数列的概念和等差数列
- 格式:docx
- 大小:43.90 KB
- 文档页数:6
数列的概念和计算数列是数学中常见的概念,它由一系列有序的数字组成。
数列的概念与计算对于数学的学习和应用都具有重要的意义。
本文将介绍数列的定义、常见类型和计算方法。
一、数列的概念数列是由一系列按照一定规律排列的数字组成的序列。
数列中的每个数字称为这个数列的项,用a₁,a₂,a₃,……表示。
数列中的每个项之间有着特定的关系,这种关系可以用公式、递推公式、递归式等形式来表示。
二、常见类型的数列1. 等差数列等差数列是指数列中的每一项与前一项之间的差等于同一个常数的数列。
设数列为{a₁,a₂,a₃,……},公差为d,那么有 a₂ - a₁ =a₃ - a₂ = d。
等差数列的通项公式为 an = a₁ + (n-1)d,其中n表示项数。
2. 等比数列等比数列是指数列中的每一项与前一项的比等于同一个常数的数列。
设数列为{a₁,a₂,a₃,……},公比为r,那么有 a₂/a₁ = a₃/a₂ = r。
等比数列的通项公式为 an = a₁ * r^(n-1),其中n表示项数。
3. 斐波那契数列斐波那契数列是指数列中的每一项都是前两项的和的数列。
斐波那契数列的前两项通常为1,1或0,1,根据定义可以得到后续项。
斐波那契数列的递推公式为 an = a(n-1) + a(n-2),其中n表示项数。
三、数列的计算1. 求和求和是数列计算中经常遇到的问题之一。
在数列求和时,常用的方法有以下几种:- 等差数列求和公式:Sn = n/2 * (a₁ + an),其中Sn表示前n个项的和。
- 等比数列求和公式:Sn = a₁ * (1 - r^n) / (1 - r),其中Sn表示前n 个项的和。
- 斐波那契数列求和:Sn = a(n+2) - 1,其中Sn表示前n个项的和。
2. 项数计算在一些问题中,我们需要求解数列的项数。
常用的计算方法如下:- 等差数列的项数:n = (an - a₁) / d + 1,其中n表示项数。
数列的概念知识点总结一、数列的基本概念数列是由一组按照一定规律排列的数字组成的序列。
数列中的每个数字称为数列的项。
数列中的数字可以是正整数、负整数、小数、分数等。
数列通常用{an}或an表示,其中n表示数列的位置。
例如{1, 2, 3, 4, 5, ...}就是一个简单的数列,其中每一项的值依次递增1。
在数列中,通常会出现一些特殊的数列,如等差数列、等比数列等。
等差数列是指数列中任意两个相邻项之间的差等于一个常数d,如{1, 3, 5, 7, 9, ...}就是一个等差数列,其中公差d=2。
等比数列是指数列中任意两个相邻项之间的比等于一个常数r,如{1, 2, 4, 8, 16, ...}就是一个等比数列,其中公比r=2。
二、数列的通项公式数列的通项公式是指数列中每一项与项号之间的关系式。
通过通项公式可以方便地求出数列中任意一项的值,以及根据数列的规律预测未知的项。
对于等差数列和等比数列,其通项公式分别为an=a1+(n-1)d和an=a1*r^(n-1),其中an表示数列的第n项,a1表示数列的首项,d表示等差数列的公差,r表示等比数列的公比。
除了等差数列和等比数列外,还存在其他形式的数列,如递推数列、周期数列、递减数列等。
这些数列的特点和规律各不相同,其通项公式也具有不同的形式。
三、数列的性质数列具有丰富的性质,通过研究数列的性质可以深入理解数列的规律和特点。
1. 数列的有界性数列可能是有界的,也可能是无界的。
如果数列中的项都不超过某一有限的数M,则称该数列是有上界的,M称为数列的上界。
类似地,如果数列中的项都不小于某一有限的数m,则称该数列是有下界的,m称为数列的下界。
如果数列同时有上界和下界,则称该数列是有界的。
2. 数列的单调性数列可能是单调递增的,也可能是单调递减的,还可能是交替单调的。
对于单调递增的数列来说,一般其通项公式中的a(n+1)>an。
类似地,对于单调递减的数列来说,其通项公式中的a(n+1)<an。
数列的基本概念和计算数列是数学中一种重要的概念,它由一系列有序的数按照一定规律排列而成。
数列的研究在数学领域有广泛的应用,涵盖了数学分析、线性代数、概率论等多个分支。
本文将介绍数列的基本概念以及常见的计算方法。
