正弦波发生器的设计
- 格式:doc
- 大小:334.50 KB
- 文档页数:4
正弦波发生器的设计(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)电子技术课程设计报告题目:正弦波发生器的设计专业:XXXXXXXXXXXX班级:XXXXXXXXXXX学号:XXXXXXX姓名:XX指导教师:XXXX设计日期:2021年12月3日正弦波发生器设计报告一、设计目的作用1. 培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。
2. 学习较复杂的电子系统设计的一般方法,提高基于模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。
3. 进行基本技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。
4. 培养创新能力二、设计要求1. 用途广泛,能产生10 Hz ~ 400 Hz 的正弦波,要求掌握设计原理,对电路进行分析。
2. 控制便捷,通过调节电位器实现对频率的调节,了解一些元器件的用途。
3. 造价低廉,使用集成芯片,花费都很低,熟悉一些重要芯片的逻辑功能,以及对芯片进行设计连接。
4. 精度较高,通过对振荡器、计数器、加法器等集成电路的使用,使得电路的运行都是很精确的。
所以要对一些逻辑电路的进行运用。
三、设计的具体实现1、系统概述总体设计思路:电路原理:振荡器--- 扭环形计数器----逻辑模拟开关----加法器----滤波器----正弦波一.首先阐述正弦波振荡器起振条件及原理过程:正弦波振荡器起振条件:|AF|>1(略大于)结果产生增幅震荡振荡条件是=1幅度平衡条件||=1相位平衡条件ϕAF = ϕA+ϕF = ±2nπ正弦波振荡电路的组成判断及分类:(1)放大电路:保证电路能够有从起振到动态平衡的过程,电路获得一定幅值的输出值,实现自由控制。
(2)选频网络:确定电路的振荡频率,是电路产生单一频率的振荡,即保证电路产生正弦波振荡。
利用LPM 设计正弦信号发生器一、设计目的:进一步熟悉maxplu sII 及其LPM 设计的运用。
二、设计要求:1、利用原理图输入方式。
2、信号数据点值自行想法实现。
3、得出正确时序仿真文件。
三、设计原理:图1 正弦信号发生器结构框图图1所示的正弦波信号发生器的结构由三部分组成计数器或地址发生器(这里选择8位),正弦信号数据ROM (8位地址线,8位数据线),含有256个8位数据(一个周期)。
四、VHDL 顶层设计。
设计步骤:1、建立.mif 格式文件建立C 语言文件sin.cpp ,运行产生sin.exe 文件。
sin.cpp 程序代码:#include <iostream>#include <cmath>#include <iomanip>using namespace std;int main(){int i;float s;VHDL 顶层设计sin.vhd8位计数器 (地址发生器) 正弦波数据 存储ROM 产生波形数据cout<<"WIDTH=8;\nDEPTH=256;\n\nADDRESS_RADIX=HEX;\nDA TA_R ADIX=HEX;\n\nCONTENT\nBEGIN\n";for(i=0;i<256;i++){s=sin(atan(1)*8*i/256);cout<<" "<<i<<" : "<<setbase(16)<<(int)((s+1)*255/2)<<";"<<endl;}cout<<"END"<<endl;return 0;}把上述程序编译后,在DOS命令行下执行命令:sin.exe > sin.mif;将生成的sin.mif 文件。
AS正弦波信号发生器设计一、实验内容1.设计一正弦信号发生器,采用ROM进行一个周期数据存储,并通过地址发生器产生正弦信号。
(ROM:6位地址8位数据;要求使用两种方法:VHDL编程和LPM)2.正弦信号六位地址数据128,140,153,165,177,188,199,209,219,227,235,241,246,250,253,255,255,254,252,248,244,238,231,223,214,204,194,183,171,159,147,134,121,109,96,84,72,61,51,41,32,24,17,11,7, 3,1,0,0,2,5,9,1420,28,36,46,56,67,78,90,102,115,127。
二、实验原理正弦波信号发生器是由地址发生器和正弦波数据存储器ROM两块构成,输入为时钟脉冲,输出为8位二进制。
1.地址发生器的原理地址发生器实质上就是计数器,ROM的地址是6位数据,相当于64位循环计数器。
