三角形的外角性质
- 格式:ppt
- 大小:1.53 MB
- 文档页数:11
初中数学外角知识点总结一、概念及性质1. 什么是外角:在一个三角形中,每一个内角的外部所成的角称为外角。
2. 外角和内角的关系:三角形的两个内角的和等于其对应的外角。
3. 外角的性质:外角性质是指在一个三角形中,每一个外角的度数等于不相邻的两个内角的度数和。
4. 三角形外角定理:一个三角形的一个外角的度数等于它的不相邻的两个内角的度数和。
5. 直角三角形外角的性质:在一个直角三角形中,斜边上的外角等于90°减去与其相对的内角。
6. 三角形外角和:在一个三角形中,三个外角的和等于360°。
二、求解外角的方法1. 通过内角和的方式求解外角:根据三角形外角定理,直接计算不相邻内角的和即可得出外角的度数。
2. 通过直角三角形外角的性质求解:在一个直角三角形中,外角的度数等于90°减去与其相对的内角的度数。
3. 通过外角和的方式求解外角:在一个三角形中,通过三个外角的和等于360°的性质,可求得某个外角的度数。
三、外角的应用1. 在解题过程中,利用外角的性质进行计算内角的大小。
2. 通过外角和的方式,判断三角形的内角之间的关系,例如可以判断是否为等腰三角形或等边三角形。
3. 在锐角三角形中,利用外角的性质进行计算三角形的内角大小,从而解决各种相关的数学问题。
四、题目练习1.已知∠B是一个三角形ABC的外角,且∠B=60°,∠A=40°,求∠C的度数。
解:根据三角形外角定理可知,∠B等于∠A与∠C的和,即∠B=∠A+∠C,所以∠C=∠B-∠A=60°-40°=20°。
因此,∠C的度数为20°。
2.在直角三角形ABC中,∠A=30°,求∠B的度数。
解:根据直角三角形外角的性质可知,∠B=90°-∠A=90°-30°=60°。
因此,∠B的度数为60°。
3.已知直角三角形ABC中,∠A=45°,求∠C的度数。
三角形的内角和外角三角形的内角和外角的性质三角形的内角和外角是三角形的基本性质之一,它们的和有着固定的关系。
本文将探讨三角形的内角和外角的性质以及相关的数学定理。
一、三角形的内角和外角的定义三角形由三条边和三个角组成。
其中每个角都有对应的内角和外角。
内角是指位于三角形内部的角,即由两条边组成的夹角。
外角是指位于三角形外部的角,即由一条边和与其相邻的内角组成的夹角。
二、三角形的内角和外角的关系1. 内角和定理对于任意三角形,其内角的和等于180度。
即三个内角的度数之和为180度。
若设三角形的三个内角分别为∠A、∠B、∠C,则有∠A + ∠B + ∠C = 180度。
2. 外角和定理对于任意三角形,其外角的和也等于180度。
即三个外角的度数之和为180度。
若设三角形的三个外角分别为∠A'、∠B'、∠C',则有∠A' +∠B' + ∠C' = 180度。
3. 内角和与外角和的关系对应一个内角和一个外角,它们的度数之和为180度。
即对于三角形的任意一组内角和外角,有∠A + ∠A' = 180度;∠B + ∠B' = 180度;∠C + ∠C' = 180度。
三、三角形的内角和外角的性质1. 三角形的内角性质a. 锐角三角形:三个内角都小于90度。
b. 直角三角形:一个内角为90度。
c. 钝角三角形:一个内角大于90度。
2. 三角形的外角性质a. 锐角三角形:三个外角都大于0度且小于180度。
b. 直角三角形:一个外角为90度。
c. 钝角三角形:两个外角大于90度且小于180度,一个外角为0度。
3. 三角形的内角和外角关系a. 两个内角的和大于第三个内角。
即∠A + ∠B > ∠C,∠A +∠C > ∠B,∠B + ∠C > ∠A。
b. 两个外角的和等于第三个外角。
即∠A' + ∠B' = ∠C',∠A' +∠C' = ∠B',∠B' + ∠C' = ∠A'。
三角形的内角与外角三角形是几何学中最基本的形状之一,由三条边和三个内角组成。
本文将讨论三角形的内角与外角的特性和性质。
一、三角形内角的定义与性质三角形的内角是指三角形内部的角,共有三个内角,分别记作∠A、∠B、∠C。