一、数列的定义和表示数列是一系列按照一定规律排列的数字组成的序列。
通常用字母表示数列,如{an}或{a1, a2, a3, ...},其中an表示数列的第n项。
数列中的数字可以是整数、分数、实数或复数,取决于问题的需求和数列的性质。
数列可以是有限的,也可以是无限的。
二、数列的常见类型1. 等差数列等差数列是指数列中相邻的两项之差都相等的数列。
设数列为{an},若对于任意正整数n,都有an+1 - an = d (常数),则称该数列为等差数列。
等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
根据通项公式可以求出等差数列的各项的值。
2. 等比数列等比数列是指数列中相邻的两项之比都相等的数列。
设数列为{an},若对于任意正整数n,都有an+1 / an = q (常数),则称该数列为等比数列。
等比数列的通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比。
根据通项公式可以求出等比数列的各项的值。
3. 斐波那契数列斐波那契数列是一种特殊的数列,其定义为前两项为1,以后的每一项都是前两项的和。
即a1 = a2 = 1,an = an-1 + an-2(n > 2)。
斐波那契数列的特点是前一项和后一项的比值接近黄金分割比0.618。
三、数列的计算方法1. 求数列的前n项和有些数列的前n项和具有一定的规律,可以通过公式或者递归求解。
例如,考虑等差数列{an},其前n项和Sn = (a1 + an) * n / 2。
2. 求数列的通项公式对于已知数列的一些特定性质,可以通过观察数列的规律,推导出数列的通项公式。
以等差数列和等比数列为例,已经给出了它们的通项公式,可以通过这些公式计算数列的各项的值。
数列与等差数列的概念与性质数列是数学中的一个重要概念,它是由一串按照特定规律排列的数所组成的序列。
而等差数列则是数列中的一种特殊形式,它的相邻两项之差都相等。
本文将介绍数列与等差数列的概念以及它们的性质。
一、数列的概念数列是指按照一定的顺序排列的一列数,用字母a、b、c和整数n来表示。
其中,n表示数列的位置,也称为项数。
例如,a1表示数列的第一项,a2表示数列的第二项,以此类推。
数列可以是有限的,也可以是无限的。
有限数列是指数列只有有限个项的情况,例如数列{1,2,3,4,5}就是一个有限数列。
而无限数列是指数列的项数是无穷的,例如数列{1,2,3,4,...}就是一个无限数列。
二、等差数列的概念等差数列是指数列中的相邻两项之差都相等的特殊数列。
设数列的第一项为a1,公差为d,则等差数列的一般形式可以表示为{a1,a1+d,a1+2d,a1+3d,...}。
在等差数列中,公差d的值决定了相邻两项之间的差额。
如果d大于0,则数列是递增的;如果d小于0,则数列是递减的。
当公差d等于0时,数列中的所有项都相等。
三、等差数列的性质1. 通项公式等差数列可以通过通项公式来表示第n项的表达式。
通项公式通常用字母an表示,其表示形式为an = a1 + (n-1)d。
其中,an表示等差数列的第n项,a1表示等差数列的首项,d表示等差数列的公差。
通过通项公式,我们可以方便地计算等差数列中任意一项的值。
2. 求和公式等差数列的前n项和可以通过求和公式来表示。
求和公式通常用字母Sn表示,其表示形式为Sn = (n/2)(a1 + an)。
其中,Sn表示等差数列的前n项和,a1表示等差数列的首项,an表示等差数列的第n项。
求和公式的使用,可以快速计算等差数列的前n项和,方便了数列求和运算。
3. 通项和数列之间的关系等差数列的通项和数列之间有着紧密的关系。
通过分析等差数列的特点,可以发现通项和数列的公差是常数项1,首项是等差数列的首项,首项和末项之间的序列是等差数列。
数列的概念基础数列是按照一定的规律排列的一组数。
每个数称为数列的项,项之间的关系由数列的通项公式或递推公式决定。
数列是数学中的基本概念之一,广泛应用于各个领域,如代数、几何、物理、经济等。
数列可以分为等差数列和等比数列两大类。
等差数列是指数列中的任意两个相邻项之差保持不变,这个差值称为公差,用d表示。
等差数列的通项公式为an = a1 + (n-1)d,其中an表示第n项,a1表示首项,n表示项数。