2.只读存储器ROM的设计(1)、VHDL编程的实现①基本原理:为每一个存储单元编写一个地址,只有地址指定的存储单元才能与公共的I/O相连,然后进行存储数据的读写操作。
②逻辑功能:地址信号的选择下,从指定存储单元中读取相应数据。
(2)、基于LPM宏功能模块的存储器的设计①LPM:Library of Parameterized Modules,可参数化的宏功能模块库。
②Quartus II提供了丰富的LPM库,这些LPM函数均基于Altera器件的结构做了优化处理。
③在实际的工程中,设计者可以根据实际电路的设计需要,选择LPM库中适当的模块,并为其设置参数,以满足设计的要求,从而在设计中十分方便的调用优秀的电子工程技术人员的硬件设计成果。
三、设计方案1.基于VHDL编程的设计在地址信号的选择下,从指定存储单元中读取相应数据系统框图如下:2.基于LPM宏功能模块的设计LPM宏功能具有丰富的由优秀的电子工程技术人员设计的硬件源代码可供调用,我们只需要调用其设计的模块并为其设计必要的参数即可。
实验八正弦信号发生器的设计一、实验目的1、学习用VHDL设计波形发生器和扫频信号发生器。
2、掌握FPGA对D/A的接口和控制技术,学会LPM_ROM在波形发生器设计中的实用方法。
二、实验仪器PC机、EDA实验箱一台Quartus II 6.0软件三、实验原理如实验图所示,完整的波形发生器由4部分组成:• FPGA中的波形发生器控制电路,它通过外来控制信号和高速时钟信号,向波形数据ROM 发出地址信号,输出波形的频率由发出的地址信号的速度决定;当以固定频率扫描输出地址时,模拟输出波形是固定频率,而当以周期性时变方式扫描输出地址时,则模拟输出波形为扫频信号。
•波形数据ROM中存有发生器的波形数据,如正弦波或三角波数据。
当接受来自FPGA的地址信号后,将从数据线输出相应的波形数据,地址变化得越快,则输出数据的速度越快,从而使D/A输出的模拟信号的变化速度越快。
波形数据ROM可以由多种方式实现,如在FPGA外面外接普通ROM;由逻辑方式在FPGA中实现(如例6);或由FPGA中的EAB模块担当,如利用LPM_ROM实现。
相比之下,第1种方式的容量最大,但速度最慢;,第2种方式容量最小,但速度最最快;第3种方式则兼顾了两方面的因素;• D/A转换器负责将ROM输出的数据转换成模拟信号,经滤波电路后输出。
输出波形的频率上限与D/A器件的转换速度有重要关系,本例采用DAC0832器件。
DAC0832是8位D/A转换器,转换周期为1µs,其引脚信号以及与FPGA目标器件典型的接口方式如附图2—7所示。
其参考电压与+5V工作电压相接(实用电路应接精密基准电压).DAC0832的引脚功能简述如下:•ILE(PIN 19):数据锁存允许信号,高电平有效,系统板上已直接连在+5V上。
•WR1、WR2(PIN 2、18):写信号1、2,低电平有效。
•XFER(PIN 17):数据传送控制信号,低电平有效。
•VREF(PIN 8):基准电压,可正可负,-10V~+10V.•RFB(PIN 9):反馈电阻端。
课程设计I(论文)说明书(正弦波信号发生器设计)2010年1月19日摘要正弦波是通过信号发生器,产生正弦信号得到的波形,方波是通过对原信号进行整形得到的波形。
本文主要介绍了基于op07和555芯片的正弦波-方波函数发生器。
以op07和555定时器构成正弦波和方波的发生系统。
Op07放大器可以用于设计正弦信号,而正弦波可以通过555定时器构成的斯密特触发器整形后产生方波信号。
正弦波方波可以通过示波器检验所产生的信号。
测量其波形的幅度和频率观察是否达到要求,观察波形是否失真。
关键词:正弦波方波 op07 555定时器目录引言 (2)1 发生器系统设计 (2)1.1系统设计目标 (2)1.2 总体设计 (2)1.3具体参数设计 (4)2 发生器系统的仿真论证 (4)3 系统硬件的制作 (4)4 系统调试 (5)5 结论 (5)参考文献 (6)附录 (7)1引言正弦波和方波是在教学中经常遇到的两种波形。
本文简单介绍正弦波和方波产生的一种方式。
在这种方式中具体包含信号发生器的设计、系统的论证、硬件的制作,发生器系统的调制。
1、发生器系统的设计1.1发生器系统的设计目标设计正弦波和方波发生器,性能指标要求如下:1)频率范围100Hz-1KHz ;2)输出电压p p V ->1V ;3)波形特性:非线性失真~γ<5%。
1.2总体设计(1)正弦波设计:正弦波振荡电路由基本放大电路、反馈网络、选频网络组成。
2图1.1正弦波振荡电路产生的条件是要满足振幅平衡和相位平衡,即AF=1;φa+φb=±2nπ;A=X。
/Xid; F=Xf/X。
;正弦波振荡电路必须有基本放大电路,本设计以op07芯片作为其基本放大电路。
基本放大电路的输出和基本放大电路的负极连接电阻作为反馈网络。
反馈网络中两个反向二极管起到稳压的作用。