根据几何学的基本原理,三角形的内角和为180度,即∠A + ∠B + ∠C = 180°。
1. 三角形的内角之间的关系由于三角形的内角和为180度,所以三角形内角之间存在一定的关系。
根据三角形的性质,如下所示:- 如果一个内角是直角(90°),则另外两个内角的和也是90°。
这种三角形被称为直角三角形。
- 如果一个内角大于90°,则另外两个内角的和小于90°。
这种三角形被称为钝角三角形。
- 如果一个内角小于90°,则另外两个内角的和大于90°。
这种三角形被称为锐角三角形。
2. 等腰三角形的内角性质等腰三角形是指具有两条边相等的三角形。
在等腰三角形中,两个底角(底边上的两个角)一定相等,而顶角(顶点的角)一定小于两个底角。
3. 等边三角形的内角性质等边三角形是指具有三条边相等的三角形。
在等边三角形中,三个内角均相等,每个角都是60°。
二、三角形的外角的定义与性质三角形的外角是指从三角形的一个内角延长线上取得的角,它与相对的内角之间有一定的关系。
1. 外角和内角之间的关系在任意三角形中,一个外角等于其非相邻内角的和。
例如,在三角形ABC中,设一个外角为∠DAB,相对的内角为∠C,则有∠DAB = ∠C + ∠D。
2. 外角的性质外角与三角形的三个内角之间还有一些其他的性质。
如下所示:- 一个三角形的三个外角之和等于360°。
- 任意一个三角形的外角大于任意一个内角。
也就是说,对于三角形ABC来说,∠DAB > ∠A, ∠EBC > ∠B, ∠FCA > ∠C。
三、内角与外角的应用在实际应用中,三角形的内角与外角的性质有着广泛的应用。
三角形的外角性质知识点
三角形的一条边的延长线和另一条相邻的边组成的角,叫做三角形的外角。
∠1是三角形的外角。
三角形的外角特征:
①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;
②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;
③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC 边的延长线。
性质:
①. 三角形的外角与它相邻的内角互补。
②. 三角形的一个外角等于和它不相邻的两个内角的和。
③. 三角形的一个外角大于任何一个和它不相邻的内角。
④. 三角形的外角和等于360°。
设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。
定理:三角形的一个外角等于不相邻的两个内角和。
定理:三角形的三个内角和为180度。
初中数学三角形的外角性质知识点(二)三角形的外角性质经典例题
点P是△ABC内一点,连接BP并延长交AC于D,连接PC,则图中∠1,∠2,∠A的大小关系是()。
三角形内角和与外角性质三角形是平面几何中的基本图形,它由三条边和三个角组成。
在研究三角形的性质时,我们经常遇到内角和与外角的关系。
本文将探讨三角形内角和与外角的性质,从而加深对三角形性质的理解。
一、三角形内角和公式的推导我们先来推导三角形内角和公式。
假设三角形的三个内角分别为A、B、C,它们的度数分别为a、b、c。
根据平面几何的基本原理,三角形的内角和应该等于180度。
根据上述推导,我们得到了三角形内角和公式:A +B +C = 180°二、三角形内角和与外角的关系1. 内角和与外角的关系一我们先来看三角形的一个内角和一个相对应的外角。
根据三角形内角和公式,我们可以得到:A + (180° - A) = 180°可以发现,一个三角形的一个内角和一个相对应的外角的度数之和等于180度。
2. 内角和与外角的关系二接下来,我们考虑三角形的三个内角和三个相对应的外角之间的关系。
假设三角形的三个内角分别为A、B、C,三个相对应的外角分别为α、β、γ。
根据三角形内角和公式,我们有:A +B +C = 180°再结合内角和与外角的关系一,我们可以推出:α + A + β + B + γ + C = 360°可以发现,一个三角形的三个内角和三个相对应的外角的度数之和等于360度。
