎛⎫∂= ⎪∂⎝⎭ ,,c B B T P n H H n ⎛⎫∂= ⎪∂⎝⎭ ,,cBB T P n F F n ⎛⎫∂= ⎪∂⎝⎭ ,,cB B T P n U U n ⎛⎫∂= ⎪∂⎝⎭ 化学势定义为:,,c B B T P n G n μ⎛⎫∂=⎪∂⎝⎭= ,,c B T V n F n ⎛⎫∂ ⎪∂⎝⎭= ,,c B S V n U n ⎛⎫∂ ⎪∂⎝⎭= ,,cB S P n H n ⎛⎫∂ ⎪∂⎝⎭ 可见,偏摩尔Gibbs 自由能既是偏摩尔量又是化学势。
习题1. 1 mol H 2 于 298.2K 时、由 101.3 kPa 等温可逆压缩到608.0 kPa ,求Q 、W 、△U 、△H 、△S 。
2. 5mol 理想气体,在300K 时,分别经历下列两个过程由10L 膨胀到100L 。
(1)等温可逆膨胀;(2)等温向真空膨胀,分别求两过程的△S 系统和△S 孤立。
3. 10g 0℃ 的冰加到50g 40℃水中,设热量没有其他损失,求上述过程的△S 为多少?已知冰的熔化热△m H =333.5J·g -1,水的比热为C p =4.184 J·g -1·K -1。
4. 在298 K 、100 kPa 下,1mol 过冷水蒸汽变为298 K 、100 kPa 的液态水,求此过程的ΔS 。
已知298K 水的饱和蒸气压为3.1674 kPa,汽化热为2217 kJ·kg -1。
5. 画出理想气体系统从同一始态A 出发的下列各线。
(1)等温可逆膨胀 (2)绝热可逆膨胀 (3)绝热不可逆膨胀 (4)等温可逆压缩 (5)绝热可逆压缩 (6)绝热不可逆压缩6. 1 mol 0℃、0.2 MPa 的理想气体沿着p/V =常数的可逆途径到达压力为0.4 MPa 的终态。
已知C V ,m =5R/2,求过程的Q 、W 、△U 、△H 、△S 。
7. 2 mol 单原子理想气体始态为273 K 、100 kPa ,分别经历下列可逆变化:(1)恒温下压力加倍;(2)恒压下体积加倍;(3)绝热可逆膨胀至压力减少1倍;(4)绝热不可逆反抗恒外压50 kPa 膨胀至平衡。
试计算上述各过程的Q 、W 、△U 、△H 、△S 、△F 、△G 。
已知273 K 、100 kPa 下该气体的S =100 J·K -1·mol -1。
8. 体积为 25 dm 3的 2 mol 理想气体从 300 K 加热到 600 K ,其体积为 100 dm 3,求△S 。
第二章热力学第一定律2、1 1mol理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol对于理想气体恒压过程,应用式(2、2、3)W =-p ambΔV =-p(V2-V1) =-(nRT2-nRT1) =-8、314J2、2 1mol水蒸气(H2O,g)在100℃,101、325kPa下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol恒温恒压相变过程,水蒸气可瞧作理想气体, 应用式(2、2、3)W =-pambΔV =-p(Vl-Vg) ≈ pVg = nRT = 3、102kJ 2、3 在25℃及恒定压力下,电解1mol水(H2O,l),求过程的体积功。
H2O(l) =H2(g) + 1/2O2(g)解: n = 1mol恒温恒压化学变化过程, 应用式(2、2、3)W=-pambΔV =-(p2V2-p1V1)≈-p2V2=-n2RT=-3、718kJ2、4 系统由相同的始态经过不同途径达到相同的末态。
若途径a的Q a=2、078kJ,Wa=-4、157kJ;而途径b的Q b=-0、692kJ。
求W b、解: 热力学能变只与始末态有关,与具体途径无关,故ΔU a= ΔU b由热力学第一定律可得 Qa + Wa = Q b + W b∴ W b = Q a + W a-Q b = -1、387kJ2、5 始态为25℃,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。
途经a先经绝热膨胀到 -28、47℃,100 kPa,步骤的功;再恒容加热到压力200 kPa 的末态,步骤的热。
途径b为恒压加热过程。
