气体吸收的原理
- 格式:ppt
- 大小:550.50 KB
- 文档页数:128
化工原理之气体吸收气体吸收是化工过程中常用的一种物理操作,它指的是将气体从气相吸收到液相中。
气体吸收广泛应用于环境工程、化工工艺、能源工程等领域,例如废气处理、石油炼制、烟气脱硫等。
一、气体吸收的基本原理气体吸收的基本原理是气体和液体之间的质量传递过程。
气体吸收的过程中,气体溶质分子通过气相和液相之间的传质界面传递到溶液中,从而实现气体从气相到液相的转移。
气体吸收的速度由以下几个因素决定:1.液相溶剂的性质:液相溶剂的挥发性、表面张力、黏度和溶解度等性质都会影响气体吸收的速度。
通常情况下,挥发性较强的溶剂对气体的吸收速率较快。
2.溶剂和气体溶质之间的亲和力:溶剂和气体溶质之间的亲和力越强,气体吸收速度越快。
3.传质界面的面积和传质界面的厚度:传质界面的面积越大,气体吸收速度越快;传质界面的厚度越薄,气体吸收速度越快。
4.溶解度:气体的溶解度越高,气体吸收速度越快。
5.气体浓度梯度:气体浓度梯度越大,气体吸收速度越快。
二、气体吸收的设备常见的气体吸收设备包括吸收塔、吸收柱和吸附塔等。
1.吸收塔:吸收塔是最常用的气体吸收设备之一,它主要由一个塔体和填料层组成。
气体通过底部进入吸收塔,液体从塔顶滴入塔体中。
在填料层的作用下,气体和液体之间的接触面积增加,从而促进气体的传质。
通过提供充分的接触时间和表面积,吸收塔可以实现高效的气体吸收。
2.吸收柱:吸收柱通常用于含有反应过程的气体吸收。
与吸收塔类似,吸收柱也包含一个塔体和填料层。
区别在于,吸收柱还包括一个液相反应器,用于在吸收气体的同时进行反应。
3.吸附塔:吸附塔是另一种常用的气体吸收设备,主要用于吸附分离等工艺中。
吸附过程通过吸附剂将目标气体吸附在其表面上实现。
吸附塔通常由多个吸附层和吸附剂床组成,气体从底部进入吸附塔,经过吸附剂床后,被吸附物质从气相转移到固相中,从而实现气体吸附。
三、气体吸收的应用气体吸收在化工工艺中有着广泛的应用。
1.废气处理:气体吸收是一种有效的废气处理方法,可用于去除废气中的有害污染物,如二氧化硫、氮氧化物等。
气体吸附原理气体吸附是指气体分子在固体表面上附着的现象,它是一种重要的物理化学过程,广泛应用于化工、环保、能源等领域。
气体吸附原理是指气体分子在与固体表面相互作用时,通过吸附作用在固体表面上形成一层吸附层的过程。
气体吸附过程是一个复杂的物理化学过程,它受到多种因素的影响。
其中,最重要的是吸附剂的性质和气体分子的性质。
吸附剂的性质包括孔径大小、孔隙结构、化学成分等,而气体分子的性质则包括分子大小、极性、化学活性等。
这些因素共同作用,决定了气体在固体表面上的吸附行为。
气体吸附过程可以分为物理吸附和化学吸附两种类型。
物理吸附是指气体分子与吸附剂表面之间的范德华力作用,它是一种弱相互作用力,通常发生在低温下。
而化学吸附则是指气体分子与吸附剂表面发生化学键结合的过程,它是一种强相互作用力,通常发生在高温下。
在气体吸附过程中,吸附剂的孔隙结构对吸附性能起着至关重要的作用。
孔隙结构可以影响吸附剂的比表面积、孔体积和孔径分布等参数,从而影响气体分子在吸附剂表面上的扩散和吸附速率。
通常情况下,孔径越小,吸附剂的比表面积和孔体积越大,气体分子在其表面上的吸附性能也越好。
此外,气体分子的性质也对气体吸附过程产生重要影响。
一般来说,分子大小越小、极性越大、化学活性越高的气体分子,其在固体表面上的吸附性能也越好。
这是因为这些气体分子更容易与吸附剂表面发生相互作用,从而形成稳定的吸附层。
在工业应用中,气体吸附技术被广泛应用于气体分离、气体储存、气体检测等领域。