三、三角形内角和与外角性质的应用三角形内角和与外角的性质在解决各种几何问题时非常有用。
下面举几个例子来说明。
例1:已知三角形AEB的内角EAB为60°,则其外角EAC的度数是多少?解:根据内角和与外角的关系一,我们可以得到:EAB + EAC = 180°将EAB的度数60°代入上述公式,得到:60° + EAC = 180°解方程得到:EAC = 120°所以,三角形AEB的外角EAC的度数为120°。
例2:在平面直角坐标系中,已知三角形ABC的顶点坐标分别为A(1, 2),B(5, 6),C(7, 4),求三角形ABC的内角和。
外角的性质角是平面几何中基本的、重要的概念之一,也是学好直线形和圆的基础。
本文谈谈三角形外角的性质及应用。
一. 三角形外角的概念及特征如图1,像∠ACD那样,三角形的一边与另一条边延长线组成的角叫三角形的外角。
图1外角特征:(1)顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;(2)一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;(3)另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。
二. 性质1. 三角形的外角与它相邻的内角互补。
2. 三角形的一个外角等于和它不相邻的两个内角的和。
3. 三角形的一个外角大于任何一个和它不相邻的内角。
4. 三角形的外角和等于360°。
三. 应用1. 求角的度数例1. ( 2005年四川省南充中考)一个三角形的两个内角分别是55°和65°,这个三角形的外角不可能是()A. 115°B. 120°C. 125°D. 130°-55=125°。
解析:如图2,∠A的外角为:180°︒∠B的外角为:180°-65°=115°∠ACB的外角为:55°+65°=120°所以选D 。
图2例2. (2005年浙江省宁波市中考)如图3,AB//CD ,∠B=23°,∠D=42°,则∠E=( ) A. 23°B. 42°C. 65°D. 19°图3解析:延长BE 交CD 于F 因为AB//CD 所以∠1=∠B=23° ∠BED 是△EDF 的外角则∠BED=∠1+∠D=23°+42°=65° 故选C 。
例3. (2006年重庆市中考)如图4,AB=AC ,∠BAD=α,且AE=AD ,则∠EDC=( ) A.α21B. α31C.α41D.α32图4解析:设∠EDC=x ° 因为∠ADC 是△ABD 的外角 所以∠ADC=∠ABC+∠BAD 即∠ADE+x=∠ABC+α(1)因为AB=AC ,AD=AE 所以∠B=∠C ,∠ADE=∠AED 而∠AED 是△DEC 的外角 所以∠AED=∠EDC+∠C 即∠AED=x+∠C(2)将(2)代入(1)得:α+∠=+∠+ABC x C x所以α=21x 所以选A 。
三角形的内角与外角性质三角形是初中数学中常见的几何图形,它拥有独特的性质与特点。
其中,三角形的内角与外角性质是我们研究三角形的重要方面之一。
本文将详细介绍三角形的内角与外角的定义、性质和相关定理,以帮助读者更好地理解和掌握三角形的特性。
一、内角与外角的定义在讨论三角形的内角与外角之前,我们首先需要明确它们的定义。
对于一个三角形ABC,我们可以在其三个顶点A、B、C上,分别找到三条不共线的直线段,分别与三角形的两条边相交,这三个交点分别称为三角形的内角和外角。
1. 内角:以三角形的一个顶点为顶点,将相邻的两条边伸长,形成的两个连续的半平面的夹角,称为该顶点的内角。
2. 外角:以三角形的一个顶点为顶点,将边延长,使其不在三角形内,与与其它边所在直线延长线交于一点,形成的夹角称为该顶点的外角。
二、内角与外角性质三角形的内角与外角具有一系列重要的性质,下面我们将逐一进行介绍。
1. 内角性质(1)三角形的内角和等于180度。
即∠A + ∠B + ∠C = 180°。
(2)三角形的两个内角和大于第三个内角。