振荡电路的振荡频率f0是由相位平衡条件决定的。
一个振荡电路只在一个频率下满足相位平衡条件,这要求AF环路中包含一个具有选频特性的选频网络。
555定时器构成的方波三角波正弦波发生器设计报告设计报告:555定时器构成的方波、三角波、正弦波发生器一.引言数字电子技术在现代电子设备中得到广泛应用,定时器作为一种常用的集成电路,在实际电路设计中起着重要的作用。
本报告将介绍基于555定时器构成的方波、三角波、正弦波发生器的设计方法和原理。
二.设计原理1.555定时器简介2.方波发生器的设计方波发生器是利用555定时器的比较器功能来实现的。
具体步骤如下:(1)将一个电阻和一个电容连接到555的引脚,构成一个RC电路。
(2)分压电路使输入电压达到比较器的阈值。
(3)连接一个LED或其他负载到输出引脚。
3.三角波发生器的设计三角波发生器基于方波发生器的基础上,通过使用一个二阶RC滤波器来获得平滑的三角波。
具体步骤如下:(1)将一个电阻和一个电容串联到555的引脚。
(2)将滤波电容接在555的引脚上,形成一个RC滤波器。
(3)连接一个负载到滤波电容的两端。
4.正弦波发生器的设计正弦波发生器是通过利用555定时器构成的线性电压控制振荡器实现的。
具体步骤如下:(1)将一个电阻和一个电容连接到555的引脚,构成一个RC电路。
(2)将555的引脚与反相放大器相连。
(3)将反相放大器的输出连接到555的控制电压输入引脚,通过一个电阻和二极管连接到电源。
三.实验结果与分析使用仿真软件对方波、三角波、正弦波发生器进行仿真,得到以下结果:(1)方波发生器:输出波形为高电平和低电平的方波,频率由RC电路的电阻和电容决定。
(2)三角波发生器:输出波形为逐渐上升和下降的三角波,通过RC 滤波电路生成。
(3)正弦波发生器:输出波形为正弦波,通过线性电压控制振荡器实现。
四.结论本报告介绍了基于555定时器构成的方波、三角波、正弦波发生器的设计原理和实验结果。
方波和三角波发生器是利用555定时器的比较器和滤波器功能实现的,而正弦波发生器则利用线性电压控制振荡器来生成正弦波。
这些电路在现代电子设备中得到广泛应用,具有重要的实际意义。
方波三角波正弦波函数发生器的设计
设计方波、三角波、正弦波函数发生器需要经过以下步骤:
首先,设计电路图。
其主要由单稳态触发器、行波触发器、电源部分和振荡放大部分组成,使用的主要器件有电阻、电容、三极管和二极管。
其次,具体元器件的参数选择。
为了保证输出波形的稳定性,应该选择具有良好温度稳定性和频率稳定性的元器件,同时考虑到制作成本和实际应用要求,选择适合的元器件。
第三,制作电路板。
在选择好元器件之后,需要合理布局电路,将元器件焊接到电路板上。
为保证电路的稳定性和可靠性,电路板应该选用高质量的绝缘材料,并进行严格的质量控制。
然后,对电路进行调试和测试。
初始调试时,需要使用示波器和电压表等测试仪器,调整电路参数,使其达到预期的性能要求。
在测试中,应注意观察波形的稳定性、频率、峰值、偏移量等参数,对异常情况进行分析和处理。
最后,进行封装和安装。
根据实际应用环境和要求,选择合适的封装方式和安装位置。
考虑到散热和防护问题,需要选择具有良好散热性能和防护性能的封装材料,并进行严格的防护处理。
综上所述,设计方波、三角波、正弦波函数发生器是一项既需要严谨的理论知识,又需要熟练的实践技能和深入的电路分析能力的工作,这需要设计者具有深厚的电子技术基础和丰富的实践经验。
《EDA技术》设计报告设计题目正弦信号发生器的设计院系:信息工程学院专业:通信工程学姓号:名:RST7 根地址线CLK计 数器8 位R O M并转串输出TLV5620 D/A 转换一.设计任务及要求1. 设计任务 :利用实验箱上的 D/A 转换器和示波器设计正弦波发生器,可以在示波器上观察到正弦波2. 设计要求 :(1) 用 VHDL 编写正弦波扫描驱动电路 (2) 设计可以产生正弦波信号的电路(3) 连接实验箱上的 D/A 转换器和示波器,观察正弦波波形二.设计方案(1)设计能存储数据的 ROM 模块,将正弦波的正弦信号数据存储在在 ROM 中,通过地址发生器读取,将正弦波信号输入八位 D/A 转化器,在示波器上观察波形(2)用 VHDL 编写正弦波信号数据, 将正弦波信号输入八位 D/A 转化器, 在示波器上观察波形三.设计框图图 1 设计框图信号发生器主要由以下几个部分构成:计数器用于对数据进行采样,ROM用于存储待采样的波形幅度数值, TLV5620 用于将采集的到正弦波数字量变为模拟量,最后通过示波器进行测量获得的波形。
其中,ROM 设置为 7 根地址线, 8个数据位,8 位并行输出。
TLV5260 为串行输入的 D/A 转换芯片,因此要把 ROM 中并行输出的数据进行并转串。
四.实现步骤1. 定制 ROMROM 的数据位选择为8 位,数据数选择128 个。