例如,在天然气净化过程中,气体吸附技术可以有效去除天然气中的杂质气体,提高天然气的纯度。
在气体储存领域,气体吸附技术可以将气体分子吸附到多孔吸附剂中,实现气体的高效储存和释放。
总之,气体吸附原理是一个复杂而重要的物理化学过程,它受到多种因素的影响。
通过深入研究气体吸附原理,可以更好地理解气体分子在固体表面上的吸附行为,为气体吸附技术的应用和发展提供理论基础和技术支持。
第二章气体吸收第一节概述2.1.1 气体吸收过程一、什么是吸收:气体吸收是用液体吸收剂吸收气体的单元操作。
二、吸收基本原理:是利用气体混合物中各组分在某一液体吸收剂中溶解度的不同,从而将其中溶解度最大的组分分离出来。
三、吸收的特点:吸收是一种组分从气相传入夜相的单向扩散传质过程。
四、传质过程:借扩散进行物质传递的过程称为传质过程。
除吸收外,蒸馏.萃取.吸收.干燥等过程,也都属于传质过程。
五、S吸收剂(溶剂)S+液相吸收液(溶液)A扩散:由于微粒(分子.原子等)的热运动而产生的物质迁移现象。
可由一种或多种物质在气、液或固相的同一相内或不同相间进行。
主要由于温度差和湍流运动等。
微粒从浓度较大的区域向较小的区域迁移,直到一相内各部分的浓度达到一致或两相间的浓度达到平衡为止。
扩散速度在气相最大,液相次之,固相中最小。
吸收在化工生产中的应用极为广泛,其目的主要有四点:SO制98%的硫酸)。
一、制造成品(93%的硫酸吸收3二、回收有价值的气体,(焦化厂用洗油处理焦炉气以分离其中的苯等芳香烃)。
三、去掉有害气体(如合成氨厂用氨水或其它的吸收剂除去半水煤气中的硫化氢)。
四、三废处理:(如用吸收法除净硫酸生产尾气中的二氧化硫。
)总之吸收的目的可用四个字来概括:去害兴利。
2.1.2 气体吸收的分类一、物理吸收:吸收过程中吸收质只是简单地从气相溶入液相,吸收质与吸收剂间没有显著的化学反应或只有微弱的化学反应,吸收后的吸收质在溶液中是游离的或结合的很弱,当条件发生变化时,吸收质很容易从溶剂中解吸出来。
如用水吸收二氧化碳。
物理吸收是一个物理化学过程,吸收的极限取决于操作条件下吸收质在吸收剂中的溶解度、吸收速率则取决于吸收质从气相主体传递入液相主体的扩散速率。
物理吸收都是可逆的一般热效应较小。
二、化学吸收:吸收过程中吸收质与吸收剂之间发生显著的化学反应。
例如NaOH 吸收2CO 。
化学吸收时,吸收平衡主要取决于当时条件下吸收反应的化学平衡,吸收速率则取决于吸收质的扩散速率和化学发应速率,因为化学吸收降低了吸收质的浓度故吸收速率一般比同样条件下没有化学反应的物理吸收速率大。
气体吸收知识点总结一、气体吸收的基本原理气体吸收是一种物理与化学相结合的过程,其基本原理主要包括气体与溶剂之间的质传和能传。
质传是指气体分子在气-液界面附近的扩散传输,包括气体分子的渗透、重新吸附和溶解等过程。
能传是指气体分子在溶液中释放或吸收能量,从而参与到化学反应中。
对于溶液吸收来说,通常会发生溶解、吸附、反应等过程。
在气体吸收过程中,溶剂的选择是十分重要的。
常用的溶剂包括水、乙醇、甲醇、丙酮等。
不同的溶剂对于不同的气体有着不同的选择,具体的选择需要考虑其溶解度、选择性、毒性、成本等因素。
二、影响气体吸收的因素1. 气体性质气体的性质对气体吸收的影响十分显著。
例如,气体的溶解度、扩散系数、表面张力等均会影响气体在溶液中的吸收速率。
2. 溶剂性质不同的溶剂对气体的溶解度不同,对于不同的气体有不同的选择。
此外,溶剂的粘度、温度、酸碱性等也会影响气体的溶解和吸收速率。
3. 操作条件操作条件包括温度、压力、气体流量、溶液浓度等。
这些操作条件对气体吸收的速率、效率、能耗等方面都有着重要的影响。