即∠A + ∠B > ∠C,∠A + ∠C > ∠B,∠B + ∠C > ∠A。
2. 外角性质(1)三角形的一个外角等于其它两个内角的和。
即∠D = ∠B +∠C,∠E = ∠A + ∠C,∠F = ∠A + ∠B。
(2)三角形的三个外角之和等于360度。
即∠D + ∠E + ∠F = 360°。
三、相关定理在研究三角形的内角与外角性质时,我们还可以得到一些重要的定理,下面是两个典型的定理。
1. 内角定理内角定理也称为三角形内角和定理。
对于任意一个三角形ABC,其三个内角和等于180度,即∠A + ∠B + ∠C = 180°。
内角定理的重要性在于,通过已知两个角度求第三个角度,或者通过已知两条边求第三条边的长度,我们可以通过内角和的性质进行推理和计算。
2. 外角定理外角定理也称为三角形外角和定理。
三角形外角定律
摘要:
一、三角形外角定律的概念
二、三角形外角定律的性质
三、三角形外角定律的应用
四、三角形外角定律与其他定理的关系
正文:
一、三角形外角定律的概念
三角形外角定律,又称三角形外角和定理,是指在任何一个三角形中,其三个外角的和等于360 度。
外角是指一个三角形的一个内角所对的另一个角的补角。
简单来说,外角就是位于三角形外部,与三角形的一个内角相邻的角。
这个定理是三角形基本性质之一,对于解决许多与三角形相关的问题具有重要意义。
二、三角形外角定律的性质
三角形外角定律具有以下几个重要性质:
1.三角形的一个外角等于与它不相邻的两个内角之和。
2.三角形的一个外角大于任何一个与它不相邻的内角。
3.三角形的任意两个外角之和等于第三个外角。
三、三角形外角定律的应用
三角形外角定律在解决许多几何问题时具有很高的实用价值,例如:
1.在无法直接测量某个角度的情况下,可以利用外角和为360 度的性质,
通过测量其他角度来间接计算目标角度。
2.在解决关于三角形边长、周长、面积等问题时,可以利用外角性质简化计算过程。
3.在证明一些几何结论时,外角定律可以作为辅助定理帮助证明。
四、三角形外角定律与其他定理的关系
三角形外角定律与其他一些基本几何定理有着密切的联系,例如:
1.外角定律与三角形内角和定理互为逆定理。
2.外角定律与等腰三角形、等边三角形、直角三角形等特殊三角形性质相互关联。
综上所述,三角形外角定律作为三角形基本性质之一,在几何学中具有举足轻重的地位。
三角形的内外角性质与计算三角形是初中数学中非常重要的一个概念,它涉及到许多有趣的性质和计算方法。
在本文中,我将介绍三角形的内外角性质与计算,帮助中学生和他们的父母更好地理解和应用这些知识。
一、三角形的内角和性质三角形的内角和指的是三个内角的和。
对于任意一个三角形,其内角和都等于180度。
这个性质可以用以下公式来表示:内角和 = 第一个内角 + 第二个内角 + 第三个内角 = 180度例如,对于一个直角三角形,其中一个内角为90度,另外两个内角加起来也必须为90度,以保证内角和为180度。
在解决三角形问题时,我们可以利用内角和性质来求解未知角度。
例如,如果已知一个三角形的两个内角,我们可以通过内角和性质求解第三个内角。
二、三角形的外角性质三角形的外角指的是一个三角形的一个内角与其相邻的两个外角的和。
对于任意一个三角形,其外角和等于360度。
这个性质可以用以下公式来表示:外角和 = 第一个外角 + 第二个外角 + 第三个外角 = 360度例如,对于一个等边三角形,其中每个内角都是60度,其相应的外角也都是120度,三个外角加起来正好等于360度。
在解决三角形问题时,我们可以利用外角性质来求解未知角度。
例如,如果已知一个三角形的一个内角和一个外角,我们可以通过外角性质求解另外一个内角。
三、三角形的角度计算在解决三角形问题时,我们常常需要计算三角形的角度。
根据三角形的性质,我们可以利用已知的角度来计算未知的角度。
1. 已知两个内角,求解第三个内角根据三角形的内角和性质,我们可以通过已知的两个内角来计算第三个内角。