利用megawizard plug-in manager定制正弦信号数据ROM 宏功能块,并将上面的波形数据加载于此ROM 中。
如图 3 所示。
图2 ROM 存储的数据图3 调入ROM 初始化数据文件并选择在系统读写功能2. 设计顶层.顶层设计主要是通过编写VHDL 语言或设计原理图用于产生计数信号和调用room 存储的数据并输出。
在此步骤里要建立EDA 工程文件,工程文件结构如图4 所示,SIN_CNT 中的VHDL 代码如下:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY SIN_GNT ISPORT ( RST, CLK, EN : IN STD_LOGIC;ADDR : OUT STD_LOGIC_VECTOR(6 DOWNTO 0);DOUT : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) );END SIN_GNT;ARCHITECTURE BEHA VIOR OF SIN_GNT ISCOMPONENT ROM ISPORT ( address : IN STD_LOGIC_VECTOR(6 DOWNTO 0);inclock : IN STD_LOGIC;q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) );END COMPONENT;SIGNAL Q : STD_LOGIC_VECTOR(6 DOWNTO 0);BEGINU : ROM PORT MAP ( address => Q,inclock => CLK,q => DOUT);PROCESS(CLK, RST, EN)BEGINIF RST = '0' THENQ <= "0000000";ELSIF CLK'EVENT AND CLK = '1' THENIF EN = '1' THENQ <= Q + 1;END IF;END IF;END PROCESS;ADDR <= Q;END BEHA VIOR;工程文件的建立步骤简述如下:1、新建一个文件夹。
正弦波信号发生器的设计及电路图正弦波信号发生器的设计结构上看,正弦波振荡电路就是一个没有输入信号的带选频网络的正反馈放大电路。
分析RC串并联选频网络的特性,根据正弦波振荡电路的两个条件,即振幅平衡与相位平衡,来选择合适的放大电路指标,来构成一个完整的振荡电路。
很多应用中都要用到范围可调的LC振荡器,它能够在电路输出负载变化时提供近似恒定的频率、几乎无谐波的输出。
电路必须提供足够的增益才能使低阻抗的LC电路起振,并调整振荡的幅度,以提高频率稳定性,减小THD(总谐波失真)。
1引言在实践中,广泛采用各种类型的信号产生电路,就其波形来说,可能是正弦波或非正弦波。
在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,这就需要能产生高频信号的振荡器。
在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火,超声波焊接,超声诊断,核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。
可见,正弦波振荡电路在各个科学技术部门的应用是十分广泛的。
2正弦波振荡电路的振荡条件从结构上来看,正弦波振荡电路就是一个没有输入信号的带选频网络的正反馈放大电路。
图1表示接成正反馈时,放大电路在输入信号某i=0时的方框图,改画一下,便得图2。
由图可知,如在放大电路的输入端(1端)外接一定频率、一定幅度的正弦波信号某a,经过基本放大电路和反馈网络所构成的环路传输后,在反馈网络的输出端(2端),得到反馈信号某f,如果某f与某a在大小和相位上一致,那么,就可以除去外接信号某a,而将1、2两端连接在一起(如图中的虚线所示)而形成闭环系统,其输出端可能继续维持与开环时一样的输出信号。
正弦波信号发生器制作一、原理及工作方式1.参照信号源:可以使用晶体振荡器作为参照信号源,晶体振荡器的频率非常稳定,精度高,可以提供准确的参照频率。
2.振荡器:振荡器可以根据参照信号源产生一个与之匹配的频率信号,一般使用的是集成电路中的RC振荡器或LC振荡器。
3.滤波器:在振荡器输出的信号中含有很多谐波成分,需要通过滤波器去掉非基波的频率成分,使输出信号更接近理想的正弦波。
4.放大器:滤波器输出的信号还需要一定的放大才能达到输出阻抗。
正弦波信号发生器的工作方式一般分为模拟和数字两种。
模拟方式主要是通过电路实现信号的生成和放大,传统的信号发生器属于这种方式。
数字方式则是采用数字电路和数字信号处理器来实现信号的生成,这种方式可以实现更高精度和更多功能的信号发生器。
二、制作过程下面是一种基于模拟方式的正弦波信号发生器的制作过程。
