第二章信号转换器
- 格式:ppt
- 大小:3.27 MB
- 文档页数:114
转换器作用转换器是一种将一种形式、一种类型或一种状态转化为另一种形式、另一种类型或另一种状态的设备或工具。
它可以是电子设备,也可以是机械设备。
转换器在不同领域中都有广泛的应用,其作用可以总结如下:1. 电能转换器:电能转换器是将电能从一种形式转换为另一种形式的设备。
最常见的电能转换器是变压器,它可以将高电压转换为低电压或低电压转换为高电压。
此外,还有直流交流电转换器、电力电子变流器等,它们可以将直流电转换为交流电或交流电转换为直流电,满足不同电气设备的需求。
2. 信号转换器:信号转换器用于将一种类型的信号转换为另一种类型的信号。
例如,模数转换器可以将模拟信号转换为数字信号,而数模转换器可以将数字信号转换为模拟信号。
这在数字通信、音频处理、图像处理等领域有重要的应用。
3. 传感器转换器:传感器转换器将传感器所测量的物理量转换为电信号,方便测量、监测和控制。
这些转换器通常使用放大器、滤波器、模数转换器和数字处理器等电子器件。
例如,温度传感器转换器可以将温度转换为电压信号,压力传感器转换器可以将压力转换为电流信号,以满足不同领域对物理量测量的需求。
4. 语言转换器:语言转换器可以将一种语言转换为另一种语言,促进不同语言之间的沟通和交流。
这可以是人工翻译,也可以是使用机器翻译软件。
语言转换器在国际旅游、商务交流、学术研究等方面发挥重要作用,帮助人们跨越语言障碍,加深彼此了解。
5. 能源转换器:能源转换器将一种能源转换为另一种能源。
例如,太阳能光电转换器可以将太阳能转换为电能,燃料电池可以将化学能转换为电能,热能转换器可以将热能转换为机械能。
能源转换器帮助我们更有效地利用能源资源,促进可再生能源的发展和应用。
总的来说,转换器在各个领域中都有着重要的作用。
它们可以将一种形式、一种类型或一种状态转换为另一种,以满足不同的需求和应用。
通过转换器,我们可以改变能量形式、信号类型、语言表达方式等,为人们的生活和工作带来更多便利和可能性。
转换器工作原理转换器是一种电气设备,它将一个电源输入信号转换为另一种电气信号输出。
转换器的工作原理可以根据不同的类型分为很多种。
以下是一些常见的转换器的工作原理:1. 直流到交流转换器(逆变器):直流到交流转换器主要用于将直流电源转换为交流电源。
它通过使用一对开关管和滤波电容电感器的组合来实现。
当开关管连通时,从直流输入电源中的电容器充电,然后断开连通并连接到交流输出电路中。
通过控制开关管的导通和断开时间,可以产生所需的交流输出波形。
2. 交流到直流转换器(整流器):交流到直流转换器主要用于将交流电源转换为直流电源。
它通常使用二极管桥和滤波器电容器来实现。
二极管桥将交流输入信号转换为脉冲形式,并通过滤波器电容器将其平滑为直流信号。
滤波器中的电容器会存储电荷,并在无电流流过时释放。
3. 直流到直流转换器(DC-DC转换器):直流到直流转换器可以将一个直流电源的电压或电流转换成另一个直流电压或电流。
其中一种常见的转换器是降压转换器(Buck Converter),它通过开关管周期性地打开和关闭来改变输入电压的平均值。
当开关管关闭时,能量会存储在电感器中,而当开关管打开时,能量会从电感器传输到负载中。
4. 交流到交流转换器(AC-AC转换器):交流到交流转换器可以将一个交流电源的电压、频率或相位转换为另一个交流电压、频率或相位。
其中一种常见的转换器是谐振转换器(Resonant Converter),它利用谐振电路的特性来实现高效率的电能转换。
这些是常见的转换器的工作原理。
不同类型的转换器采用不同的电路结构和控制方法来实现所需的电能转换。