例如,如果已知一个三角形的两个内角分别为60度和80度,我们可以用如下步骤求解第三个内角:第三个内角 = 180度 - 第一个内角 - 第二个内角= 180度 - 60度 - 80度= 40度2. 已知一个内角和一个外角,求解另外一个内角根据三角形的外角性质,我们可以通过已知的一个内角和一个外角来计算另外一个内角。
三角形中的外角定理与内切圆性质在数学几何学的领域中,三角形是一个重要的研究对象。
通过研究三角形的各种性质,我们可以深入理解不同三角形的特点和关系。
本文将讨论三角形中的外角定理与内切圆性质,探究它们之间的联系与应用。
一、外角定理外角是指一个三角形的某个角与与其相邻的两个内角的补角之间的关系。
外角定理指出:一个三角形的外角等于其与相邻两个内角的和。
具体而言,设三角形ABC的三个内角分别为∠A、∠B和∠C,则三角形ABC的某一外角,如∠A',与其相邻的两个内角为∠B和∠C。
根据外角定理,我们可以得到如下关系:∠A' = ∠B + ∠C外角定理的应用十分广泛。
例如,在解三角形形状、计算角度大小或证明定理时,我们可以利用外角定理来帮助我们得到准确的结果。
同时,外角定理也可以用于解决实际问题,如测量建筑物的高度、测算天体距离等。
二、内切圆性质内切圆是指一个圆与三角形的每一边都有且只有一个交点。
对于一个三角形,它的三条边都与一个内切圆的切点相关联。
内切圆性质揭示了三角形内切圆与三角形各边的关系。
1. 内切圆的圆心设三角形ABC的内切圆的圆心为O。
根据性质,O是三条内角的角平分线的交点,同时也是三条中线的交点。
这意味着内切圆的圆心与三角形的各个重要定位线相关联。
2. 内切圆的半径内切圆的半径称为三角形的内切圆半径。
内切圆半径的计算公式为:r = s / p其中,s是三角形的半周长,p是三角形的周长。
通过内切圆半径的计算,我们可以得到三角形的其他重要参数,如面积、外接圆半径等。
3. 内切圆与三边的切点内切圆与三角形的三边分别在不同的切点处相切。
这些切点分别称为内切点,它们之间具有一定的关系。
例如,内切点之间的连线与三角形的重要定位线有特定的交点关系。
内切圆性质的应用也非常广泛。
例如,利用内切圆性质可以证明一些三角形的面积、周长等性质;同时,内切圆与三角形的切点也可以帮助我们解决一些实际问题,如定位导航、构建建筑物等。
21B A C M 与三角形有关的角1.三角形的三边关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边.2、三角形的内角和定理定理:三角形的内角和等于180°.推论:直角三角形的两个锐角互余。
.3.三角形外角的性质 (1)三角形的一个外角等于它不相邻的两个内角之和.(2)三角形的一个角大于与它不相邻的任何一个内角.注意:(1)它不相邻的内角不容忽视;(2)作CM ∥AB 由于B 、C 、D 共线∴∠A=∠1,∠B=∠2.即∠ACD=∠1+∠2=∠A+∠B.那么∠ACD>∠A.∠ACD>∠B 。
例1.如图,已知∠1=20o ,∠2=25o ,∠A=35o ,则∠BDC 的度数为________例2.在△ABC 中,∠A=∠B=∠C ,则此三角形是(??)A .锐角三角形?????B .直角三角形???C .钝角三角形???D .等腰三角形例3、探索发现:.如图,在△ABC 中,∠A=α,△ABC 的内角平分线或外角平分线交于点P ,且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.⑴.β=180°-(∠B+∠C)/2=90°+α/2.⑵.∠B/2+∠C+(180°-∠C)/2+β=180°.α=180°-∠B -∠C.算得β=α/2.⑶β=180°-[(180°-∠B)/2+(180°-∠C)/2]=90°-α/2.例4.如图,在△ABC 中,AD ⊥BC 于D ,AE 平分∠BAC(∠C>∠B),试说明∠EAD=(∠C ?∠B).解:(1)∵∠1=∠2,∴∠1=∠BAC ,又∵∠BAC=180°-(∠B+∠C ),∴∠1=[180°-(∠B+∠C )]=90°-(∠B+∠C ),∴∠EDF=∠B+∠1=∠B+90°-(∠B+∠C )=90°+(∠B-∠C ),又∵EF ⊥BC ,∴∠EFD=90°, ∴∠DEF=90°-∠EDF=90°-[90°+(∠B-∠C )]=(∠C-∠B );(2)当点E 在AD 的延长线上时,其余条件都不变,(1)中探索所得的结论仍成立。