1.选择元件:根据所需的频率范围选择适当的振荡器和滤波器,通常可以选择集成电路中的RC振荡器和LC滤波器。
同时还需要选择一款合适的放大器来放大滤波器输出的信号。
2.连接电路:按照电路原理图将选定的元件连接起来,根据元件的引脚和功能进行正确的连线。
3.调试:连接完成后,对电路进行调试。
首先需要确认参照信号源是否正常工作,然后调节振荡器的频率,观察信号的变化。
接下来调整滤波器的频率,使输出信号更接近理想正弦波。
最后调整放大器的放大倍数,使输出信号达到所需的幅度。
三、功能扩展除了基本的频率、幅度和相位调节之外,正弦波信号发生器还可以通过增加其他功能模块来实现更多的功能。
比如:1.频率计:增加频率计模块,可以实时测量输出信号的频率。
2.相位偏移:增加相位调节模块,可以实现对输出信号的相位进行调整。
3.数字控制:使用数字信号处理器来实现对信号发生器的数字控制,可以通过软件界面实现更加便捷的操作和参数调节。
4.波形选择:增加多种波形输出的功能,可以输出正弦波、方波、三角波等多种波形,满足不同实验的需求。
制作一个正弦信号发生器的设计
一、正弦信号发生器的概念
正弦信号发生器是一种可以产生所需频率的正弦波信号的设备,可以
帮助开发者测量和分析频率特性,也可以用于相关系统的诊断。
正弦信号
发生器可以产生指定频率的正弦波形,以满足不同系统的需求。
它也可以
通过波形对比法进行精确的波形测量,用于分析电子系统特性。
(1)电路设计
正弦信号发生器的电路设计主要有两种:一种是基于模拟电路的设计,另一种是基于数字电路的设计。
(1)模拟电路
模拟电路设计采用的是电路模块,主要有振荡器、滤波器、缓冲器和
调制电路。
(a)振荡器
振荡器主要由振荡电路和调整元件组成,振荡器的作用是形成振荡的
正弦波,以满足信号发生器产生不同频率的要求。
(b)滤波器
滤波器的作用是滤除振荡器产生的额外噪声,以得到纯净的正弦信号。
(c)缓冲器
缓冲器的主要作用是将振荡器的正弦波输出,缓冲器的作用是减少信
号失真,使正弦波更加完美。
(d)调制电路
调制电路的作用是对信号发生器产生的正弦波进行调制,使其能够输出更加稳定的信号频率。
(2)数字电路
采用数字电路设计的正弦信号发生器。
《EDA》课程设计报告——正弦波信号发生器的设计一、设计目的通过本次课程设计,进一步了解QUARTUS Ⅱ与LPM_ROM与FPGA硬件功能的使用方法。
培养自己查阅资料及解决问题的能力。
二、设计要求1、通过按键,可以控制输出的是正弦波或三角波。
2、通过ADC0832输出正弦波与三角波,电压V范围在0至-10V之间3、通过示波器观察波形。
三、设计内容:在QUARTUSII上完成信号发生器的设计。
最后在实验板上实测,包括FPGA中ROM的在系统数据读写测试和利用示波器测试。
信号输出的D/A使用实验板上的ADC0832。
四、设计原理:图1所示的波信号发生器的结构由五部分组成:1、计数器或地址发生器(这里选择8位)。
正弦信号数据ROM(8位地址线,8位数据线),含有256个8位数据(一个周期)。
2、VHDL顶层设计。
3、8位D/A图1所示的信号发生器结构图中,顶层文件adc.vhd在FPGA中实现,包含两个部分:ROM的地址信号发生器,由8位计数器担任;一个正弦数据ROM(或者一个三角波数据ROM),由LPM_ROM模块构成。
地址发生器的时钟clk的输入频率fo与每周期的波形数据点数(在此选择256点),以及D/A输出的频率f的关系是:f=fo/256图1 正弦信号发生器结构框图图一 信号发生器结构图FPGA DAC08328clk 运放Vo按键图2 信号发生器的设计图五、 设计步骤:1、 建立.mif 格式文件 mif 文件可用C 语言程序生成, 产生正弦波数值的C 程序如下: #include<stdio.h> #include<math.h>VHDL 顶层 设计adc.vhd 8位计数器 (地址发正弦波数据存储ROM18位D/A三角波数据存储ROM2按键3 20分频main(){int i;float s;for(i=0;i<256;i++){s=sin(atan(1)*8*i/256);printf("%d :%d;\n",i,(int)((s+1)*255/2)) }}以zx.c保存。
★项目2:数字信号源
项目简述:设计制作一个正弦信号发生器。
(1)正弦波输出频率范围:1kHz~10MHz;
(2)具有频率设置功能,频率步进:100Hz;
(3)输出信号频率稳定度:优于10-2;
(4)输出电压幅度:1V到5V这间;
(5)失真度:用示波器观察时无明显失真。
(6)输出电压幅度:在频率范围内
50负载电阻上正弦信号输出电压的峰-峰值V opp=6V±1V;
(7)产生模拟幅度调制(AM)信号:在1MHz~10MHz范围内调制度m a可在30%~100%之间程控调节,步进量50%,正弦调制信号频率为1kHz,调制信号自行产生;