例如,1,3,5,7,9是一个公差为2的等差数列,其通项公式为an = 1 + (n-1)2。
等比数列是指数列中的任意两个相邻项之比保持不变,这个比值称为公比,用q 表示,且q不等于0。
等比数列的通项公式为an = a1 * q^(n-1),其中an表示第n项,a1表示首项,n表示项数。
例如,1,2,4,8,16是一个公比为2的等差数列,其通项公式为an = 1 * 2^(n-1)。
数列的概念不仅局限于等差数列和等比数列,还有其他类型的数列,如等差-等比数列、斐波那契数列等。
等差-等比数列是指数列中的任意两个相邻项之比为固定值,且差也是固定值。
斐波那契数列是指数列中的每一项是前两项之和,即第n项等于第n-1项与第n-2项之和。
数列的概念还可以推广到无穷数列。
无穷数列是指项数无限的数列。
对于无穷数列,通常使用极限的概念来描述其性质。
例如,等差数列的极限为无穷大或无穷小,而等比数列的极限只有在公比的绝对值小于1时才存在。
在现实生活中,数列的应用非常广泛。
在数学中,数列常常用于数学证明、解题和推导过程中。
在物理学中,数列常常用于描述物体的运动和变化规律,如自由落体运动、振动运动等。
在经济学中,数列常常用于描述经济指标的变化趋势,如GDP的增长、失业率的变化等。
总之,数列是按照一定规律排列的一组数,具有重要的数学和实际应用价值。
通过研究数列的规律和性质,不仅可以提高数学思维和解题能力,还可以应用于各个领域,为科学研究和实际生活提供有效的工具和方法。
数列的概念和性质数列(Sequence)是数学中一个重要的概念,指按照特定顺序排列的一组数的集合。
数列可分为有穷数列和无穷数列两种。
具体而言,数列的概念和性质如下所述:一、数列的概念数列是按照特定规律排列的一组数的有序集合。
数列常用字母表示,如a₁,a₂,a₃,…,aₙ,其中的a₁、a₂、a₃等分别表示数列的第1、2、3个元素,而aₙ表示数列的第n个元素。
数列中的每个元素都有其独立的位置和值。
根据数列的特点,数列可以分为等差数列、等比数列和等差数列的一般形式。
二、等差数列的性质等差数列(Arithmetic Progression)指数列中的每一项与前一项的差等于同一个常数d,该常数称为该等差数列的公差(Common Difference)。
等差数列的性质如下:1. 通项公式:等差数列的第n项的通项公式可表示为an = a₁ + (n-1)d,其中a₁为首项,d为公差。
2. 前n项和公式:等差数列的前n项和公式可表示为Sn = n/2(a₁ + an) = n/2(2a₁ + (n-1)d),其中a₁为首项,an为末项,n为项数。
3. 等差中项:等差数列中两个相邻的项的平均值称为等差数列的中项,若n为奇数时,中项可表示为an/2 +1 = a₁ + (n/2-1)d;若n为偶数时,中项可表示为aₙ/2 = a₁ + (n/2-0.5)d。
三、等比数列的性质等比数列(Geometric Progression)指数列中的每一项与前一项的比等于同一个非零常数q,该常数称为该等比数列的公比(Common Ratio)。
等比数列的性质如下:1. 通项公式:等比数列的第n项的通项公式可表示为an = a₁ *q^(n-1),其中a₁为首项,q为公比。
2. 前n项和公式:等比数列的前n项和公式可表示为Sn = a₁(q^n -1) / (q - 1),其中a₁为首项,q为公比。
四、等差数列和等比数列的一般形式在实际问题中,数列的规律未必只符合等差或等比的特性。
数列的概念和常见数列的性质数学中,数列是一组按照特定规律排列的数的集合。
数列是一种重要的数学工具,广泛应用于各个领域,例如代数、微积分、概率等。
本文将介绍数列的概念、常见数列的性质以及它们在实际问题中的应用。
一、数列的概念数列是按照一定顺序排列的一组数,用数语言表示为{an}或(an)n∈N ,其中n∈N表示自然数的集合,an表示数列的第n个项。
数列可以是有限的,也可以是无穷的。
在数列中,第一个数字称为首项,记作a1或者a0;第二个数字称为第二项,记作a2或者a1;以此类推,第n个数字称为第n 项,记作an或者an-1。
根据数列的定义,我们可以得到数列的通项公式,通常是一个关于n的函数,用于计算数列的任意一项。
通项公式能够清晰地描述数列的规律与性质。