求途径b的及。
解:先确定系统的始、末态3111061902000001529831485m ...P nRT V =××==32101601000005824431485m ...P nRT V V =××===kJ .kJ )..(Q W U Δa a 85194225575=+=+=-对于途径b,其功为kJ .J ..V Δp W b 932706190101602000001-)-(--===根据热力学第一定律2、6 4mol 某理想气体,温度升高20℃, 求ΔH -ΔU 的值。
第二章 热力学第二定律练习题一、判断题(说法正确否):1.自然界发生的过程一定是不可逆过程。
2.不可逆过程一定是自发过程。
3.熵增加的过程一定是自发过程。
4.绝热可逆过程的∆S = 0,绝热不可逆膨胀过程的∆S > 0,绝热不可逆压缩过程的∆S < 0。
5.为了计算绝热不可逆过程的熵变,可以在始末态之间设计一条绝热可逆途径来计算。
6.由于系统经循环过程后回到始态,∆S = 0,所以一定是一个可逆循环过程。
7.平衡态熵最大。
8.在任意一可逆过程中∆S = 0,不可逆过程中∆S > 0。
9.理想气体经等温膨胀后,由于∆U = 0,所以吸的热全部转化为功,这与热力学第二定律矛盾吗?10.自发过程的熵变∆S > 0。
11.相变过程的熵变可由T H S ∆=∆计算。
12.当系统向环境传热时(Q < 0),系统的熵一定减少。
13.一切物质蒸发时,摩尔熵都增大。
14.冰在0℃,pT H S ∆=∆>0,所以该过程为自发过程。
15.自发过程的方向就是系统混乱度增加的方向。
16.吉布斯函数减小的过程一定是自发过程。
17.在等温、等压下,吉布斯函数变化大于零的化学变化都不能进行。
18.系统由V 1膨胀到V 2,其中经过可逆途径时做的功最多。
19.过冷水结冰的过程是在恒温、恒压、不做其他功的条件下进行的,由基本方程可得∆G = 0。
20.理想气体等温自由膨胀时,对环境没有做功,所以 -p d V = 0,此过程温度不变,∆U = 0,代入热力学基本方程d U = T d S - p d V ,因而可得d S = 0,为恒熵过程。
21.是非题:⑴“某体系处于不同的状态,可以具有相同的熵值”,此话对否? ⑵“体系状态变化了,所有的状态函数都要变化”,此话对否? ⑶ 绝热可逆线与绝热不可逆线能否有两个交点?⑷ 自然界可否存在温度降低,熵值增加的过程?举一例。
⑸ 1mol 理想气体进行绝热自由膨胀,体积由V 1变到V 2,能否用公式:⎪⎪⎭⎫⎝⎛=∆12ln VV R S计算该过程的熵变?22.在100℃、p 时,1mol 水与100℃的大热源接触,使其向真空容器中蒸发成 100℃、p 的水蒸气,试计算此过程的∆S 、∆S (环)。
(完整版)《物理化学》第⼆章热⼒学第⼀定律练习题(含答案)第⼆章练习题⼀、填空题1、根据体系和环境之间能量和物质的交换情况,可将体系分成、、。
2、强度性质表现体系的特征,与物质的数量⽆关。
容量性质表现体系的特征,与物质的数量有关,具有性。
3、热⼒学平衡状态同时达到四种平衡,分别是、、、。
4、体系状态发⽣变化的称为过程。
常见的过程有、、、、。
5、从统计热⼒学观点看,功的微观本质是,热的微观本质是。
6、⽓体各真空膨胀膨胀功W= 07、在绝热钢瓶中化学反应△U= 08、焓的定义式为。
⼆、判断题(说法对否):1、当体系的状态⼀定时,所有的状态函数都有⼀定的数值。
(√)2、当体系的状态发⽣变化时,所有的状态函数的数值也随之发⽣变化。
(χ)3.因= ΔH, = ΔU,所以与都是状态函数。
(χ)4、封闭系统在压⼒恒定的过程中吸收的热等于该系统的焓。
(χ)错。
只有封闭系统不做⾮膨胀功等压过程ΔH=Q P5、状态给定后,状态函数就有定值;状态函数确定后,状态也就确定了。
(√)6、热⼒学过程中W的值应由具体过程决定( √ )7、1mol理想⽓体从同⼀始态经过不同的循环途径后回到初始状态,其热⼒学能不变。