三角形的性质认识三角形的内角和外角特性三角形作为几何学中最基础、最重要的图形之一,在形状和性质上都有着独特的特点。
其中,三角形的内角和外角特性是我们研究三角形性质不可忽视的一部分。
本文将围绕三角形的性质展开,着重讨论三角形的内角和外角特性。
一、三角形的内角和外角定义及性质1. 三角形内角三角形是由三条线段组成的,而三条线段相交处形成的角称为三角形的内角。
三角形内角的性质有以下几点:(1)三角形内角和为180度:三角形的三个内角的和等于180度,即∠A + ∠B + ∠C = 180°。
(2)锐角三角形:如果三角形的三个内角都小于90度,则该三角形称为锐角三角形。
(3)直角三角形:如果三角形中有一个内角为90度,则该三角形称为直角三角形。
(4)钝角三角形:如果三角形的一个内角大于90度,则该三角形称为钝角三角形。
2. 三角形的外角三角形的外角由三角形的一个内角所对应的外部角度部分组成。
三角形外角的性质有以下几点:(1)三角形的外角和等于360度:对于任意一个三角形,三个外角的和等于360度,即∠D + ∠E + ∠F = 360°。
(2)三角形的外角与内角的关系:一个三角形的内角和对应的外角之和等于180度,即∠A + ∠D = 180°,∠B + ∠E = 180°,∠C +∠F = 180°。
二、三角形的内角和外角关系及应用1. 三角形内角之间的关系三角形内角之间有着一些特殊的关系,这些关系为我们研究三角形的性质提供了便利。
以下是三角形内角间的关系:(1)等腰三角形:如果三角形的两个内角相等,则该三角形称为等腰三角形。
(2)等边三角形:如果三角形的三个内角相等,则该三角形称为等边三角形。
(3)直角三角形的特殊关系:直角三角形中,直角边上的内角为90度,而另外两个内角互为互补角。
即∠A + ∠B = 90°,∠A + ∠C = 90°,∠B + ∠C = 90°。
三角形的外角定理(一)引言概述:在几何学中,三角形是最基本的图形之一。
而研究三角形的性质和定理有助于我们更好地理解和解决几何问题。
本文将重点介绍三角形的外角定理,并从不同的角度探讨其相关概念。
正文:一、外角的定义与性质:1. 外角的定义:三角形的外角是指不在三角形内部的角,位于两个相邻内角的补角。
2. 外角与内角的关系:外角与其相邻的内角之和等于180°。
3. 外角和其他角度的关系:外角与该三角形的其他内角和两个内角的补角之间有特定的数学关系。
4. 外角和三角形的边的关系:外角与其对边的关系可以用于推导和证明三角形的其他定理。
5. 外角的运用:外角定理在解决几何问题和证明中起着重要的作用,可以帮助我们解决各种与三角形相关的数学问题。
二、外角定理的证明与推导:1. 外角定理的几何证明:通过几何方法来证明外角定理的正确性和有效性。
2. 外角定理的代数推导:通过代数方法来推导外角定理,利用三角函数和三角比值的关系来解释外角定理。
3. 外角定理的应用:探讨外角定理在实际应用中的具体用途,如测量和计算三角形的角度,以及在建筑、工程和导航等领域的应用。
三、外角定理的相关定理和性质:1. 内角定理:内角和外角的关系,以及内角之和与180°的关系。
2. 外角的性质:外角的大小和性质随着三角形形状的变化而变化。
3. 内外角的比较:比较和分析内角和外角的特点和性质,探讨它们在三角形中的作用和关系。
4. 外角的刻画:用数学方式刻画外角的特点和性质,如利用三角形的边长和角度来计算外角的值。
5. 外角定理的扩展:外角定理的推广和扩展,以及相关的数学推论和拓展。
总结:本文重点介绍了三角形的外角定理及其相关概念。
我们深入探讨了外角的定义与性质,证明和推导了外角定理,并介绍了它的应用和相关的定理和性质。
通过学习和理解三角形的外角定理,我们能够更好地解决几何问题,提升数学思维和应用能力。