二、常见数列的性质1.等差数列等差数列是指数列中相邻两项之间的差值都相等的数列。
设等差数列的首项为a1,公差为d,则其通项公式为an = a1 + (n-1)d。
等差数列的性质包括:公差为常数、任意相邻两项之间的差值相等、任意三项能够构成等差数列。
等差数列在实际问题中有广泛的应用,例如计算等差数列的和可以帮助我们解决一些物理、经济问题,如速度、距离等。
2.等比数列等比数列是指数列中相邻两项之间的比值都相等的数列。
设等比数列的首项为a1,公比为q,则其通项公式为an = a1 * q^(n-1)。
等比数列的性质包括:公比为常数、任意相邻两项之间的比值相等、任意三项能够构成等比数列。
等比数列在实际问题中也具有重要的应用,例如在复利计算中,利率可看作是一个等比数列。
3.斐波那契数列斐波那契数列是一个特殊的数列,它的前两项是1,从第三项开始,每一项都是前两项之和。
斐波那契数列的通项公式为an = an-1 + an-2,其中a1 = 1,a2 = 1。
斐波那契数列在自然界中有广泛的应用,例如在植物的生长规律、动物的繁殖规律等方面都能够找到斐波那契数列的身影。
数列概念知识点总结一、数列的基本概念1.数列的定义数列指的是按照一定的次序依次排列的一列数。
数列可以是有限的,也可以是无限的。
有限的数列通常用下标表示,如$a_1,a_2,a_3,\cdots,a_n$;无限的数列通常用$n$表示,如$a_1,a_2,a_3,\cdots,a_n,\cdots$。
2.数列的通项公式数列中的每一项都有特定的位置和数值,数列中的每一项都可以用某种规律或公式表示出来,这种表示每一项的公式被称作数列的通项公式。
通常用$a_n$或$u_n$表示数列的第$n$项,通项公式可以写为$a_n=f(n)$或$u_n=f(n)$。
3.数列的前n项和数列的前n项和指的是数列中从第1项到第n项的和,通常用$S_n$表示,即$S_n=a_1+a_2+\cdots+a_n$。
4.数列的递推关系数列中的每一项通常都可以通过前一项或前几项的关系来确定,这种关系被称为数列的递推关系。
数列的递推关系可以用公式表示出来,比如$a_{n+1}=a_n+2$。
5.等差数列等差数列是一种常见的数列,指的是一个数列中相邻两项的差都相等。
等差数列的通项公式为$a_n=a_1+(n-1)d$,其中$d$为公差。
6.等比数列等比数列也是一种常见的数列,指的是一个数列中相邻两项的比都相等。
等比数列的通项公式为$a_n=a_1\cdot q^{n-1}$,其中$q$为公比。
二、常见数列1.等差数列等差数列是指一个数列中相邻两项的差都相等的数列,其中差值称为公差。
等差数列的通项公式为$a_n=a_1+(n-1)d$,其中$a_1$为首项,$d$为公差。
2.等比数列等比数列是指一个数列中相邻两项的比都相等的数列,其中比值称为公比。
等比数列的通项公式为$a_n=a_1\cdot q^{n-1}$,其中$a_1$为首项,$q$为公比。
3.斐波那契数列斐波那契数列是指一个数列中每一项的值都是前两项的和,数列的通项公式为$a_n=a_{n-1}+a_{n-2}$,其中$a_1=1,a_2=1$。
数列的概念与性质数列是数学中的一个重要概念,它是按照一定规律排列的一列数字的集合。
数列在数学中有着广泛的应用,涉及到各个领域,比如金融、物理、计算机等。
本文将介绍数列的概念、性质以及一些常见的数列类型。
一、数列的概念数列是一个按照一定规律排列的一列数字的集合。
数列可以用数学符号表示,通常用$a_1, a_2, a_3, ...$来表示数列中的每一个元素,其中$a_i$表示数列中第$i$个元素的值。
数列中的数字可以是整数、有理数、无理数等。
数列中的元素之间的规律可以通过一个通项公式来描述,通项公式可以是一个显式公式,也可以是一个递推公式。
显式公式可以直接计算数列中每一个元素的值,而递推公式则需要通过已知的一些元素推算出数列中其他元素的值。
二、数列的性质1. 有界性:数列可能是有界的,也可能是无界的。
如果数列中的元素有一个上界和下界,那么这个数列就是有界的;如果数列中的元素没有上界或者下界,那么这个数列就是无界的。
2. 单调性:数列可能是递增的,也可能是递减的。