(8)产生模拟频率调制(FM)信号:在100kHz~10MHz频率范围内产生20kHz最大频偏,正弦调制信号频率为1kHz,调制信号自行产生;
(9)产生二进制PSK、ASK信号:在100kHz固定频率载波进行二进制键控,二进制基带序列码速率固定为10kbps,二进制基带序列信号自行产生;
开发时间:2007 开发人数:1
运行环境:windows xp、Quartus II
相关内容:(还未整体综合)
下面是调幅原理图:
下面是调频原理图:
下面是正弦信号发生器设计原理图:
下面是PSK设计原理图:。
实验五正弦波的设计一.实验目的1、熟悉ROM的设计方法2、熟悉D/A转换二.实验内容1、设计正弦波发生器三.实验步骤1、在E盘建立个人文件夹,如E:\EDA\DX05\SIN_WA VE。
2、在QuartusII下用文本方式设计64进制计数器模块,即CNT64,注意按照先建立工程后建立文件的做法进行,且要求将工程置于上述文件夹下面,如下图:仿真结果如下图所示,其中clr是异步清零端,低电平清零,注意仿真时间>=20us。
最后一步一定不能忘记,即创建CNT64在元件库中的符号,即选择"File->Create/Update->Create Symbol Files for current File"3.在QuartusII下用文本方式设计正弦波数据储存模块,即SIN_ROM,注意按照先建立工程后建立文件的做法进行,且要求将工程置于最开始建立的文件夹下面,如下图:在接下来的对话框中选择“否”,以后步骤略。
波形数据ROM中存有波形发生器的波形数据。
64个点构成正弦波波型数据ROM 用VHDL实现如下,其中Q是输入端口,D是输出端口,都是整数类型。
下面程序需要补充完整。
------- start ---------------CASE Q IS --选择地址以生成相应数据WHEN 00=> D<=255; WHEN 01=> D<=254;WHEN 02=> D<=252; WHEN 03=> D<=249;WHEN 04=> D<=245; WHEN 05=> D<=239;WHEN 06=> D<=233; WHEN 07=> D<=225;WHEN 08=> D<=217; WHEN 09=> D<=207;WHEN 10=> D<=197; WHEN 11=> D<=186;WHEN 12=> D<=174; WHEN 13=> D<=162;WHEN 14=> D<=150; WHEN 15=> D<=137;WHEN 16=> D<=124; WHEN 17=> D<=112;WHEN 18=> D<= 99; WHEN 19=> D<= 87;WHEN 20=> D<= 75; WHEN 21=> D<= 64;WHEN 22=> D<= 53; WHEN 23=> D<= 43;WHEN 24=> D<= 34; WHEN 25=> D<= 26;WHEN 26=> D<= 19; WHEN 27=> D<= 13;WHEN 28=> D<= 8; WHEN 29=> D<= 4;WHEN 30=> D<= 1; WHEN 31=> D<= 0;WHEN 32=> D<= 0; WHEN 33=> D<= 1;WHEN 34=> D<= 4; WHEN 35=> D<= 8;WHEN 36=> D<= 13; WHEN 37=> D<= 19;WHEN 38=> D<= 26; WHEN 39=> D<= 34;WHEN 40=> D<= 43; WHEN 41=> D<= 53;WHEN 42=> D<= 64; WHEN 43=> D<= 75;WHEN 44=> D<= 87; WHEN 45=> D<= 99;WHEN 46=> D<=112; WHEN 47=> D<=124;WHEN 48=> D<=137; WHEN 49=> D<=150;WHEN 50=> D<=162; WHEN 51=> D<=174;WHEN 52=> D<=186; WHEN 53=> D<=197;WHEN 54=> D<=207; WHEN 55=> D<=217; WHEN 56=> D<=225; WHEN 57=> D<=233; WHEN 58=> D<=239; WHEN 59=> D<=245; WHEN 60=> D<=249; WHEN 61=> D<=252; WHEN 62=> D<=254; WHEN 63=> D<=255;WHEN OTHERS => NULL ; --结束选择 END CASE;------- end ----------------最后一步一定同样不能忘记,即创建SIN_ROM 在元件库中的符号,即选择"File->Create/Update->Create Symbol Files for current File"4、在QuartusII 下用原理图方式设计最终的正弦信号发生器(顶层设计),取名为“SIN_WA VE ”。