( √ )三、单选题1、体系的下列各组物理量中都是状态函数的是( C )A 、T、P、V、QB 、m、W、P、HC、T、P、V、n、D、T、P、U、W2、对于内能是体系的单值函数概念,错误理解是( C )A体系处于⼀定的状态,具有⼀定的内能B对应于某⼀状态,内能只能有⼀数值不能有两个以上的数值C状态发⽣变化,内能也⼀定跟着变化D对应于⼀个内能值,可以有多个状态3下列叙述中不具有状态函数特征的是(D )A体系状态确定后,状态函数的值也确定B体系变化时,状态函数的改变值只由体系的始终态决定C经循环过程,状态函数的值不变D状态函数均有加和性4、下列叙述中正确的是( A )A物体温度越⾼,说明其内能越⼤B物体温度越⾼,说明其所含热量越多C凡体系温度升⾼,就肯定是它吸收了热D凡体系温度不变,说明它既不吸热也不放热5、下列哪⼀种说法错误( D )A焓是定义的⼀种具有能量量纲的热⼒学量B只有在某些特定条件下,焓变△H才与体系吸热相等C焓是状态函数D焓是体系能与环境能进⾏热交换的能量6、热⼒学第⼀定律仅适⽤于什么途径(A)A同⼀过程的任何途径B同⼀过程的可逆途径C同⼀过程的不可逆途径D不同过程的任何途径7. 如图,将CuSO4⽔溶液置于绝热箱中,插⼊两个铜电极,以蓄电池为电源进⾏电解,可以看作封闭系统的是(A)(A) 绝热箱中所有物质; (B) 两个铜电极;(C) 蓄电池和铜电极;(D) CuSO4⽔溶液。
物理化学第二章热力学第二定律练习题及答案第二章 热力学第二定律练习题一、判断题(说法正确否):1.自然界发生的过程一定是不可逆过程。
2.不可逆过程一定是自发过程。
3.熵增加的过程一定是自发过程。
4.绝热可逆过程的∆S = 0,绝热不可逆膨胀过程的∆S > 0,绝热不可逆压缩过程的∆S < 0。
5.为了计算绝热不可逆过程的熵变,可以在始末态之间设计一条绝热可逆途径来计算。
6.由于系统经循环过程后回到始态,∆S = 0,所以一定是一个可逆循环过程。
7.平衡态熵最大。
8.在任意一可逆过程中∆S = 0,不可逆过程中∆S > 0。
9.理想气体经等温膨胀后,由于∆U = 0,所以吸的热全部转化为功,这与热力学第二定律矛盾吗?10.自发过程的熵变∆S > 0。
11.相变过程的熵变可由T H S ∆=∆计算。
12.当系统向环境传热时(Q < 0),系统的熵一定减少。
13.一切物质蒸发时,摩尔熵都增大。
14.冰在0℃,p 下转变为液态水,其熵变TH S ∆=∆>0,所以该过程为自发过程。
15.自发过程的方向就是系统混乱度增加的方向。
16.吉布斯函数减小的过程一定是自发过程。
17.在等温、等压下,吉布斯函数变化大于零的化学变化都不能进行。
18.系统由V 1膨胀到V 2,其中经过可逆途径时做的功最多。
19.过冷水结冰的过程是在恒温、恒压、不做其他功的条件下进行的,由基本方程可得∆G = 0。
20.理想气体等温自由膨胀时,对环境没有做功,所以 -p d V = 0,此过程温度不变,∆U = 0,代入热力学基本方程d U = T d S - p d V ,因而可得d S = 0,为恒熵过程。
21.是非题:⑴“某体系处于不同的状态,可以具有相同的熵值”,此话对否?⑵“体系状态变化了,所有的状态函数都要变化”,此话对否?⑶ 绝热可逆线与绝热不可逆线能否有两个交点?⑷ 自然界可否存在温度降低,熵值增加的过程?举一例。
《物理化学》第二章-热力学第一定律练习题(含答案)————————————————————————————————作者:————————————————————————————————日期:第二章练习题一、填空题1、根据体系和环境之间能量和物质的交换情况,可将体系分成、、。
2、强度性质表现体系的特征,与物质的数量无关。
容量性质表现体系的特征,与物质的数量有关,具有性。
3、热力学平衡状态同时达到四种平衡,分别是、、、。
4、体系状态发生变化的称为过程。
常见的过程有、、、、。
5、从统计热力学观点看,功的微观本质是,热的微观本质是。
6、气体各真空膨胀膨胀功W= 07、在绝热钢瓶中化学反应△U= 08、焓的定义式为。
二、判断题(说法对否):1、当体系的状态一定时,所有的状态函数都有一定的数值。
(√)2、当体系的状态发生变化时,所有的状态函数的数值也随之发生变化。
(χ)3.因= ΔH, = ΔU,所以与都是状态函数。
(χ)4、封闭系统在压力恒定的过程中吸收的热等于该系统的焓。
(χ)错。