如果数列中的元素按照一定规律逐渐增大,那么这个数列就是递增的;如果数列中的元素按照一定规律逐渐减小,那么这个数列就是递减的。
3. 散点性:数列可能是散点的,也可能是紧凑的。
如果数列中的元素之间的间隔比较大,没有明显的规律,那么这个数列就是散点的;如果数列中的元素之间的间隔比较小,有明显的规律,那么这个数列就是紧凑的。
三、常见的数列类型1. 等差数列:等差数列是指数列中相邻两项之差为常数的数列,通常用$a_1, a_1+d, a_1+2d, ...$来表示,其中$d$为公差。
2. 等比数列:等比数列是指数列中相邻两项之比为常数的数列,通常用$a_1, a_1r, a_1r^2, ...$来表示,其中$r$为公比。
3. 斐波那契数列:斐波那契数列是指数列中每一项都是前两项之和的数列,通常用$F_1, F_2, F_3, ...$表示,其中$F_1=1, F_2=1$。
等差数列与等比数列基础知识1.数列的概念定义1. 按照某一法则,给定了第1个数,第2个数,………,对于正整数有一个确定的数,于是得到一列有次序的数我们称它为数列,用符号表示。
数列中的每项称为数列的项,第项称为数列的一般项,又称为数列的通项。
定义2.当一个数列的项数为有限个时,称这个数列为有限数列;当一个数列的项数为无限时,则称这个数列为无限数列。
定义3.对于一个数列,如果从第2项起,每一项都不小于它的前一项,即,这样的数列称为递增数列;如果从第2项起,每一项都不大于它的前一项,即,这样的数列称为递减数列。
定义4.如果数列的每一项的绝对值都小于某一个正数,即,其中是某一个正数,则称这样的数列为有界数列,否则就称为是无界数列。
定义5.如果在数列中,项数与具有如下的函数关系:,则称这个关系为数列的通项公式。
2.等差数列定义6.一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做公差,常用字母表示。
等差数列具有以下几种性质:(1)等差数列的通项公式:或;(2)等差数列的前项和公式:或;(3)公差非零的等差数列的通项公式为的一次函数;(4)公差非零的等差数列的前项和公式是关于不含有常数项的二次函数;(5)设是等差数列,则(是常数)是公差为的等差数列;(6)设,是等差数列,则(是常数)也是等差数列;(7)设,是等差数列,且,则也是等差数列(即等差数列中等距离分离出的子数列仍为等差数列);(8)若,则;特别地,当时,;(9)设,,,则有;(10)对于项数为的等差数列,记分别表示前项中的奇数项的和与偶数项的和,则,;(11)对于项数为的等差数列,有,;(12)是等差数列的前项和,则;(13)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.3.等比数列定义7.一般地,如果有一个数列从第2项起,每一项与它的前一项的比等于现中一个常数,那么这个数列就叫做等比数列,这个常数叫做公比;公比通常用字母表示(),即。
数列的概念和等差数列(文)
一周强化
一、一周知识概述
数列的概念是数列的基础。
其中通项公式和前n项和的求法是高考的必考内容,数列实质上是一个特殊的函数,它是定义在N*(或它的子集)上的函数,因而在解决数列问题时,一方面要利用函数的思想、函数的观点、函数的方法来解决数列问题;另一方面还应注意数列的特殊性,也就是解决数列问题的特殊方法。
二、重、难点知识的归纳与剖析
(一)本周复习的重点
1、
2、
3、等差数列的通项公式a n=a1+(n-1)d
推广式a n=a m+(n-m)d
变形式n =
4、等差数列的求和公式S n=
5、等差数列的性质
(1)若m、n、p、q∈N+且m+n=p+q,则a m+a n=a p+a q
(2)在等差数列中,依次每k项之和仍成等差数列.
6、A是a、b的等差中项A=
7、三个数成等差数列,可设其为a-d、a、a+d
四个数成等差数列,可设其为a-3d,a-d、a+d、a+3d.
(二)本周复习的难点
1、分别用累加法求具有a n+1=a n+f(n)的数列的通项,
用累积法求具有的数列的通项.
用拼凑分离法,求具有a n+1=Aa n+B(A、B为常数)的数列的通项.
2、数列{a n}为等差数列的判定和证明
①证明方法:定义法即若一个数列{a n}满足a n+1-a n=d(d是一个与n无关的常数),则数
列{a n}为等差数列.