正弦波发生器的设计与仿真1.课程设计目的(1)学会利用Protel2004,实现电路绘制以及PCB的生成以及学会设计方法和设计规则的设置,从而对信号发生器有进一步的了解。
并能够对设计结果加以分析。
(2)掌握利用Multisim10的基本操作,完成对电路的仿真和波形的测试分析。
(3)通过对正弦波发发生器的设计和实现,掌握基本信号发生电路的工作原理及设计方法。
2.设计方案论证本实验使用的一个软件是Multisim,它是一款电子电路仿真的虚拟电子工作台软件,采用直观的图形界面创建电路,在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件,电路仿真需要的测试仪器均可以直接从屏幕上选取;软件仪器控制面板外形和操作方式都与实物相似,可以实时显示测量结果;Multisim软件带有丰富的电路元件库,提供多种电路分析方法;作为设计工具,它可以同其它流行的电路分析,设计和制版软件交换数据;Multisim还是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。
Multisim工作环境如图1所示图1 Multisim工作环境Protel DXP包含电路原理图设计,电路原理图仿真测试,印制电路板设计,自动布线器和FPGA/CPLD设计,覆盖了以PCB为核心的整个物理设计。
它提供了进行层次原理图设计的环境,支持“自上而下”和“自下而上”的层次电路设计,能够完成更加大型,更为复杂的电路设计。
Protel DXP 提供了丰富的原件原理图库和PCB封装库,并且库的管理和编辑功能更加完善,草组更加简便。
电路设计人员通过Protel DXP提供的编辑工具,可以方便的实现库中没有包含的原件原理图以及PCB封装的设计制作。
它提供了原件集成库的概念。
在它的元件集成库中集成了元件的原理图符号,本次设计重要通过 Protel DXP 绘图软件完成正弦波发生器原理图的绘制及PCB图的绘制,并利用Multisim软件进行编译、仿真出正弦波波形,并对其进行比较。
正弦波发生器实验报告正弦波发生器实验报告一、引言正弦波发生器是电子实验中常用的一种信号发生器,用于产生稳定的正弦波信号。
在本实验中,我们将通过搭建一个简单的正弦波发生器电路,来探究其工作原理和性能。
二、实验目的1. 了解正弦波发生器的基本原理;2. 掌握正弦波发生器的搭建方法;3. 分析正弦波发生器的输出特性。
三、实验器材与原理本实验所需器材有:函数发生器、示波器、电阻、电容、集成电路等。
正弦波发生器的基本原理是利用反馈电路使放大器的输出信号与输入信号具有相同的幅度和相位,从而实现正弦波的产生。
四、实验步骤1. 搭建正弦波发生器电路:将函数发生器的输出信号接入放大器的输入端,通过反馈电路将放大器的输出信号再次输入到放大器的输入端,形成闭环反馈;2. 调节函数发生器的频率和幅度,观察放大器输出信号的变化;3. 使用示波器测量放大器输出信号的频率和幅度,并记录数据;4. 改变电路中的电阻和电容数值,观察输出信号的变化,并记录数据;5. 分析实验结果,总结正弦波发生器的性能。
五、实验结果与分析通过实验观察和测量,我们得到了一系列正弦波信号的输出结果。
实验中我们发现,正弦波发生器的输出频率与函数发生器的输入频率基本一致,但是幅度会有一定的衰减。
这是因为反馈电路中的电阻和电容会引入一定的阻尼,导致输出信号的幅度减小。
在改变电路中的电阻和电容数值时,我们发现输出信号的频率和幅度也会相应改变。
增加电容的数值会使输出信号的频率降低,而增加电阻的数值会使输出信号的幅度降低。
这是因为电容和电阻对信号的传递和衰减起到了重要作用。
六、实验总结通过本次实验,我们了解了正弦波发生器的基本原理和搭建方法。
实验结果表明,正弦波发生器可以产生稳定的正弦波信号,但是在输出过程中会有一定的衰减。
同时,电路中的电阻和电容数值的改变也会对输出信号的频率和幅度产生影响。
在实际应用中,正弦波发生器广泛用于各种电子设备和实验中,如音频设备、通信设备等。
实验题目: 正弦波发生器的设计
实验时间:_2016年11月29号________
班级:___14物本2班____学号:_2014294222_____姓名:_梁国烈___
一、实验预习
1、实验目的
(1)学习用集成运放构成正弦波发生器。
(2) 学习波形发生器的调整和主要性能指标的测试方法。
2、实验原理及内容(简明扼要,主要是实验接线图)
(一)设计原理与参考电路 1.电路工作原理
RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,如图3-27所示。
R
3
2
-12V
4
+12V
6
7u 0