只有封闭系统不做非膨胀功等压过程ΔH=Q P5、状态给定后,状态函数就有定值;状态函数确定后,状态也就确定了。
(√)6、热力学过程中W的值应由具体过程决定( √ )7、1mol理想气体从同一始态经过不同的循环途径后回到初始状态,其热力学能不变。
( √ )三、单选题1、体系的下列各组物理量中都是状态函数的是( C )A 、T、P、V、QB 、m、W、P、HC、T、P、V、n、D、T、P、U、W2、对于内能是体系的单值函数概念,错误理解是( C )A体系处于一定的状态,具有一定的内能B对应于某一状态,内能只能有一数值不能有两个以上的数值C状态发生变化,内能也一定跟着变化D对应于一个内能值,可以有多个状态3下列叙述中不具有状态函数特征的是(D )A体系状态确定后,状态函数的值也确定B体系变化时,状态函数的改变值只由体系的始终态决定C经循环过程,状态函数的值不变D状态函数均有加和性4、下列叙述中正确的是( A )A物体温度越高,说明其内能越大B物体温度越高,说明其所含热量越多C凡体系温度升高,就肯定是它吸收了热D凡体系温度不变,说明它既不吸热也不放热5、下列哪一种说法错误( D )A焓是定义的一种具有能量量纲的热力学量B只有在某些特定条件下,焓变△H才与体系吸热相等C焓是状态函数D焓是体系能与环境能进行热交换的能量6、热力学第一定律仅适用于什么途径(A)A同一过程的任何途径B同一过程的可逆途径C同一过程的不可逆途径D不同过程的任何途径7. 如图,将CuSO4水溶液置于绝热箱中,插入两个铜电极,以蓄电池为电源进行电解,可以看作封闭系统的是(A)(A) 绝热箱中所有物质; (B) 两个铜电极;(C) 蓄电池和铜电极;(D) CuSO4水溶液。
第二章 多相多组分系统热力学习题及答案§2. 1 均相多组分系统热力学(P68)1. 水溶液(1代表溶剂水,2代表溶质)的体积V 是质量摩尔浓度b 2的函数,若V = A +Bb 2+C (b 2)2(1)试列式表示V 1和V 2与b 的关系; (2)说明A 、B 、A/n 1的物理意义; (3)溶液浓度增大时V 1和V 2将如何变化?解:(1) 由b 2的定义“1kg 溶剂中所含溶质的物质的量”,因此本题中可视溶剂水为1kg ,从而认为将 b 2=n 2。
★112222,,,,2T P n T P n V V V B Cb n b ⎛⎫⎛⎫∂∂===+ ⎪ ⎪∂∂⎝⎭⎝⎭ 据偏摩尔量的集合公式V=n 1V 1+n 2V 2,★V 1 =2211()V n V n -=2211()V b V n - =22222211[A+Bb +C(b )-Bb -2C(b )]n =2211[A-C(b )]n = 2211A C (b )n n - (2)20lim b V A →=,故A 表示当b 2→0,纯溶剂的体积,即1kg 溶剂水的体积;220lim b V B →=,故B 表示当b 2→0,无限稀溶液中溶质的偏摩尔体积;2101lim b AV n →=,A/n 1表示溶剂水的摩尔体积。
(3)由以上V 1和V 2 的表达式可知,溶液浓度(b 2)增大时,V 2 增大,V 1减小。
2. 哪个偏微商既是化学势又是偏摩尔量?哪些偏微商称为化学势但不是偏摩尔量?答:化学势表达式: ,,cB B T P n G n μ⎛⎫∂= ⎪∂⎝⎭= ,,cB T V n F n ⎛⎫∂ ⎪∂⎝⎭= ,,cB S P n H n ⎛⎫∂ ⎪∂⎝⎭= ,,cB S V n U n ⎛⎫∂ ⎪∂⎝⎭偏摩尔量: ,,c B B T P n G G n ⎛⎫∂= ⎪∂⎝⎭,,,c B B T P n F F n ⎛⎫∂= ⎪∂⎝⎭,,,c B B T P n H H n ⎛⎫∂= ⎪∂⎝⎭,,,cBB T P n U U n ⎛⎫∂= ⎪∂⎝⎭ 可见,只有偏微商,,c B T P n G n ⎛⎫∂ ⎪∂⎝⎭既是化学势又是偏摩尔量,,,c B T V n F n ⎛⎫∂ ⎪∂⎝⎭、,,c B S P n H n ⎛⎫∂ ⎪∂⎝⎭、,,cB S V n U n ⎛⎫∂ ⎪∂⎝⎭称为化学势,但不是偏摩尔量。
第二章热力学第一定律始态为25 ︒C,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。