信号转换器原理信号转换器,又称信号调理器或信号调理设备,是一种电子设备,其主要功能是将一种类型的信号转换为另一种类型,以便于信号的传输、处理、记录或显示。
信号转换器广泛应用于各种电子系统和仪器中,如通信系统、测量仪器、控制系统等。
本文将详细介绍信号转换器的原理,包括信号转换的必要性、信号转换器的类型和工作原理。
一、信号转换的必要性在电子系统中,信号往往需要在不同的电路或设备之间传输。
由于不同电路或设备的电气特性、信号幅度、阻抗等可能存在差异,直接连接可能导致信号失真、衰减或无法传输。
此外,信号处理、记录和显示设备往往对输入信号有一定的要求,如幅度范围、阻抗匹配等。
因此,为了实现信号在不同电路或设备之间的有效传输和满足后续处理要求,需要对信号进行转换。
二、信号转换器的类型信号转换器可根据转换的信号类型和转换原理进行分类。
常见的信号类型包括电压信号、电流信号、频率信号、数字信号等。
以下是一些常见的信号转换器类型:1. 电压-电流转换器(V/I转换器):将电压信号转换为电流信号。
这种转换器常用于长距离传输,因为电流信号对线路电阻和干扰的敏感性较低。
2. 电流-电压转换器(I/V转换器):将电流信号转换为电压信号。
这种转换器常用于将传感器的电流输出转换为电压信号,以便于后续处理和显示。
3. 频率-电压转换器(F/V转换器):将频率信号转换为电压信号。
这种转换器常用于测量和控制系统中,将频率变化转换为电压变化以反映物理量的变化。
4. 模拟-数字转换器(ADC):将模拟信号转换为数字信号。
ADC广泛应用于各种电子系统中,如数字音频、数字图像处理等,以实现模拟信号的数字化处理和存储。
三、信号转换器的工作原理不同类型的信号转换器具有不同的工作原理。
以下是一些常见信号转换器的工作原理简介:1. 电压-电流转换器(V/I转换器):V/I转换器通常采用运算放大器和反馈电阻构成。
输入电压信号通过运算放大器放大后,驱动反馈电阻产生输出电流。
转换器的工作原理
转换器的工作原理是将输入的某种物理形式或表示形式转化为另一种物理形式或表示形式。
它可以通过改变信号的频率、振幅、相位或形状来实现转换。
基本上,转换器的工作原理可以分成以下几个步骤:
1. 输入信号获取:转换器首先会获取输入信号,这可以是电流、电压、声音、光线等各种形式。
2. 传感器转换:如果输入信号需要转换为另一种物理形式,转换器可能会使用传感器来将输入信号转换为电信号。
传感器可能会测量某一物理量,如温度、压力、位置等,并将其转换为电信号。
3. 信号处理:转换器会进行一些信号处理操作,如放大、滤波、调制等,以便更好地处理输入信号。
4. 转换操作:转换器会根据需要进行特定的转换操作,如数字到模拟转换、模拟到数字转换、频率转换等。
这些操作可以使用各种电子元件(如运算放大器、滤波器、模数转换器、数模转换器等)完成。
5. 输出信号生成:最后,转换器会生成输出信号,这可能是电流、电压、声音、光线等。
需要注意的是,不同类型的转换器可能有不同的工作原理。
例
如,模数转换器会将模拟信号转换为数字信号,而数模转换器则会将数字信号转换为模拟信号。
因此,具体的工作原理会根据转换器的类型而有所不同。
be i ng 第2章 习题参考答案1.什么是接口、接口技术和过程通道?答:接口是计算机与外设交换信息的桥梁,包括输入接口和输出接口。
接口技术是研究计算机与外部设备之间如何减缓信息的技术。
过程通道是计算机与生产过程之间的信息传送和转换的连接通道。
2.采用74LS244和74LS273与PC/ISA 总线工业控制机接口,设计8路数字量(开关量)输入接口和8路数字量(开关量)输出接口,请画出接口电路原理图,并分别编写数字量输入和数字量输出程序。