4. 设备结构设备结构对气体吸收的效率、能耗、稳定性等都有很大的影响。
例如,吸收塔的塔板设计、填料结构、液体循环方式等都会对气体吸收过程产生影响。
5. 质量传递模式质量传递模式包括气体-液体相间的传递和气体在液相中的扩散传递。
传质速率和传质方式会对气体吸收过程产生影响。
6. 气液接触方式气液接触方式包括气液接触面积、气液接触时间等。
这些因素直接影响着气体分子与溶剂分子之间的相互作用过程。
三、气体吸收的工艺方法根据气体吸收过程中气体与溶剂之间的相互作用方式,气体吸收的工艺方法主要包括物理吸收、化学吸收和生物吸收等。
1. 物理吸收物理吸收是指气体分子在溶剂中的溶解和吸附过程。
物理吸收的主要方式包括分子间力作用(如范德华力、静电作用)和气液相间传递。
常见的物理吸收方法包括吸附、解吸、扩散等过程。
物理吸收主要应用于一些低气体浓度和不易发生化学反应的气体分离和净化。
第一节概述一、什么是吸收?吸收是利用气体混合物中各组分在某种溶剂中溶解度的差异,而将气体混合物中组分加以分离的单元操作。
溶质: 气体混合物中能溶解的组分称为溶质,以A表示;惰性组分: 不溶或微溶组分称为惰性组分或载体,以B表示;溶剂: 吸收过程所用的溶剂称为吸收剂,以S表示;吸收液: 所得的溶液称为吸收液。
二、吸收在石油化工中的应用(1)回收有用组分(2)制取液态产品(3)净化气体(废气治理)三、吸收的工艺流程四、吸收分类按溶质和溶剂之间是否发生明显的化学反应吸收按溶于溶剂的组分数吸收按吸收过程是否发生明显的温度变化吸收五、吸收剂的选择1.溶解度大;2.选择性好;3.挥发度低;4.粘度低;5.无毒、无腐蚀;6.吸收剂应尽可能不易燃、不易发泡、价廉易得、稳定。
第二节吸收过程的相平衡关系一、气体在液体中的溶解度在一定的温度与压力下、使气体混合物与一定量的溶剂接触,气相中的溶质便向液相中的溶质转移,直至液相中溶质达到饱和为止,这时,我们称之为达到了相平衡状态。
达到了相平衡状态时气相中溶质的分压,成平衡分压;液相中溶质的浓度称为平衡浓度(或溶解度)。
大量实验表明,溶解度和气相中溶质的分压有关。
从图上可以看出:分压高,溶解度大温度高,溶解度小吸收操作应在低温高压下进行,脱吸应在高温、低压下进行二、亨利定律1.亨利定律在一定的温度下,当总压不很高(<500kpa)时,稀溶液上方溶质的平衡分压与该溶质在液相中的摩尔分率成正比,其表达式如下式中------溶质在气相中的平衡分压,KN/m2;------溶质在液相中的摩尔分率;E------亨利系数,。
式(9-1)称为亨利(Henry)定律。
亨利系数E值由实验测定,常见物系的E值可由有关手册查出。
当物系一定时,亨利系数随温度而变化。
一般说来,值随温度升高而增大,这说明气体的溶解度随温度升高而减小,易溶气体值小,难溶气体的值大。
2.用溶解度系数表示的亨利定律若将亨利定律表示成溶质在液相中的摩尔浓度与其在气相中的平衡分压之间的关系,则可写成如下形式(9-2)式中C──液相中溶质的摩尔浓度,kmol/m3H──溶解度系数,溶液中溶质的摩尔浓度和摩尔分率及溶液的总摩尔浓度之间的关系为(9-3)把上式代入式(9-2)可得将上式与式(9-1)比较,可得(9-4)溶液的总摩尔浓度可用1m3溶液为基准来计算,即(9-5)式中──溶液的密度(kg/m3)──溶液的摩尔质量。
气体吸收的原理应用1. 气体吸收的概述•气体吸收是一种常见的分离和纯化气体的方法。
•气体吸收的原理是通过气体分子在液体中的溶解来实现。
•气体吸收可以应用于多个工业领域,如环保、化工、制药等。
2. 气体吸收的原理•气体吸收的原理基于亨利定律,即气体在液体中的溶解度与气体的分压成正比。