途经a先经绝热膨胀到︒C,100 kPa,步骤的功;再恒容加热到压力200 kPa的末态,步骤的热。
途径b为恒压加热过程。
求途径b的及。
解:先确定系统的始、末态对于途径b,其功为根据热力学第一定律4 mol的某理想气体,温度升高20 C,求的值。
解:根据焓的定义2 mol某理想气体,。
由始态100 kPa,50 dm3,先恒容加热使压力体积增大到150 dm3,再恒压冷却使体积缩小至25 dm3。
求整个过程的。
解:过程图示如下由于,则,对有理想气体和只是温度的函数该途径只涉及恒容和恒压过程,因此计算功是方便的根据热力学第一定律已知20 ︒C液态乙醇(C2H5OH,l)的体膨胀系数,等温压缩率,密度,摩尔定压热容。
求20 ︒C,液态乙醇的。
解:由热力学第二定律可以证明,定压摩尔热容和定容摩尔热容有以下关系容积为27 m3的绝热容器中有一小加热器件,器壁上有一小孔与100 kPa的大气相通,以维持容器内空气的压力恒定。
今利用加热器件使器内的空气由0 ︒C加热至20 C,问需供给容器内的空气多少热量。
已知空气的。
假设空气为理想气体,加热过程中容器内空气的温度均匀。
解:在该问题中,容器内的空气的压力恒定,但物质量随温度而改变注:在上述问题中不能应用,虽然容器的体积恒定。
这是因为,从小孔中排出去的空气要对环境作功。
所作功计算如下:在温度T时,升高系统温度 d T,排出容器的空气的物质量为所作功这正等于用和所计算热量之差。
容积为 m3的恒容密闭容器中有一绝热隔板,其两侧分别为0 ︒C,4 mol的Ar(g)及150 ︒C,2 mol的Cu(s)。
现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的。
已知:Ar(g)和Cu(s)的摩尔定压热容分别为及,且假设均不随温度而变。
解:图示如下假设:绝热壁与铜块紧密接触,且铜块的体积随温度的变化可忽略不计则该过程可看作恒容过程,因此假设气体可看作理想气体,,则水煤气发生炉出口的水煤气的温度是1100 ︒C,其中CO(g)和H(g)的摩尔分数2均为。
第二章习题及答案2.1mol 某理想气体(11m ,mol K J 10.29−−⋅⋅=p C ),从始态(400K 、200kPa )分别经下列不同过程达到指定的终态。
试计算各过程的Q 、W 、∆U 、∆H 、及∆S 。
(1)恒压冷却至300K ;(2)恒容加热至600K ;(3)绝热可逆膨胀至100kPa ;解:(1)==111p nRT V L 63.16m 1063.1610200400314.81333=×=×××−1122V T V T =47.1263.164003001122=×=×=V T T V L 832)63.1647.12102003−=−××=∆=(外V P W kJ)400300()314.810.29(1m ,−×−×=∆=∆T nC U V kJ08.2−=,m 129.10(300400)p H nC T ∆=∆=××−2.92kJ=−kJ830=−∆=W U Q ∫=∆21d T T P T T C S =37.810.29300400−=×∫T dT J∙K -1(2)0=W )400600()314.810.29(1m ,−×−×=∆=∆T nC U V kJ16.4=,m 129.10(600400)p H nC T ∆=∆=××−5.82kJ=kJ16.4=−∆=W U Q ∫=∆21d T T V T T C S =43.8)314.810.29(600400=×−∫T dT J∙K -1(3)40.1314.810.2910.29,,=−==m V m P C C γ,γγγγ−−=122111P T P T 40.1140.1240.1140.1100200400−−=T 3282=T K=Q)400328()314.810.29(1m ,−×−×−=∆−=∆−=T nC U W V kJ50.1=)400328(314.810.291m ,−×××=∆=∆T nC H p kJ4.17−=0==∆TQ S R 12.1mol He(g)在400K 、0.5MPa 下恒温压缩至1MPa ,试计算其Q 、W 、∆U 、∆H 、∆S 、∆A 、∆G 。