答:数字量输入接口设片选端口地址为port MOV DX,portMOV DPTR,PORTMOVX A,@DPTRINAL,DX74LS244PC 总线*IOR(*RD)_数字量输出接口MOV AL,DATA MOV A,DATAMOV DX ,port MOV DPTR,PORT OUTDX,ALMOVX @DPTR,A3.用8位A/D 转换器ADC0809与8051单片机实现8路模拟量采集。
请画出接口原理图,并设计出8路模拟量的数据采集程序。
输出信号PC 总线(*WR)程序:ORG 0000HMOV R0,#30H ;数据区起始地址存在R0MOV R6,#08H ;通道数送R6MOV IE,#84H ;开中断SETB IT1 ;外中断请求信号为下跳沿触发方式MOV R1,#0F0H ;送端口地址到R1NEXT:MOVX @R1,A ;启动A/D转换LOOP:SJMP LOOPINC R0INC R1DJNZ R6,NEXT ;8路采样未接受,则转NEXTCLR EX1 ;8路采样结束,关中断END中断服务程序:ORG 0003H ;外中断1的入口地址AJMP 1000H ;转中断服务程序入口地址ORG 1000HMOVX A,@R1 ;读入A/D转换数据MOV @R0,A ;将转换的数据存入数据区RETI ;中断返回ORG 0000HMOV R1,#30HMOV R2,#0F0HA1: MOV DPTR, R2MOVX @DPTR, ALOOP: JNB P3.2 , LOOPMOVX A, @DPTRMOV @R1,AINC R2INC R1CJNE R2, 0F7H, A1END4.用12位A/D 转换器AD574与PC/ISA 总线工业控制机接口,实现模拟量采集。
测控总线与仪器通信技术课后答案第二章1、模拟输入通道有哪几种类型?各有何特点?答案:多路模拟输入通道分为集中采集式(简称集中式)和分散采集式(简称分布式)两大类型。
集中式的特点是多路信号共同使用一个S/H和A/D电路,模拟多路切换器MUX对多路信号分时切换、轮流选通到S/H和A/D进行数据采集。
分布式的特点是每一路信号都有一个S/H和A/D,因而也不再需要模拟多路切换器MUX。
每一个S/H和A/D只对本路模拟信号进行数字转换即数据采集,采集的数据按一定顺序或随机地输入计算机。
2、什么情况下需要设置低噪声前置放大器?为什么?答案:没有信号输入时,输出端仍输出一定幅度的波动电压,这就是电路的输出噪声。
把电路输出端测得的噪声有效值除以该电路的增益K,得到该电路的等效输入噪声。
如果电路输入端的信号幅度小到比该电路的等效输入噪声还要低,这个信号就会被噪声所“淹没”,就必须在该电路前面加一级放大器——“前置放大器”。
只要前置放大器的等效输入噪声比其后级电路的等效输入噪声低,加入前置放大器后,整个电路的等效输入噪声就会降低,因而,输入信号就不会再被电路噪声所淹没。
3、图2-1-14(a)所示采集电路结构只适合于什么情况?为什么?答案:采集电路仅由A/D转换器和前面的模拟多路切换器MUX构成,只适合于测量恒定的各点基本相同的信号。
恒定信号不随时间变化,无须设置S/H,各点基本相同的信号无需设置PGA。
4、多路测试系统什么情况下会出现串音干扰?怎样减少和消除?答案:多路测试系统由于模拟开关的断开电阻Roff不是无穷大和多路模拟开关中存在寄生电容的缘故,当某一道开关接通时,其它被关断的各路信号也出现在负载上,对本来是唯一被接通的信号形成干扰,这种干扰称为道间串音干扰,简称串音。
为减小串音干扰,应采取如下措施:①减小Ri,为此模拟多路切换器MUX前级应采用电压跟随器;②MUX选用Ron极小、Roff极大的开关管;③选用寄生电容小的MUX。