②常见的判定方法(充要条件):若一个数列{a n}满足a n= an+b或S n=an2+bn(a、b为常
数)或2a n+1= a n+a n+2,则这个数列为等差数列.
3、等差数列前n项和公式的函数性质
∵ S n=na1+
设A=,B=,上式可写成S n=An2+Bn,当d≠0即A≠0时,S n是关于n的二次函数式(其中常数项为0),那么(n·S n)在二次函数y=Ax2+Bx的图象上.
由二次函数的性质可知,当d>0时,S n有最小值;当d<0时,S n有最大值.
三、例题点评
例1、已知数列{a n}的前n项和求通项:
(1)S n=(-1)n+1·n
(2)S n=2n-2
分析:利用数列{a n}的通项公式a n与前n项和S n的关系即可求解.
解答:(1)a1= S n=1
当n≥2时,
a n= S n-S n-1=(-1)n+1·n-(-1)n(n-1)
=-(-1)n·n-(-1)n(n-1)
=(-1)n(1-2n)
∵ a1=1适合上式,
∴ a n=(-1)n·(1-2n)
(2)当n≥2时,a n= S n-S n-1=2n-2-(2n-1-2)=2n-2n-1=2n-1
当n=1时,a1= S1=0 不适合上式,
∴
点评:
a n与S n的关系,是一个非常重要的关系,根据这一关系,若知数列的前n项和S n,则数列的通项a n一定可求,但首项a1是否符合a n= S n-S n-1,需进一步验证,若不符合,则a n需用分段函数表示,否则可合写为一个式子.
例2、已知数列的通项公式为.
(1)0.98是不是它的项?
(2)判断此数列的增减性和有界性.
分析:
数列的项数为正整数,此题即是研究是否有正整数解.
判断数列的增减性和有界性,即是考虑a n+1-a n的符号和对任何的n∈N,使得|a n|<M的常数M是否存在.
解答:
(1)设,解得n=7,所以0.98是此数列的第七项;
(2)
故此数列是递增数列.
又,
∴此数列是有界数列.
点评:
理解数列中的有关概念,注意区别数列的项、项数、通项等概念,明确并非所有数列都有界.
例3、已知等差数列{a n}共2n+1项,其中奇数项之和为290,偶数项之和为261,求第n+1
项及项数2n+1的值.
分析:
本题考查等差数列的性质,此等差数列的项数为奇数,a n+1为中间项,可利用a中=S奇-S偶,S奇+S偶=(2n+1)a中进行求解.
解答:对于等差数列{a n},有
a中=a n+1= S奇-S偶=290-261=29
(2n+1)a中= S奇+S偶=290+261=551
∴2n+1=19
故第n+1项为29,项数为19.
点评:
灵活利用等差数列的性质求等差数列的五个量可简化运算,提高解题速度及准确率.
例4、已知数列{a n}的前n项和S n=32n-n2,求数列{|a n|}的前n项和T n.
分析:
由S n可求出a n,从而确定在{a n}中哪些项是正数项,哪些项是负数项,再来求{|a n|}的前n 项和.
解答:当n≥2时,a n= S n-S n-1=(32n-n2)-[32(n-1)-(n-1)2]
=33-2n
又a1=S1=31 适合上式
∴a n=33-2n.
由a n=33-2n≥0得n≤=16.5.
所以等差数列{a n}中前16项为正数项,从第17项开始,各项为负数,因此:
当0<n≤16时,T n=S n=32-n2
当n≥17时
T n=S16-(a17+a18+a19+…+a n)=2S16-S n
=-(32n-n2)+2(32×16-162)
= n2-32n+512
综上所述∴
点评:
在首项为正数,公差为负数的等差数列中,最后一个正数项的项数就是满足使a n>0的最大的n的值,同理在首项为负数,公差为正数的等差数列中,最后一个负数项的项数就是满足使
a n<0的最大的n的值.
例、(2005年高考江苏卷)
设数列的前项和为,已知,,,且,,其中、为常数.
(Ⅰ)求与的值;
(Ⅱ)证明数列为等差数列;
(Ⅲ)证明不等式对任何正整数、都成立.
解:(Ⅰ)由,,,得,,.
把分别代入,得
解得,,.
(Ⅱ)由(Ⅰ)知,,即
,①
又.②
②-①得,,
即.③
又.④
④-③得,,
∴,
∴,又,
因此,数列是首项为1,公差为5的等差数列.
(Ⅲ)由(Ⅱ)知,.
考虑.
.∴.
即,∴.
因此,.。