A
R b
R a
R
C
C
{
R 1
Rw
D 1D 2
图3-27 RC 桥式振荡电路
图中RC 选频网络形成正反馈电路,并由它决定振荡频率f O ,R a 和R b 形成负反馈回路,由它决定起振的幅值条件和调节波形的失真程度与稳幅控制,该电路的振荡频率
起振幅值条件
即
式中:R b =R w +R 1//r d
r d —为二极管的正向动态电阻。
2.参数确定与元件选择
设计如图3-27所示振荡电路,需要确定和选择的元件如下: (1)确定R 、C 值。
根据设计所要求的振荡频率f O,由式先确定RC之积,即
为了使选频网络的选频特性尽量不受集成运算放大器的输人电阻R i和输出电阻R o的
影响,应使R满足下列关系式
R i»R»R o
一般R i约为几百千欧以上(如LM741型R i≥0.3MΩ),而R O仅为几百欧以下,初步选
定R之后,由式算出电容C值,然后,再复算R取值是否能满是振荡频率的要求。
若考虑到电容C的标称挡次较少,也可以先初选电容C,再算电阻R。
(2)确定R a和R b。
电阻R a和R b应由起振的幅值条件来确定。
由式可知,R b≥2R a,通常取R b=(2.1-2.5)Ra,
这样既能保证起振,也不致产生严重的波形失真。
此外,为了减小输入失调电流和漂移的影响,电路还应满足直流平衡条件,即
R=R a∥R b
于是可导出
(3)确定稳幅电路及元件值。
常用的稳幅方法是利用A uf随输出电压振幅上升而下降(负反馈加强)的自动调节作用实现稳幅。
为此R a可选用正温度系数的电阻(如钨丝灯泡),或R b选用负温度系数的电阻(如热敏电阻)。
在图3-27中,稳幅电路由两只正反向并联的二极管D1、D2和电阻R1并联组成,利用二极管正向动态电阻的非线性以实现稳幅,为了减小因二极管特性的非线性而引起的波形失真,在二极管两端并联小电阻R1,这是一种最简单易行的稳幅电路。
在选取稳幅元件时,应注意以下几点:
①幅二极管D1、D2宜选用特性一致的硅管。
②并联电阻R1的取值不能过大(过大对削弱波形失真不利),也不能过小(过小稳幅效果差),实践证明,取R1≈r d时效果最佳,通常R1取(3-5)kΩ即可。
当R1选定之后,R w的阻值可由下式求得
--
(4)选择集成运算放大器。
振荡电路中使用的集成运算放大器除要求输入电阻高、输出电阻低外,最主要的是运算放大器的增益-带宽积G・BW应满足如下条件,即:
G・BW>3f o
若设计要求的振荡频率f O较低,则可选用任何型号的运算放大器(如通用型)。
(5)选择阻容元件。
选择阻容元件时,应注意选用稳定性较好的电阻和电容(特别是串并联回路的R、C),否则将影响频率的稳定性。
此外,还应对RC串并联网络的元件进行选配,使电路中的电阻、电容分别相等。
(二)实验内容与步骤
实验参考电路如图3-27所示。
(1)根据已知条件和设计要求计算和确定元件参数,并在实验电路板上搭接电路,检查无误后接通电源,进行调试。
(2)调节反馈电阻R w,使电路起振且波形失真最小,并观察电阻R w的变化对输出波形u o的影响。
(3)测量和调节参数,改变振荡频率,将测量数据与理论值相比较,直至满足设计要求为止,将测得的数据记录在表3-26。
3、所用仪器设备
波形发生器电路设计实验所需仪器设备见表3-25。
表3-25 实验仪器设备
序号名称型号规格数量
1 模拟电路实验箱THM-3 1
2 双踪示波器V-252,20MH Z 1
3 交流毫伏表DF2170C 1
4 数字万用表VC9801A+ 1
4、预习思考题
(1)复习教材中RC正弦波振荡电路的工作原理。
(2)根据设计任务和已知条件设计图3-27所示RC桥式振荡电路,计算并选取参数。
(3)利用仿真软件仿真设计的RC桥式振荡电路。
二、实验原始记录(实验完成后必须要经过实验指导教师签名认可)
表3-26 正弦波发生器的数据记录
元件值实测值理论值相对误差R(kΩ) C(uF) T(ms) (H Z) (H Z)/)
三、实验报告
1、数据处理(数据表格、计算结果、误差、结果表达、曲线图等)
表3-26 正弦波发生器的数据记录
元件值实测值理论值相对误差R(kΩ) C(uF) T(ms) (H Z) (H Z) /)
47 0.01 2.9 344.83 338.80 0.01178
理论值:f0=1/(2πRc) =1/2*3.14*47*0.01=338.80Hz
相对误差:Δf0/ f0’=(344.83-338.80)/338.80=0.0178
2、结论
(1)根据设计要求和已知条件确定电路方案,计算并选取各元件参数。
3、讨论
(1)根据已知条件和设计要求计算和确定元件参数,并在实验电路板上搭接电路,检查无误后接通电源,进行调试。
(2)调节反馈电阻R w,使电路起振且波形失真最小,并观察电阻R w的变化对输出波形u o的影响。
2016年 11 月 29 日。