•在气液界面,气体分子与液体分子发生相互作用,使气体分子从气相转移到液相。
•气体溶解度受到温度、压力和溶液性质的影响。
3. 气体吸收的应用3.1 环境保护•气体吸收在环境保护中起到重要作用。
•通过气体吸收可以去除大气中的污染物,如二氧化硫、氮氧化物等。
•采用适当的吸收剂,可以高效地将污染物吸收到液体中,减少对大气的污染。
3.2 化工工艺•在化工工艺中,气体吸收常用于纯化和分离气体。
•比如,酸碱气体可以通过吸收与液体中的酸碱反应来进行分离。
•气体吸收还可以用于去除废气中的有害物质,提高产品质量。
3.3 制药工业•在制药工业中,气体吸收常用于分离和纯化药品。
•比如,离子交换树脂可以通过吸收气体中的杂质来提高药品的纯度。
•气体吸收还可以用于去除反应过程中的副产物,提高产品的纯度和产率。
4. 气体吸收实验•进行气体吸收实验可以更好地理解气体吸收的原理和应用。
•实验材料包括气体源、吸收器、溶液和测量设备。
•实验步骤包括设定好实验条件、将气体通入吸收器、记录吸收效果等。
•实验结果可以通过计算和观察来获得。
5. 气体吸收设备•在实际应用中,气体吸收需要使用到特定的设备。
•常见的气体吸收设备有吸收塔、填料塔和液罐等。
•这些设备可以提供较大的气液接触面积,实现高效的气体吸收效果。
6. 气体吸收的优势和限制•气体吸收具有高效、灵活、节能等优势。
•然而,气体吸收也存在一些限制,如需要消耗大量的溶液、设备投资较大等。
7. 结论•气体吸收作为一种常见的气体分离和纯化方法,具有广泛的应用领域。
•进一步研究和应用气体吸收技术,有助于提高环境保护、化工工艺和制药工业的效率和效果。
化工原理气体吸收气体吸收是化学工程中一种常用的分离和纯化技术,用于从气体混合物中去除其中一种特定成分。
它广泛应用于石油、化工、环保等领域。
本文将介绍气体吸收的原理、装置和操作条件等方面的内容。
气体吸收的原理是利用溶剂与气体中的组分之间的化学或物理作用力,使目标组分从气相转移到液相中。
根据吸收剂的性质和反应过程的特点,气体吸收可分为物理吸收和化学吸收两种方式。
物理吸收是指目标组分在吸收剂中主要通过物理作用力,如分子间的范德华力、表面张力等,从气相吸附到液相中。
在物理吸收过程中,吸收剂的选择非常关键,常用的吸收剂包括水、有机溶剂(如乙醇、丙酮等)和离子液体等。
化学吸收是指目标组分在吸收剂中通过与吸收剂发生化学反应,形成溶解物而从气相吸附到液相中。
化学吸收通常需要在一定的温度、压力和pH值条件下进行。
化学吸收常用的吸收剂包括氨水、碱性溶液(如氢氧化钠溶液、氯化钠溶液等)和有机酸等。
气体吸收的装置主要由吸收器、进料装置、排气装置和再生装置等组成。
吸收器一般为塔状或柱状,内部设置填料或栅板,以增加气液接触的表面积,提高吸收效果。
进料装置用于将待吸收的气体引入吸收器,通常采用喷射装置或静态混合器。
排气装置用于将除去目标组分的废气排放到大气中。
再生装置用于将吸收剂中的目标组分进行回收或处理。
操作条件对气体吸收的效果有重要影响。
温度是其中的一个关键参数,一般情况下,吸收效果随着温度的升高而降低。
温度控制有利于提高吸收剂中目标组分的溶解度。
另外,压力、气体和液体的流动速度、吸收剂浓度和比表面积等,也会对气体吸收过程产生影响。
气体吸收在化工工艺中有着广泛的应用。
例如,气体吸收可用于去除工业废气中的有机物、硫化物、酸性气体等污染物。
此外,在炼油、气体处理和化学合成等过程中,气体吸收还常用于分离和提纯有机化合物、气体燃料的净化和升级等。
综上所述,气体吸收作为一种常见的分离和纯化技术,通过吸收剂与目标组分之间的化学或物理作用力,将气体中的特定成分从气相吸附到液相中。